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Place rigid body B of density ρ into bath of fluid of 
density ρ0 in vertical gravity field g, assuming no 
interaction of adjacent materials. Then B floats if 
ρ < ρ0 and sinks if ρ > ρ0 (Archimedes Law). 
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Place rigid body B of density ρ into bath of fluid of 
density ρ0 in vertical gravity field g, assuming no 
interaction of adjacent materials. Then B floats if 
ρ < ρ0 and sinks if ρ > ρ0 (Archimedes Law). 
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In fact adjacent materials do interact, and the change 
can be dramatic, with very different behavior. 
Aristoteles already knew 350 BC that heavy bodies 
can float on water. Now known that if B floats then 
orientation and height of B adjusts, and outer free 
surface changes, to meet B in “contact angle“ γ, 
depending on materials. 

!!

B

 
 



 4 

Nothing further for almost 2000 years, when Galileo 
questioned Aristoteles’ reasoning in his „Discorsi“, 
about 1600. Then 200 years later Laplace took up the 
topic, using the then new concept of surface tension, 
and the relatively new magic weapon of the Calculus, 
obtaining some remarkable although not yet complete 
mathematical results.  
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Nothing further for almost 2000 years, when Galileo 
questioned Aristoteles’ reasoning in his „Discorsi“, 
about 1600. Then 200 years later Laplace took up the 
topic, using the then new concept of surface tension, 
and the relatively new magic weapon of the Calculus, 
obtaining some remarkable although not yet complete 
mathematical results. 
 
Then another quietus for almost 200 years, till some 
engineering literature, and a single mathematics paper, 
by Raphaël,  di Meglio, Berger, and Calabi in 1992. 
Idealized case, g = 0, two dimensions (horizontal 
infinite cylinder), convex section B, fluid horizontal 
and at same height on both sides, meeting B with 
contact angle γ.  
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Theorem: There exist at least four positions of B 
yielding prescribed γ.  
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Theorem: There exist at least four positions yielding 
prescribed γ. 

Proof: From „Four vertex theorem“ of differential 
geometry 
 

Example: Ellipse yields exactly four 
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Theorem: There exist at least four positions yielding 
prescribed γ. 

Example: Ellipse yields exactly four 

! ! 
 

Question: What are the shapes that will float in every 
orientation? 
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Theorem: There exist at least four positions yielding 
prescribed γ. 

Example: Ellipse yields exactly four 

! ! 
 

Question: What are the shapes that will float in every 
orientation? 

Conjecture: Must be circle. 
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Theorem: There exist at least four positions yielding 
prescribed γ. 

Example: Ellipse yields exactly four 

! ! 
 

Question: What are the shapes that will float in every 
orientation? 

Conjecture: Must be circle. 

 

Counterexample: If γ = π/2 then any curve of 
constant width will work! 
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d(

!

!)

C

 

d(ν)  =  width in direction ν  
 

Defn.  „constant  width“ if d(ν)  independent of ν .  
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d(
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C

 

d(ν)  =  width in direction ν  
 

Defn.  „constant  width“ if d(ν)  independent of ν .  

 

N.B.  There is some indication that the disaster on the 
spacecraft Challenger happened at least in part 
because the engineers assumed it self-evident that all 
curves of constant width are circles. The engineers 
determined the „circularity“ of the port to a fuel 
module by measuring its width in three different 
directions.  
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Example due to Rabinowitz (1997): 

x=9cos!+2cos2!–cos4!

y=9sin!–2sin2!–sin4!
 

 

Procedure yields non-countable family of counterexamples.  
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I gave a different construction, by modifying ellipses, and 
obtained a different non-countable family, again with 
γ = π/2. I tried for some time to construct examples for other 
γ, without success.    
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I gave a different construction, by modifying ellipses, and 
obtained a different non-countable family, again with 
γ = π/2. I tried for some time to construct examples for other 
γ, without success. 

As it turned out, I would have done much better had I 
known modern billiards theory. Every planar body B that 
floats in every orientation with angle γ can be viewed as a 
billiard table with an invariant curve at angle π – γ. 
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I gave a different construction, by modifying ellipses, and 
obtained a different non-countable family, again with 
γ = π/2. I tried for some time to construct examples for other 
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known modern billiards theory. Every planar body B that 
floats in every orientation with angle γ can be viewed as a 
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There is a theorem by E. Gutkin, that a non-circular 
billiard table with invariant curve at angle α exists if and 
only if α satisfies 

tannα = ntanα 

for some n ≥ 3.  
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I gave a different construction, by modifying ellipses, and 
obtained a different non-countable family, again with 
γ = π/2. I tried for some time to construct examples for other 
γ, without success. 

As it turned out, I would have done much better had I 
known modern billiards theory. Every planar body B that 
floats in every orientation with angle γ can be viewed as a 
billiard table with an invariant curve at angle π – γ. 

γ γ

B
π −γ π −γ

π −γ. >

 
There is a theorem by E. Gutkin, that a non-circular 
billiard table with invariant curve at angle α exists if and 
only if α satisfies 

tannα = ntanα 

for some n ≥ 3.  

We conclude that the set of contact angles γ, for which a 
non-circular body can be found that will float in every 
orientation with angle γ, is countable and everywhere 
dense.  



 19 

In 3-D situation very different. The external fluid 
surface is no longer automatically flat, and for 
analogous theory that must be added as hypothesis. 
We label that as neutral equilibrium.   
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In 3-D situation very different. The external fluid 
surface is no longer automatically flat, and for 
analogous theory that must be added as hypothesis. 
We label that as neutral equilibrium. 

Theorem (joint with Mattie Sloss): If for some  
γ ∈(0,π) a strictly convex body B will float in neutral 
equilibrium in every orientation, then B is a metric 
ball. 
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In 3-D situation very different. The external fluid 
surface is no longer automatically flat, and for 
analogous theory that must be added as hypothesis. 
We label that as neutral equilibrium. 

Theorem (joint with Mattie Sloss): If for some  
γ ∈(0,π) a strictly convex body B will float in neutral 
equilibrium in every orientation, then B is a metric 
ball. 

Proof:  Based on Joachimstal’s Theorem in 
differential geometry: If two surfaces meet at a 
constant angle, and if the intersection curve is a 
curvature line on one of the surfaces, then it is a 
curvature line on both.   
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All of above was formal geometrical, and assumed floating 
in zero gravity, giving no information toward problem 
suggested by Arisoteles, as to conditions under which 
heavy bodies can float. We attack that problem with 
„principle of virtual work“, by minimizing energy.  
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All of above was formal geometrical, and assumed floating 
in zero gravity, giving no information toward problem 
suggested by Arisoteles, as to conditions under which 
heavy bodies can float. We attack that problem with 
„principle of virtual work“, by minimizing energy. Some of 
energy is gravitational,  

Eg = work against gravity needed to create a given 
configuration from a prescribed reference state.  
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All of above was formal geometrical, and assumed floating 
in zero gravity, giving no information toward problem 
suggested by Arisoteles, as to conditions under which 
heavy bodies can float. We attack that problem with 
„principle of virtual work“, by minimizing energy. Some of 
energy is gravitational,  

Eg = work against gravity needed to create a given 
configuration from a prescribed reference state. 

There is also a surface energy  

ES = work needed to create surface interface, due to unequal 
attractions. 

.

.

 
ES = eS, where e = energy per unit area, depending only on 
materials. For fluid/fluid interface, e ≡ σ = surface tension.  
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We seek to minimize the total energy,  

E = ES + Eg. 

Let e0, e1, e2 be surface energy densities on outer, upper, 
lower interfaces. Start again with 2-D case, with g = 0.  

S

e1
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e0

e2
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We seek to minimize the total energy,  

E = ES + Eg. 

Let e0, e1, e2 be surface energy densities on outer, upper, 
lower interfaces. Start again with 2-D case, with g = 0. 

  

S

e1

B

e0

e2

 
Theorem:  If B is strictly convex, and if g = 0, then a 
strictly minimizing partly wetting configuration exists if and 
only if e1– e2

e
0

<1.  

Theorem: Whether or not g = 0, if e
1
– e

2
< e

0
 then at a 

local minimum the contact angle γ is determined by 
e1 = e2 + e0 cosγ. 

Example: Two of the ellipse positions minimize, the others 
are unstable.  
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If g ≠ 0 ⇒ basic changes to previous considerations. If the 
tank infinitely deep, a fully submerged B must sink if its 
density ρ  > ρ0. Thus there can be no global minimum for 
the energy E. But conceivably a partially wetted position 
can occur, with a local minimum for E.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

If g ≠ 0 ⇒ basic changes to previous considerations. If the 
tank infinitely deep, a fully submerged B must sink if its 
density ρ  > ρ0. Thus there can be no global minimum for 
the energy E. But conceivably a partially wetted position 
can occur, with a local minimum for E.  

Behavior controlled by limitations on how much the outer 
surface S can bend. In 2-D can determine the most general 
S explicitly, as solution of 

sin!( )
x
= "u  

 Here ψ = inclination angle, κ = ρg/σ. We get  

x = x
0
+

1

2!

sin"

1– sin"0

"

# d"

u =
2

!
1– sin"( )

 

with ϕ = (π/2) –ψ. 
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If g ≠ 0 ⇒ basic changes to previous considerations. If the 
tank infinitely deep, a fully submerged B must sink if its 
density ρ  > ρ0. Thus there can be no global minimum for 
the energy E. But conceivably a partially wetted position 
can occur, with a local minimum for E.  

Behavior controlled by limitations on how much the outer 
surface S can bend. In 2-D can determine the most general 
S explicitly, as solution of 

sin!( )
x
= "u  

 Here ψ = inclination angle, κ = ρg/σ. We get  

x = x
0
+

1

2!

sin"

1– sin"0

"

# d"

u =
2

!
1– sin"( )

 

with ϕ = (π/2) –ψ. 

 

Note that the height change from infinity cannot exceed 
2/√κ. Thus the position of any floating body is localized.  
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Note that the height change from infinity cannot exceed 
2/√κ. Thus the position of any floating body is localized. 
This limits the effects of buoyancy forces from within the 
liquid.  

We conclude: Let hc be height of centroid of B, and  
d = dia{B}. If hc > 2 e

0
/ !

2
– !

1( )g + d  then B disjoint 
from S, hence |Eg| < A + B√e0 when floating, where A, B 
depend only on shape of body and gravitational quantities, 
not on surface energies. So from bottom to top of possible 
positions  

|δEg| < 2 (A + B√e0). 
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We conclude: Let hc be height of centroid of B, and  
d = dia{B}. If hc > 2 e

0
/ !

2
– !

1( )g + d  then B disjoint 
from S, hence |Eg| < A + B√e0 when floating, where A, B 
depend only on shape of body and gravitational quantities, 
not on surface energies. So from bottom to top of possible 
positions  

|δEg| < 2 (A + B√e0). 

Choose e0 big enough that 2 (A + B√e0) < sB e0. Then 

choose e1, e2 so that   δES = –(e2 – e1) sB < – 2 (A + B√e0). 

Then  δES < – |δEg| ⇒ δE < 0 ⇒ local minimum. 

Further 

 

e
2

– e
1

e
0

>
2 (A + B!e

0
)

s
B
e

0

 

The right side < 1 ⇒ we can scale e1, e2 to get 

 

1>
e

2
– e

1

e
0

>
2 (A + B!e

0
)

s
B
e

0

 

and the minimizing configuration achieved with 

e1 = e2 + e0 cosγ. 

 

N.B. This result requires γ > π/2. 
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E

ES
–
= e2 sB

E
–

E

Eg
+

g

–

= 1sBES
+

e

E
+

hc

hchc
– +
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What happens in 3-D? More complicated since many more 
possible configurations for S.  Restrict attention to the 
family of symmetric solns: 
 

 
 
Theorem (joint with Tom Vogel):  Any floating body 
must intersect the closure of the set of symmetric extremals, 
for every choice of the center of symmetry. 
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What happens in 3-D? More complicated since many more 
possible configurations for S.  Restrict attention to the 
family of symmetric solns: 
 

 
 
Theorem (joint with Tom Vogel):  Any floating body  
must intersect the closure of the set of symmetric extremals. 
for every choice of the center of symmetry. 

 

Thus, the red configuration is not possible, regardless of the 
density or surface properties of the body.  

 
 

If a small body floats it must be closer to the surface than 
must a large one of the same shape.  
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What happens in 3-D? More complicated since many more 
possible configurations for S.  Restrict attention to the 
family of symmetric solns: 
 

 
 
Theorem (joint with Tom Vogel):  Any floating body  
must intersect the closure of the set of symmetric extremals. 
for every choice of the center of symmetry. 

 

Thus, the red configuration is not possible, regardless of the 
density or surface properties of the body.  

 
 

If a small body floats it must be closer to the surface than 
must a large one of the same shape.  

 
Theorem: Any body of given density and with γ > π/2 can 
be made to float by scaling its size down sufficiently. 
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Theorem (2 or 3 D): If one holds B rigidly far 
enough above or below the rest level at infinity, then 
B will be disjoint from S. If one then moves B rigidly 
vertically from top to bottom (or reverse), the motion 
of S will be discontinuous.  

Proof:  The height of S is given by a solution of 

divTu = !u,!!!!!Tu "
#u

1+ #u
2
,!!!! > 0. 

The only global solution for S that vanishes at infinity is the 
flat one u ≡ 0.  
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Historical comments 
Apparently the first recorded discussion of capillarity 
phenomena is due to Aristoteles c. 350 B.C, and addressed 
exactly the question that has since been most ignored. He 
wrote: 

A large flat body, even of heavy material, will float on 
water, but a long thin one such as a needle will always sink.  
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Historical comments 
Apparently the first recorded discussion of capillarity 
phenomena is due to Aristoteles c. 350 B.C, and addressed 
exactly the question that has since been most ignored. He 
wrote: 

A large flat body, even of heavy material, will float on 
water, but a long thin one such as a needle will always sink.  

1. Above theory when applied to thin circular horizontal 
disk of areal density ρ0 yields that if !

0

2
> 2 !

2
– !

1( ) /"g , 
then if radius large enough it must sink. 
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Historical comments 

Apparently the first recorded discussion of capillarity 
phenomena is due to Aristoteles c. 350 B.C, and addressed 
exactly the question that has since been most ignored. He 
wrote: 

A large flat body, even of heavy material, will float on 
water, but a long thin one such as a needle will always sink.  

1. Above theory when applied to thin circular horizontal 
disk of areal density ρ0 yields that if !

0

2
> 2 !

2
– !

1( ) /"g , 
then if radius large enough it must sink. 

2. Experimental response: 
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Formal calculations suggest that a thin metal needle with γ 
as small as 16 deg can be made to float in equilibrium on 
water. Thus my own criterion, although perhaps the first 
sufficient one known, may not be necessary, as it requires   
γ > π/2. Conceivably it is necessary for stable equilibria, at 
this point I have no idea.  

In a somewhat other direction, the theory predicts an 
absolute maximum diameter for which a needle of given 
material can float in the earth’s gravity field, regardless of 
contact angle. The result indicates that a typical small paper 
clip can be made to float, but that a large paper clip will 
always sink. I could confirm the prediction with a kitchen 
sink experiment. 

This may be where Aristoteles went wrong; a needle in his 
time may have had a much larger diameter than the typical 
modern household product that I used for my picture.  
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The end. 

Thank you  
for listening! 


