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Motivation: experiments about the adhesion of liquids along strips.

[Reference: Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R.: Liquid microchannels

on structured surfaces. Science (1999)]
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Non uniqueness of solutions  bifurcation
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[Reference: Kusumaatmaja, H., Mutihac, C., Lipowsky, R. & Riegler, H.: How

capillary instabilities affect nucleation processes, (2010) preprint]

5 / 31



An interface is the boundary between two different media

In equilibrium the shape of the liquid drop

2Hτ = PA − PL

The interface is a surface of constant mean curvature
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Surfaces of revolution with constant mean curvature
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Objective

A mathematical proof of such evidences
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Non uniqueness of solutions  bifurcation.

The existence of new surfaces must occur when the stability of
cylinders fails ! study the stability of cylinders.

Study a eigenvalue problem  dimension of solutions of the Jacobi
equation.
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For cylinders: the Plateau-Rayleigh instability criterio ⇒ existence
of new periodic constant mean curvature (unduloids) [Schlenk &
Sicbaldi]
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Vogel: bifurcating cylinders in wedges with
constant contact angle in both sides of the wedge.

Given a convex cylinder in a wedge with a given
contact angle, there exists a volume such that there
are a family of capillary surfaces in the wedge that
bifurcate from the given cylinder.
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Patnaik (a student of Wente): prescribing two coaxial circles
in parallel planes.

Mazzeo, Pacard, Rossman, Grosse-Brauckmann: bifurcation
of nodoids.

Koiso-Palmer-Piccione: bifurcation nodoids.
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The stability of a CMC surface

E ′′(0) = −
∫
M

u(∆u + |σ|2u) dM +

∫
∂M

u
(∂u

∂ν
− qu

)
ds,

q =
1

sin γ
σ̃(ν̃, ν̃) + cot γσ(ν, ν).

The eigenvalue problem{
Lu + λu = 0 on M L = ∆ + |σ|2
u = 0 on ∂M

(1)

Lemma

1 A countable set of eigenvalues λ1 < λ2 ≤ . . ., with λn → +∞
2 If λ1 ≥ 0, the immersion φ is stable.

3 If λ2 < 0, the immersion φ is unstable.

4 L2(M) =
⊕∞

n=1 Eλn .
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C (r , γ): the piece of cylinder over P whose boundary lies in P.

γ is the contact angle; θ = π/2− γ.

Concave cylinders: γ ∈ (0, π/2).
Convex cylinders: γ ∈ (π/2, π).

∂C (r , γ) = L1 ∪ L2.
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Stability problem in truncated pieces 0 ≤ x ≤ h and to vary h.

Use separation of variables: C (r , θ)� [0, h]× [π2 − γ,
π
2 + γ] with

variables (t, s).

u(t, s) =
∞∑
n=1

gn(s) sin(
nπ

h
t)

gn(
π

2
− γ) = g(

π

2
+ γ) = 0

∆ = ∂tt +
1

r 2
∂ss , |σ|2 = 4H2 − 2K =

1

r 2
.

L(u) + λu =
∞∑
n=1

( 1

r 2
g ′′n + (

1

r 2
− n2π2

h2
+ λ)gn

)
sin(

nπ

h
t).
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Solve:

g ′′n (s) + r 2
( 1

r 2
− n2π2

h2
+ λ
)

gn(s) = 0

gn(
π

2
− γ) = gn(

π

2
+ γ) = 0

According the sign of C = r 2( 1
r2 − n2π2

h2 + λ)

Proposition

1 If γ ∈ (0, π/2], the cylinder C (r , γ) is stable.

2 Assume γ ∈ (π/2, π). Consider a cylinder C (r , γ) of length h.
Then λ1 ≥ 0 if and only if h ≤ h0, where

h0 =
2πrγ√

4γ2 − π2
.

In such case, the surface is stable.

3 A cylinder C (r , γ) with γ ∈ (π/2, π) is unstable.
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The result

Let γ ∈ (π/2, π). There exists bifurcation when the length of the
cylinder is

T = 2h0 =
4πrγ√

4γ2 − π2
.

The cylinder bifurcates in a family of non-rotational surfaces with
constant mean curvature with the same boundary.
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Let φ : M → R3 be with constant mean curvature H0.

Let V be an open of 0 ∈ C 2,α
0 (M) such that for any u ∈ V , the

normal graph
φu = φ+ uN

Define F : V × R→ Cα(M) by

F (u,H) = 2(H − H(u)), H(u) = mean curvature of φu.

F (0,H0) = 0.

φu has constant mean curvature iff there exists H ∈ R such
that

F (u,H) = 0.
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Lemma

The functional F is Fréchet differentiable with respect u and H and

DuF (0,H)v = −L(v), v ∈ C 2
0 (M).

Lemma

Given λ ∈ R and f ∈ L2(M), we consider the equation

λu − L(u) = f , u ∈ H1
0 (M).

1 If λ is not an eigenvalue, there is a unique solution.

2 If λ is an eigenvalue, there is a solution if and only f is
L2-orthogonal to Eλ.
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Uniqueness of F (u,H) = 0 ! the Implicit Function Theorem !
solutions of the Jacobi equation Lu = 0.

Implicit Function Theorem: DuF (0,H0)?

DuF (0,H0)(v) = L[v ] = ∆v + (4H2
0 − 2K )v

If DuF (0,H0) is bijective, there exists δ > 0 and a unique map
ϕ : (H0 − δ,H0 + δ)→ C 2,α

0 (M) such that ϕ(H0) = 0 and
F (ϕ(H),H) = 0 for any |H − H0| < δ. In such case, the
immersion defined by φ+ ϕ(H)N has constant mean
curvature H.
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Assume λ = 0 is not an eigenvalue (⇔ the only solutions of
the Jacobi equation are trivial). Then

DuF (0,H0) is one-to-one

and apply the Implicit Function Theorem.
1 injective: if v ∈ C 2

0 (M) satisfies DuF (0,H0)(v) = 0, by
Lemma, the solution is unique ⇒ v = 0.

2 surjective: given f ∈ L2(M), ∃v ,DuF (0,H)(v) = f ? (use
Lemma)

Concave cylinders deform in concave cylinders
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Assume λ = 0 is an eigenvalue. A particular case of the Implicit
Function Theorem:

Lemma (Koiso)

Let φ : M → R3 be an immersion with constant mean curvature
H0. Assume

1 λ = 0 is an eigenvalue of L.

2 E0 =< u0 >.

3
∫
M u0 dM 6= 0.

Then there exists uniqueness of deformation by CMC surfaces with
the same boundary.
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If the Implicit Function Theorem fails ⇒ 0 is an eigenvalue of L
with λ2 ≤ 0.

If λ2 = 0, one seeks bifurcation when

1 dim(E0) ≥ 2 or

2 if dim(E0) = 1 with E0 =< u0 > and
∫
M u0 dM = 0.
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Theorem (Crandall and Rabinowith)

Let F : X × I → Y be a twice continuously Fréchet differentiable
functional, where X and Y are Banach spaces, I ⊂ R and H0 ∈ I .
Suppose F (0,H) = 0 for all H ∈ I and

1 dim Ker(DuF (0,H0)) = 1: Ker(DuF (0,H0)) =< u0 >.

2 cod(rank DuF (0,H0)) = 1: F (0,H0) is a Fredholm operator
of index zero.

3 DHDuF (0,H0)(u0) 6∈ rank DuF (0,H0).

Then there exists bifurcation at (0,H0) by s 7−→ (u(s),H(s))

1 u(0) = 0, H(0) = H0.

2 F (u(s),H(s)) = 0, for any |s| < ε.

3 in a neighbourhood of (0,H0), there are no more solutions.
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Here we take X = V ⊂ C 2,α
0 (M) and Y = Cα(M). Fix a radius

r > 0 (or H0 = 1/(2r)).

We seek non trivial solutions of (1) that are T -periodic in the
x-direction for some period T > 0. Use separation of variables:
functions u defined in R/2πTZ× [π2 − γ,

π
2 + γ].

Write u as a Fourier expansion on sin(2πnt/T ) and cos(2πnt/T ):

u(t, s) =
∞∑
n=1

gn(s) sin(
2πn

T
t).

Convex cylinders

1 If h ≤ h0, the eigenvalues are all non-negative.

2 If h ∈ (h0, 2h0), the first eigenvalue is negative but the other
λk,n are all positive.

3 If h = 2h0, λ2 = 0. Then T = 2h0
4πrγ√
4γ2−π2

.
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Proof of dim(E0) = 1.

The functions gn satisfy

g ′′n (s) + c2gn(s) = 0, c2 = r 2
( 1

r 2
− 4n2π2

T 2
+ λ

)
.

Then

gn(s) = sin(
kπ(s − θ)

π − 2θ
), k ∈ N, θ =

π

2
− γ.

Denote for k , n the eigenfunctions

uk,n(t, s) = sin (
kπ(s − θ)

π − 2θ
) sin (

2πn

T
t),

λk,n =
1

r 2

((k2 − n2)π2 + n2(π − 2θ)2

(π − 2θ)2
− 1
)
.

Then 0 is an eigenvalue for k = n = 1, that is, λ1,1 and

E0 =< u1,1 >=< sin (
π(s − θ)

π − 2θ
) sin (

2π

T
t) > .

In particular, dim(E0) = 1.
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Proof of cod(rankDuF (0,H0)) = 1.

DuF (0,H)(v) = L(v) = vuu + 4H2vss + 4H2v .

Calculate Im(L):

f ∈ Im(L) ⇔ ∃v : L(v) = f (0 is an eigenvalue of L)

⇔
∫
M

u1,1v dM = 0 for any v ∈ Ker(L)

Im(L) =< u1,1 >
⊥⇒ cod(rankDuF (0,H0)) = 1.
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Proof of DHDuF (0,H)(u1,1) 6∈ Im(DuF (0,H)).

Computation of DHDuF (0,H0):

DHDuF (0,H)(v) = 8H(vss + v).

DHDuF (0,H)(u1,1) = 8H(1− π2

4γ2
)
(

sin(
π(s − θ)

π − 2θ)
sin(

2πt

T
)
)

= 8H(1− π2

4γ2
)u1,1.

If DHDuF (0,H)(u1,1) ∈ Im(DuF (0,H)), by using Lemma∫
M

u1,1DHDuF (0,H)(u1,1) dM = 0.

Thus ∫
M

8H(1− π2

4γ2
)u2

1,1 dM = 0,

contradiction! because γ 6= ±π/2.
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The surfaces obtained close to the value H0 are: embedded,
periodic with period T and lie in one side of P. By Alexandrov
reflection method:

Corollary

The new cmc surfaces have an axial symmetry.

(...) giving a mathematical support about the experiments.
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In progress: patterns made by ring-shaped domains (MIPKG) !
bifurcation of nodoids

[Reference: Lenz, P. Fenzl, W. & Lipowsky, R.: Wetting of ring-shaped surface

domains. Europhys. Lett. (2001)]
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Reference: R. López, Bifurcation of cylinders for wetting and
dewetting models with striped geometry
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