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Aim

and reference

The aim of this talk is to classify the family of surfaces with

• positive constant Gauss curvature in R3,

• Gauss map a diffeomorphism onto a finitely punctured S2, and

• extrinsic conformal structure a circular domain in C.

We will derive some applications:

• Harmonic diffeomorphisms between certain domains of S2.

• Capillary surfaces in R3.

• A Hessian equation of Monge-Ampère type on S2.

• A. Alarcón and R. Souam, The Minkowski problem, new
constant curvature surfaces in R3, and some applications.
Preprint 2012 (arXiv:1206.6066).
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K -surfaces

Definition

By a K-surface we mean a surface in R3 with constant Gauss
curvature K = 1.

• Let S be a smooth surface and let X : S → R3 be a
K -immersion.

• IIX positive definite metric ⇒ IIX induces on S a conformal
structure, R ≡ extrinsic conformal structure.

• z = u + ıv conformal parameter on R.

• Gálvez-Mart́ınez 2000 The Gauss map N : R → S2 satisfies

Xu = N ×Nv and Xv = −N ×Nu,

hence it is a harmonic local diffeomorphism.
Conversely...

• The outer parallel surface at distance 1 to a K -surface is an
H-surface with H = 1/2 and intrinsic conformal structure R.
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K -surfaces of revolution

• K -surfaces of revolution are classified.

• The round sphere is the only complete K -surface in R3. There
are no complete ends in the theory.



Peaked spheres

• K -surfaces of revolution are classified.



Peaked spheres

• Gálvez-Hauswirth-Mira 2010 studied the family of K -surfaces
with isolated singularities (peaked spheres).

• The extrinsic conformal structure is a circular domain R ⊂ S2 ≡ C.
• There is no peaked sphere with exactly one singularity.
• The only peaked spheres with exactly two singularities are the

rotational ones.
• For n > 2 there is a 3n− 6 parameter family of peaked spheres with

exactly n singularities, which can be parameterized by the intrinsic
conformal structures.

• The Gauss map is solution to the Neumann problem for harmonic
diffeomorphisms

N : R → S2,
∂N

∂n

∣∣∣∣
∂R

= 0.



K -surfaces of revolution

• K -surfaces of revolution are classified.



K -surfaces of revolution

• They tangentially meet planes at the ends.

• Adding the cover discs one gets a smooth convex surface.

• There is a 1-parameter family depending on the radius of the
cover discs.

• The extrinsic conformal structure is a circular domain R ⊂ C.

• The Gauss map is a (harmonic) diffeomorphism

N : R → S2 − {(0, 0, 1), (0, 0,−1)},

hence extends continuously to R being constant over each
connected component of ∂R.
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Aim

• Are there K -surfaces satisfying that properties but with m ∈N

ends?

Question

Let {p1, . . . , pm} ⊂ S2.
Do there exist K-surfaces whose extrinsic conformal structures are
circular domains R ⊂ C and their Gauss maps harmonic
diffeomorphisms R → S2 − {p1, . . . , pm}?



Classification Result

• Let {p1, . . . , pm} be a subset of S2.

Theorem (Alarcón-S., 2012)

The following statements are equivalent:

(i) There exists a K-surface S ⊂ R3 whose extrinsic conformal
structure is a circular domain R ⊂ C and its Gauss map is a
(harmonic) diffeomorphism

R → S2 − {p1, . . . , pm}.

(ii) There exist positive real constants a1, . . . , am such that

m

∑
j=1

ajpj = 0 ∈ R3.

• There is no such S for m = 1.

• If m = 2 then p2 = −p1.
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Classification Result

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γj denotes the component of
S − S corresponding to pj via the Gauss map, then

(I) γj is a Jordan curve contained in an affine plane Πj ⊂ R3

orthogonal to pj , and

(II) S := S ∪ (∪mj=1D j ) is the boundary surface of a smooth convex

body in R3, where Dj denotes the bounded component of
Πj − γj .

In addition, given (a1, . . . , am) satisfying (ii), there exists a unique,
up to translations, K-surface S satisfying (i) such that
Area(Dj ) = aj for all j .

• If m = 2 then S is rotational.
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Convexity and the equilibrium condition

• Let {p1, . . . , pm} ⊂ S2.

• Assume there exists a K -surface S ⊂ R3 satisfying (i) and let us
show that {p1, . . . , pm} and S satisfy (ii), (I), and (II).

• Denote by NS : S → S2 − {p1, . . . , pm} the outer Gauss map of
S .



Convexity and the equilibrium condition

Main ingredient: The Legendre transform

• Fix j ∈ {1, . . . ,m} and assume that pj = (0, 0, 1) ∈ R3.

• Consider

H = {p ∈ S : x3(NS (p)) ∈ [1− ε, 1)}

for ε > 0.

• Assume that H is a topological annulus with boundary and a
local graph in the x3-direction at any point.

• Write (X1,X2,X3) : H → R3 the inclusion map, and
(NS )|H = (N1,N2,N3) : H → S2 ∩ {x3 ∈ [1− ε, 1)} ⊂ R3.
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Convexity and the equilibrium condition.

• The Legendre transform of H,

L =

(
N1

N3
,
N2

N3
,
N1

N3
X1 +

N2

N3
X2 + X3

)
: H → R3,

defines a strongly positively curved surface L(H) with boundary
in R3, that is a local graph in the x3-direction at any point.

• The map S2 ∩ {x3 ∈ [1− ε, 1)} → Ω− {(0, 0)},
(x1, x2, x3) 7→ (x1/x3, x2/x3), is a diffeomorphism.

• L(H) is the graph of a function ϕ : Ω− {(0, 0)} → R.
• Nelli-Rosenberg 1997 ϕ extends continuously to Ω and its graph

L(H) is a convex C0 surface with boundary.
• The Gauss map of L is given by

NL : H → S2, NL =
(X1,X2,−1)√
X 2
1 + X 2

2 + 1
,

hence (X1,X2) : H → R2 is bounded and so X3 : H → R has a
limit (= ϕ(0, 0)).
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Convexity and the equilibrium condition

• So the component γj of S − S corresponding to pj via NS lies in
an affine plane Πj ⊥ pj

• γj bounds a convex disc Dj in Πj .

• S := S ∪ (∪mj=1D j ) is a closed locally convex C0-surface.

• NS extends to S setting (NS )|D j
= pj .

• NS : S → S2 − {p1, . . . , pm} is one to one ⇒ S is (globally)
convex.

• S has a unique supporting plane at every point ⇒ S bounds a
smooth convex body ⇒ S is C1 and embedded.
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Convexity and the equilibrium condition

• Equilibrium condition:

•
∫
S NS (p) dp =

∫
S2−{p1,...,pm} p dp =

∫
S2 p dp = 0.

•
∫

S NS (p) dp = 0.

• 0 =
∫

S−S NS (p) =
∫
∪mj=1Dj

NS (p) = ∑m
j=1 Area(Dj )pj .

• R is a circular domain ⇒ Area(Dj ) > 0 ∀j .
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Existence. The Minkowski problem

• Let X : S2 → R3 be an immersion such that X (S2) is a closed
strictly convex surface in R3.

• Then the Gauss map NX : S2 → S2 of X is a homeomorphism.

• Define κ : S2 → R, κ = K ◦N−1X , where K : S2 → R denotes
the Gauss curvature function of X .

• Minkowski observed that κ must satisfy∫
S2

p

κ(p)
dp = 0.

• Minkowski asked for the converse.
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Existence. The generalized Minkowski problem

• Let S be a compact convex surface in R3, not necessarily
smooth; i.e., S is the boundary of a general convex body in R3.

• The generalized Gauss map G : S → S2 of S is a set-valued
map. It maps p ∈ S to the set of all outer normals of the
supporting planes of S passing through p.

• Define a measure µ(S) on S2 called the area function of S by
setting

µ(S)(E ) = Area({p ∈ S |G (p) ∩ E 6= ∅})

for any Borel subset E ⊂ S2.

• If S is C2 and strictly convex, then:

µ(S) =
1

κ
µS2 ,

where µS2 denotes the canonical Lebesgue measure on S2.
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Existence. The generalized Minkowski problem

• If S is a polyhedron, then:

µ(S) =
n

∑
j=1

cj δνj ,

where δνj is the Dirac measure at νj and cj is the Euclidean area
of the face of S with outer normal νj .



Existence. The generalized Minkowski problem

• The convex surface S in (II) agrees with the solution to the
generalized Minkowski problem for the Borel measure

µ(S ) = µS2 +
m

∑
j=1

ajδpj
(
aj = Area(Dj )

)
.

• Minkowski, Alexandrov, Fenchel, Jessen 1958 Let µ be a
non-negative Borel measure on S2 such that∫

S2
iS2 µ = 0 ∈ R3

and µ(H) > 0 for any hemisphere H ⊂ S2.
Then there exists a unique, up to translations, convex body K
in R3 such that µ is the area function of ∂K .

• This gives the uniqueness part of the theorem.

• The theorem gives no information about the regularity of ∂K .
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Existence. The Minkowski problem

• Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher
dimensions)Let κ : S2 → R be a smooth positive function
satisfying ∫

S2

p

κ(p)
dp = 0.

Then there exists a unique, up to translations, smooth
embedding X : S2 → R3 such that X (S2) is a closed strictly
convex surface and the curvature function K : S2 → R of X is
given by

K = κ ◦NX .

• X ◦N−1X : S2 → R3 has curvature function κ and Gauss map the
identity map of S2.

• The curvature function KS of S is (KS )|S = 1 and
(KS )|Dj

= 0, hence it is neither continuous nor positive.

• Idea: Construct approximate solutions and take limits.
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Existence

• Let {p1, . . . , pm} ⊂ S2.

• Assume there exists positive constants (a1, . . . , am) such that

m

∑
j=1

ajpj = 0 ∈ R3,

and let us show a K -surface S satisfying (i) (hence (I) and (II))
with Area(Dj ) = aj for all j .



Existence

• Denote by B(p, r) the metric ball in S2 centered at p ∈ S2 with

radius r > 0, and by A(p, r) = B(p, 2r)− B(p, r).

• Σn := S2 −∪mj=1B(pj , 2/n).

• Let κn : S2 → R be a smooth function such that

(
1

κn
)|Σn = 1, (

1

κn
)|B(pj ,1/n) =

n2

π
aj , 1 ≤ (

1

κn
)|A(pj ,1/n) ≤

n2

π
aj ,∫

A(pj ,1/n)

p

κn(p)
dp =

4π

n2
pj

(
=
∫
B(pj ,2/n)

p dp

)
.

• Then
∫

S2

p

κn(p)
dp = 0 and the Minkowski problem can be

solved for κn : S2 → R.
• There exists a smooth embedding Xn : S2 → R3 such that

1 Sn := Xn(S2) is a closed smooth strictly convex surface,
2 the Gauss map of Xn is the identity map of S2,
3 the curvature function of Xn agrees κn; in particular

Sn := Xn(Σn) is a K -surface,
4 Area(Xn(B(pj , 1/n))) = aj for all j .
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Existence

• Denote by Kn ⊂ R3 the strictly convex body bordered by Sn.

Claim

There exists ξ > 0 (not depending on n) such that
B(ξ) ⊂ Kn ⊂ B(1/ξ) ∀n. (adapting arguments in Cheng-Yau
1976.)

5 Blaschke selection theorem ⇒ {Kn}n∈N converges in the
Hausforff distance to a convex body K .
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Existence

1 Sn := Xn(S2) is a closed smooth strictly convex surface,

2 the Gauss map of Xn is the identity map of S2,

3 the curvature function of Xn agrees κn; in particular
Sn := Xn(Σn) is a K -surface,

4 Area(Xn(B(pj , 1/n))) = aj for all j , and

5 {Sn}n∈N → S := ∂K .

• {(Xn)|Σn}n∈N converges to a K -immersion
S2 − {p1, . . . , pm} → R3 with Gauss map the identity map of
S2 − {p1, . . . , pm}; denote by S the image K -surface.

• {Xn(B(pj , 1/n))}n∈N converges to an open disc Dj contained
in a plane Πj orthogonal to pj , with Area(Dj ) = aj for all j ,

• {Area(Xn(A(pj , 1/n)))}n∈N → 0 ⇒ S = S ∪ (∪mj=1D j ), and

• the extrinsic conformal structure of S is a circular domain in C.
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Application: Harmonic diffeomorphims

• Liouville There is no non-constant harmonic map C→ D, with
the Euclidean metric.

• Heinz 1952 There is no harmonic diffeomorphism D→ C with
the Euclidean metric.

Question (Schoen-Yau 1985)

Are Riemannian surfaces which are related by a harmonic
diffeomorphism quasiconformally related?
In particular, are there harmonic diffeomorphisms from C onto the
hyperbolic plane H2?

• Collin-Rosenberg 2010 There exists an entire minimal graph Σ
over H2 in the Riemannian product H2 ×R with the conformal
type of C.
In particular, the vertical projection Σ→H2 is a harmonic
diffeomorphism from C into H2.



Application: Harmonic diffeomorphims

Theorem (Alarcón-S.; CMH, in press)

• For any m ∈N, m ≥ 2, and any subet {p1, . . . , pm} ⊂ S2 there
exist a circular domain R ⊂ C and a harmonic diffeomorphism
R → S2 − {p1, . . . , pm}.

• There exists no harmonic diffeomorphism D→ S2 − {p},
p ∈ S2.

• The harmonic diffeomorphism R → S2 − {p1, . . . , pm} appears
as the vertical projection Σ→ S2 − {p1, . . . , pm}, where Σ is a
maximal graph over S2 − {p1, . . . , pm} in the Lorentzian
manifold S2 ×R1, with Σ ∼= R.

• Such a maximal graph Σ is constructed by solving Dirichlet
problems.

• The non-existence of harmonic diffeomorphisms D→ S2 − {p}
follows from K -surface theory.
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Application: Harmonic diffeomorphims

Corollary

Let {p1, . . . , pm} ⊂ S2 with ∑m
j=1 ajpj = 0 ∈ R3 for some positive

numbers a1, . . . , am.
Then there exists a circular domain R in C and a harmonic
diffeomorphism R → S2 − {p1, . . . , pm}.

• The Gauss map of the K -surface S in (i) is such a harmonic
diffeomorphism.

• We do not know if those harmonic diffeomorphisms given as
Gauss maps of K -surfaces in R3 and those given as vertical
projections of maximal graphs in S2 ×R1 are the same or not.
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The support function

• The support function of S ,

h : S2 − {p1, . . . , pm} → R, h(p) = 〈p,N−1S (p)〉,

satisfies
(

det(∇2h+ hI)
)
◦NS = 1

(
= 1/K

)
on S .

• A parameterization X : S2− {p1, . . . , pm} → R3 of S is given by

X (p) = ∇h(p) + h(p)p.
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Application: A Hessian equation

• Fully nonlinear, elliptic second order partial differential equations
of the form

F [h] := F
(
∇2h+ A(·, h,∇h)

)
= B(·, h,∇h) on Ω ⊂M,

have been objective of considerable interest in recent years.

• The space of solutions to the Hessian one equation

det∇2h = 1 on R2 − {q1, . . . , qk}

was described by Gálvez-Mart́ınez-Mira 2005 (Jorgens 1955 for
k = 1).

• Jorgens 1954 The only solutions for k = 0 are quadratic
polynomials.
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Application: A Hessian equation

• Two solution u and v of the Hessian equation

det
(
∇2h+ hI

)
= 1 on S2 − {p1, . . . , pm}

are equivalent, u ∼ v , if u − v is the restriction to
S2 − {p1, . . . , pm} of a linear function of R3.

Corollary

The space of equivalence classes of solutions of the above
equation, under ∼, with non-removable singularities at the points
{p1, . . . , pm}, is in bijection with the set{
(a1, . . . , am) ∈ Rm | aj > 0 ∀j ,

m

∑
j=1

ajpj = 0
}

.

• h : S2 − {p1, . . . , pm} → R is solution to the equation iff it is
the support function of a surface S as those in the theorem.

• The only solution for m = 0 is the round sphere and there is no
solution for m = 1.
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Application: Capillary surfaces

• A capillary surface in a region B in R3 is a compact CMC
surface meeting ∂B at a constant angle γ ∈ [0, π] along its
boundary. They model liquid drops inside a container in the
absence of gravity.

• Capillary surfaces is a topic with large literature. Wente 1995,
McCuan 1997, and Park 2005 studied capillary surfaces in
polyhedral regions of R3.

• The outer parallel surface at distance 1 to a K -surface is a CMC
surface with H = 1/2 (i.e., an H-surface).
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Application: Capillary surfaces

• Let {p1, . . . , pm} be a subset of S2.

Corollary

The following statements are equivalent:

(i) There exists a (positively curved) H-surface S ⊂ R3 whose
intrinsic conformal structure is a circular domain R ⊂ C and
its Gauss map is a harmonic diffeomorphism

R → S2 − {p1, . . . , pm}.

(ii) There exist positive real constants a1, . . . , am such that

m

∑
j=1

ajpj = 0 ∈ R3.



Application: Capillary surfaces

Corollary

Furthermore, if S is as above and γj denotes the component of
S − S corresponding to pj via the Gauss map, then

(I) γj is a Jordan curve contained in an affine plane Πj ⊂ R3

orthogonal to pj , and

(II) S := S ∪ (∪mj=1D j ) is the boundary surface of a smooth convex

body in R3, where Dj denotes the bounded component of
Πj − γj .

In addition, given (a1, . . . , am) satisfying (ii), there exists a unique,
up to translations, H-surface S satisfying (i) such that
Area(Dj ) = aj for all j .

• In particular, S is an embedded H-surface of genus zero which
meets tangentially all the faces of the polyhedral region
determined by the affine planes Πj , j = 1, . . . ,m.
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