The Minkowski problem and constant curvature surfaces in \mathbb{R}^3

Rabah Souam

Institut de Mathématiques de Jussieu, Paris

Joint work with Antonio Alarcón

Workshop on Geometric and Complex Analysis

Granada, November 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Aim

The aim of this talk is to classify the family of surfaces with

- positive constant Gauss curvature in \mathbb{R}^3 ,
- Gauss map a *diffeomorphism* onto a finitely punctured \mathbb{S}^2 , and
- extrinsic conformal structure a circular domain in $\overline{\mathbb{C}}$.

We will derive some applications:

• Harmonic diffeomorphisms between certain domains of S².

- Capillary surfaces in \mathbb{R}^3 .
- A Hessian equation of Monge-Ampère type on \mathbb{S}^2 .

Aim and reference

The aim of this talk is to classify the family of surfaces with

- positive constant Gauss curvature in \mathbb{R}^3 ,
- Gauss map a *diffeomorphism* onto a finitely punctured \mathbb{S}^2 , and
- extrinsic conformal structure a circular domain in $\overline{\mathbb{C}}$.

We will derive some applications:

- Harmonic diffeomorphisms between certain domains of \mathbb{S}^2 .
- Capillary surfaces in \mathbb{R}^3 .
- A Hessian equation of Monge-Ampère type on \mathbb{S}^2 .
- A. Alarcón and R. Souam, The Minkowski problem, new constant curvature surfaces in R³, and some applications. Preprint 2012 (arXiv:1206.6066).

Definition

By a K-surface we mean a surface in \mathbb{R}^3 with constant Gauss curvature K=1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

By a K-surface we mean a surface in \mathbb{R}^3 with constant Gauss curvature K = 1.

- Let S be a smooth surface and let $X : S \to \mathbb{R}^3$ be a K-immersion.
- II_X positive definite metric $\Rightarrow II_X$ induces on S a conformal structure, $\mathcal{R} \equiv extrinsic \ conformal \ structure.$

Definition

By a K-surface we mean a surface in \mathbb{R}^3 with constant Gauss curvature K = 1.

- Let S be a smooth surface and let $X : S \to \mathbb{R}^3$ be a K-immersion.
- II_X positive definite metric $\Rightarrow II_X$ induces on S a conformal structure, $\mathcal{R} \equiv extrinsic \ conformal \ structure.$
- $z = u + \iota v$ conformal parameter on \mathcal{R} .
- Gálvez-Martínez 2000 The Gauss map $N: \mathcal{R} \to \mathbb{S}^2$ satisfies

$$X_u = N \times N_v$$
 and $X_v = -N \times N_u$,

hence it is a harmonic local diffeomorphism. Conversely...

Definition

By a K-surface we mean a surface in \mathbb{R}^3 with constant Gauss curvature K = 1.

- Let S be a smooth surface and let $X : S \to \mathbb{R}^3$ be a K-immersion.
- II_X positive definite metric $\Rightarrow II_X$ induces on S a conformal structure, $\mathcal{R} \equiv extrinsic \ conformal \ structure.$
- $z = u + \iota v$ conformal parameter on \mathcal{R} .
- Gálvez-Martínez 2000 The Gauss map $N: \mathcal{R} \to \mathbb{S}^2$ satisfies

$$X_u = N \times N_v$$
 and $X_v = -N \times N_u$,

hence it is a harmonic local diffeomorphism. Conversely...

 The outer parallel surface at distance 1 to a K-surface is an H-surface with H = 1/2 and intrinsic conformal structure R.

• K-surfaces of revolution are classified.

• The round sphere is the only complete *K*-surface in \mathbb{R}^3 . There are no complete ends in the theory.

Peaked spheres

• K-surfaces of revolution are classified.

Peaked spheres

- Gálvez-Hauswirth-Mira 2010 studied the family of *K*-surfaces with isolated singularities (peaked spheres).
 - The extrinsic conformal structure is a circular domain $\mathcal{R} \subset \mathbb{S}^2 \equiv \overline{\mathbb{C}}$.
 - There is no peaked sphere with exactly one singularity.
 - The only peaked spheres with exactly two singularities are the rotational ones.
 - For n > 2 there is a 3n 6 parameter family of peaked spheres with exactly n singularities, which can be parameterized by the *intrinsic* conformal structures.
 - The Gauss map is solution to the Neumann problem for harmonic diffeomorphisms

$$N: \overline{\mathcal{R}} \to \mathbb{S}^2, \quad \left. \frac{\partial N}{\partial \mathbf{n}} \right|_{\partial \overline{\mathcal{R}}} = 0.$$

• K-surfaces of revolution are classified.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• They tangentially meet planes at the ends.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a *smooth* convex surface.

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a *smooth* convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a *smooth* convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.

・ロト・雪 ・ 山 ・ 山 ・ 小田 ・ 小田 ・

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a *smooth* convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.
- The extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$.

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a *smooth* convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.
- The extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$.
- The Gauss map is a (harmonic) diffeomorphism

$$N: \mathcal{R} \to \mathbb{S}^2 - \{(0, 0, 1), (0, 0, -1)\},\$$

hence extends continuously to $\overline{\mathcal{R}}$ being constant over each connected component of $\partial \overline{\mathcal{R}}$.

 Are there K-surfaces satisfying that properties but with m ∈ ℕ ends?

Question

Let $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$. Do there exist K-surfaces whose extrinsic conformal structures are circular domains $\mathcal{R} \subset \overline{\mathbb{C}}$ and their Gauss maps harmonic diffeomorphisms $\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}$?

• Let $\{p_1, \ldots, p_m\}$ be a subset of \mathbb{S}^2 .

Theorem (Alarcón-S., 2012)

The following statements are equivalent:

(i) There exists a K-surface $S \subset \mathbb{R}^3$ whose extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a (harmonic) diffeomorphism

$$\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}.$$

(ii) There exist positive real constants a_1, \ldots, a_m such that

$$\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3.$$

• Let $\{p_1, \ldots, p_m\}$ be a subset of \mathbb{S}^2 .

Theorem (Alarcón-S., 2012)

The following statements are equivalent:

(i) There exists a K-surface $S \subset \mathbb{R}^3$ whose extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a (harmonic) diffeomorphism

$$\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}.$$

(ii) There exist positive real constants a_1, \ldots, a_m such that

$$\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3.$$

- There is no such S for m = 1.
- If m = 2 then $p_2 = -p_1$.

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_j denotes the component of $\overline{S} - S$ corresponding to p_j via the Gauss map, then

- (1) γ_j is a Jordan curve contained in an affine plane $\Pi_j \subset \mathbb{R}^3$ orthogonal to p_j , and
- (II) $\mathscr{S} := S \cup (\bigcup_{j=1}^{m} \overline{D}_{j})$ is the boundary surface of a smooth convex body in \mathbb{R}^{3} , where D_{j} denotes the bounded component of $\Pi_{j} \gamma_{j}$.

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_j denotes the component of $\overline{S} - S$ corresponding to p_j via the Gauss map, then

- (1) γ_j is a Jordan curve contained in an affine plane $\Pi_j \subset \mathbb{R}^3$ orthogonal to p_j , and
- (II) $\mathscr{S} := S \cup (\bigcup_{j=1}^{m} \overline{D}_{j})$ is the boundary surface of a smooth convex body in \mathbb{R}^{3} , where D_{j} denotes the bounded component of $\Pi_{j} \gamma_{j}$.

In addition, given (a_1, \ldots, a_m) satisfying (ii), there exists a unique, up to translations, K-surface S satisfying (i) such that $\operatorname{Area}(D_j) = a_j$ for all j.

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_j denotes the component of $\overline{S} - S$ corresponding to p_j via the Gauss map, then

- (1) γ_j is a Jordan curve contained in an affine plane $\Pi_j \subset \mathbb{R}^3$ orthogonal to p_j , and
- (II) $\mathscr{S} := S \cup (\bigcup_{j=1}^{m} \overline{D}_{j})$ is the boundary surface of a smooth convex body in \mathbb{R}^{3} , where D_{j} denotes the bounded component of $\Pi_{j} \gamma_{j}$.

In addition, given (a_1, \ldots, a_m) satisfying (ii), there exists a unique, up to translations, K-surface S satisfying (i) such that Area $(D_j) = a_j$ for all j.

• If m = 2 then S is rotational.

- Let $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$.
- Assume there exists a K-surface S ⊂ ℝ³ satisfying (i) and let us show that {p₁,..., p_m} and S satisfy (ii), (I), and (II).
- Denote by $N_S: S \to \mathbb{S}^2 \{p_1, \dots, p_m\}$ the outer Gauss map of S.

Main ingredient: The Legendre transform

(ロ)、(型)、(E)、(E)、 E) の(の)

Main ingredient: The Legendre transform

- Fix $j \in \{1, ..., m\}$ and assume that $p_j = (0, 0, 1) \in \mathbb{R}^3$.
- Consider

$$H = \{p \in S \colon x_3(N_S(p)) \in [1 - \epsilon, 1)\}$$

for $\epsilon > 0$.

- Assume that *H* is a topological annulus with boundary and a local graph in the *x*₃-direction at any point.
- Write $(X_1, X_2, X_3) : H \to \mathbb{R}^3$ the inclusion map, and $(N_S)|_H = (N_1, N_2, N_3) : H \to \mathbb{S}^2 \cap \{x_3 \in [1 - \epsilon, 1)\} \subset \mathbb{R}^3.$

• The Legendre transform of H,

$$\mathcal{L}=\left(rac{N_1}{N_3}, rac{N_2}{N_3}, rac{N_1}{N_3}X_1+rac{N_2}{N_3}X_2+X_3
ight): H
ightarrow \mathbb{R}^3,$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^3 , that is a local graph in the x_3 -direction at any point.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The Legendre transform of H,

$$\mathcal{L}=\left(rac{N_1}{N_3}$$
 , $rac{N_2}{N_3}$, $rac{N_1}{N_3}X_1+rac{N_2}{N_3}X_2+X_3
ight):H
ightarrow\mathbb{R}^3$,

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^3 , that is a local graph in the x_3 -direction at any point.

• The map $S^2 \cap \{x_3 \in [1 - \epsilon, 1)\} \to \Omega - \{(0, 0)\}, (x_1, x_2, x_3) \mapsto (x_1/x_3, x_2/x_3)$, is a diffeomorphism.

• The Legendre transform of H,

$$\mathcal{L}=\left(rac{N_1}{N_3}$$
 , $rac{N_2}{N_3}$, $rac{N_1}{N_3}X_1+rac{N_2}{N_3}X_2+X_3
ight):H
ightarrow\mathbb{R}^3$,

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^3 , that is a local graph in the x_3 -direction at any point.

- The map $S^2 \cap \{x_3 \in [1 \epsilon, 1)\} \to \Omega \{(0, 0)\}, (x_1, x_2, x_3) \mapsto (x_1/x_3, x_2/x_3)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega \{(0,0)\} \to \mathbb{R}$.

• The Legendre transform of H,

$$\mathcal{L}=\left(rac{N_1}{N_3}$$
 , $rac{N_2}{N_3}$, $rac{N_1}{N_3}X_1+rac{N_2}{N_3}X_2+X_3
ight):H
ightarrow\mathbb{R}^3$,

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^3 , that is a local graph in the x_3 -direction at any point.

- The map $\mathbb{S}^2 \cap \{x_3 \in [1 \epsilon, 1)\} \to \Omega \{(0, 0)\}, (x_1, x_2, x_3) \mapsto (x_1/x_3, x_2/x_3)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega \{(0,0)\} \to \mathbb{R}$.
- Nelli-Rosenberg 1997 φ extends continuously to Ω and its graph $\overline{\mathcal{L}(H)}$ is a convex \mathcal{C}^0 surface with boundary.

(日) (同) (三) (三) (三) (○) (○)

• The Legendre transform of H,

$$\mathcal{L}=\left(rac{N_1}{N_3}$$
 , $rac{N_2}{N_3}$, $rac{N_1}{N_3}X_1+rac{N_2}{N_3}X_2+X_3
ight):H
ightarrow\mathbb{R}^3$,

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^3 , that is a local graph in the x_3 -direction at any point.

- The map $\mathbb{S}^2 \cap \{x_3 \in [1 \epsilon, 1)\} \to \Omega \{(0, 0)\}, (x_1, x_2, x_3) \mapsto (x_1/x_3, x_2/x_3)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega \{(0,0)\} \to \mathbb{R}$.
- Nelli-Rosenberg 1997 φ extends continuously to Ω and its graph $\overline{\mathcal{L}(H)}$ is a convex \mathcal{C}^0 surface with boundary.
- The Gauss map of $\mathcal L$ is given by

$$N_{\mathcal{L}}: H \to \mathbb{S}^2, \quad N_{\mathcal{L}} = \frac{(X_1, X_2, -1)}{\sqrt{X_1^2 + X_2^2 + 1}},$$

(日) (同) (三) (三) (三) (○) (○)

hence $(X_1, X_2) : H \to \mathbb{R}^2$ is bounded

• The Legendre transform of H,

$$\mathcal{L}=\left(rac{N_1}{N_3}$$
 , $rac{N_2}{N_3}$, $rac{N_1}{N_3}X_1+rac{N_2}{N_3}X_2+X_3
ight):H
ightarrow\mathbb{R}^3$,

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^3 , that is a local graph in the x_3 -direction at any point.

- The map $S^2 \cap \{x_3 \in [1 \epsilon, 1)\} \to \Omega \{(0, 0)\}, (x_1, x_2, x_3) \mapsto (x_1/x_3, x_2/x_3)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega \{(0,0)\} \to \mathbb{R}$.
- Nelli-Rosenberg 1997 φ extends continuously to Ω and its graph $\overline{\mathcal{L}(H)}$ is a convex \mathcal{C}^0 surface with boundary.
- The Gauss map of $\mathcal L$ is given by

$$N_{\mathcal{L}}: H \to \mathbb{S}^2, \quad N_{\mathcal{L}} = \frac{(X_1, X_2, -1)}{\sqrt{X_1^2 + X_2^2 + 1}},$$

hence $(X_1, X_2) : H \to \mathbb{R}^2$ is bounded and so $X_3 : H \to \mathbb{R}$ has a limit $(= \varphi(0, 0))$.

• So the component γ_j of $\overline{S} - S$ corresponding to p_j via N_S lies in an affine plane $\prod_j \perp p_j$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• So the component γ_j of $\overline{S} - S$ corresponding to p_j via N_S lies in an affine plane $\prod_j \perp p_j$

• γ_j bounds a convex disc D_j in Π_j .

• So the component γ_j of $\overline{S} - S$ corresponding to p_j via N_S lies in an affine plane $\prod_j \perp p_j$

- γ_j bounds a convex disc D_j in Π_j .
- $\mathscr{S} := S \cup (\cup_{j=1}^{m} \overline{D}_j)$ is a closed locally convex \mathcal{C}^0 -surface.
- N_S extends to \mathscr{S} setting $(N_S)|_{\overline{D}_j} = p_j$.

- So the component γ_j of $\overline{S} S$ corresponding to p_j via N_S lies in an affine plane $\prod_j \perp p_j$
- γ_j bounds a convex disc D_j in Π_j .
- $\mathscr{S} := S \cup (\cup_{j=1}^{m} \overline{D}_j)$ is a closed locally convex \mathcal{C}^0 -surface.
- N_S extends to \mathscr{S} setting $(N_S)|_{\overline{D}_i} = p_j$.
- $N_S: S \to \mathbb{S}^2 \{p_1, \dots, p_m\}$ is one to one $\Rightarrow \mathscr{S}$ is (globally) convex.
- So the component γ_j of $\overline{S} S$ corresponding to p_j via N_S lies in an affine plane $\prod_j \perp p_j$
- γ_j bounds a convex disc D_j in Π_j .
- $\mathscr{S} := S \cup (\cup_{j=1}^{m} \overline{D}_j)$ is a closed locally convex \mathcal{C}^0 -surface.
- N_S extends to \mathscr{S} setting $(N_S)|_{\overline{D}_i} = p_j$.
- $N_S: S \to \mathbb{S}^2 \{p_1, \dots, p_m\}$ is one to one $\Rightarrow \mathscr{S}$ is (globally) convex.
- *S* has a unique supporting plane at every point ⇒ *S* bounds a
 smooth convex body ⇒ *S* is C¹ and embedded.

• Equilibrium condition:

•
$$\int_{S} N_{S}(p) dp = \int_{S^{2} - \{p_{1}, \dots, p_{m}\}} p dp = \int_{S^{2}} p dp = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Equilibrium condition:

•
$$\int_{S} N_{S}(p) dp = \int_{\mathbb{S}^{2} - \{p_{1}, \dots, p_{m}\}} p dp = \int_{\mathbb{S}^{2}} p dp = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$\int_{\mathscr{S}} N_{\mathcal{S}}(p) dp = 0.$$

• Equilibrium condition:

•
$$\int_{S} N_{S}(p) dp = \int_{\mathbb{S}^{2} - \{p_{1}, \dots, p_{m}\}} p dp = \int_{\mathbb{S}^{2}} p dp = 0.$$

•
$$\int_{\mathscr{S}} N_{\mathcal{S}}(p) dp = 0.$$

•
$$0 = \int_{\mathscr{S}-S} N_S(p) = \int_{\bigcup_{j=1}^m D_j} N_S(p) = \sum_{j=1}^m \operatorname{Area}(D_j) p_j.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• \mathcal{R} is a circular domain \Rightarrow Area $(D_j) > 0 \ \forall j$.

Classification Result

• Let
$$\{p_1, \ldots, p_m\}$$
 be a subset of \mathbb{S}^2 .

Theorem (Alarcón-S., 2012)

The following statements are equivalent:

(i) There exists a K-surface $S \subset \mathbb{R}^3$ whose extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a harmonic diffeomorphism

$$\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}.$$

(ii) There exist positive real constants a_1, \ldots, a_m such that

$$\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3.$$

Theorem (Alarcón-S., 2012)

- Furthermore, if S is as above and γ_j denotes the component of $\overline{S} S$ corresponding to p_j via the Gauss map, then
- (I) γ_j is a Jordan curve contained in an affine plane $\Pi_j \subset \mathbb{R}^3$ orthogonal to p_j , and
- (II) $\mathscr{S} := S \cup (\bigcup_{j=1}^{m} \overline{D}_{j})$ is the boundary surface of a smooth convex body in \mathbb{R}^{3} , where D_{j} denotes the bounded component of $\Pi_{j} \gamma_{j}$.

In addition, given (a_1, \ldots, a_m) satisfying (ii), there exists a unique, up to translations, K-surface S satisfying (i) such that $Area(D_j) = a_j$ for all j.

- Let $X : \mathbb{S}^2 \to \mathbb{R}^3$ be an immersion such that $X(\mathbb{S}^2)$ is a closed strictly convex surface in \mathbb{R}^3 .
- Then the Gauss map $N_X : \mathbb{S}^2 \to \mathbb{S}^2$ of X is a homeomorphism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let $X : \mathbb{S}^2 \to \mathbb{R}^3$ be an immersion such that $X(\mathbb{S}^2)$ is a closed strictly convex surface in \mathbb{R}^3 .
- Then the Gauss map $N_X : \mathbb{S}^2 \to \mathbb{S}^2$ of X is a homeomorphism.
- Define $\kappa : \mathbb{S}^2 \to \mathbb{R}$, $\kappa = K \circ N_X^{-1}$, where $K : \mathbb{S}^2 \to \mathbb{R}$ denotes the Gauss curvature function of X.

- Let X : S² → ℝ³ be an immersion such that X(S²) is a closed strictly convex surface in ℝ³.
- Then the Gauss map $N_X : \mathbb{S}^2 \to \mathbb{S}^2$ of X is a homeomorphism.
- Define $\kappa : \mathbb{S}^2 \to \mathbb{R}$, $\kappa = K \circ N_X^{-1}$, where $K : \mathbb{S}^2 \to \mathbb{R}$ denotes the Gauss curvature function of X.
- Minkowski observed that κ must satisfy

$$\int_{\mathbb{S}^2} \frac{p}{\kappa(p)} \, dp = 0.$$

- Let X : S² → ℝ³ be an immersion such that X(S²) is a closed strictly convex surface in ℝ³.
- Then the Gauss map $N_X : \mathbb{S}^2 \to \mathbb{S}^2$ of X is a homeomorphism.
- Define $\kappa : \mathbb{S}^2 \to \mathbb{R}$, $\kappa = K \circ N_X^{-1}$, where $K : \mathbb{S}^2 \to \mathbb{R}$ denotes the Gauss curvature function of X.
- Minkowski observed that κ must satisfy

$$\int_{\mathbb{S}^2} \frac{p}{\kappa(p)} \, dp = 0.$$

• Minkowski asked for the converse.

 Let S be a compact convex surface in ℝ³, not necessarily smooth; i.e., S is the boundary of a general convex body in ℝ³.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Let S be a compact convex surface in ℝ³, not necessarily smooth; i.e., S is the boundary of a general convex body in ℝ³.

- ロ ト - 4 回 ト - 4 □ - 4

The generalized Gauss map G : S → S² of S is a set-valued map. It maps p ∈ S to the set of all outer normals of the supporting planes of S passing through p.

- Let S be a compact convex surface in ℝ³, not necessarily smooth; i.e., S is the boundary of a general convex body in ℝ³.
- The generalized Gauss map G : S → S² of S is a set-valued map. It maps p ∈ S to the set of all outer normals of the supporting planes of S passing through p.
- Define a measure $\mu(S)$ on \mathbb{S}^2 called the area function of S by setting

$$\mu(S)(E) = \operatorname{Area}(\{p \in S \mid G(p) \cap E \neq \emptyset\})$$

for any Borel subset $E \subset \mathbb{S}^2$.

- Let S be a compact convex surface in R³, not necessarily smooth; i.e., S is the boundary of a general convex body in R³.
- The generalized Gauss map G : S → S² of S is a set-valued map. It maps p ∈ S to the set of all outer normals of the supporting planes of S passing through p.
- Define a measure $\mu(S)$ on \mathbb{S}^2 called the area function of S by setting

$$\mu(S)(E) = \operatorname{Area}(\{p \in S \mid G(p) \cap E \neq \emptyset\})$$

for any Borel subset $E \subset \mathbb{S}^2$.

• If S is C^2 and strictly convex, then:

$$\mu(S) = \frac{1}{\kappa} \mu_{S^2},$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへぐ

where μ_{S^2} denotes the canonical Lebesgue measure on S^2 .

• If S is a polyhedron, then:

$$\mu(S) = \sum_{j=1}^n c_j \, \delta_{\nu_j},$$

where δ_{ν_j} is the Dirac measure at ν_j and c_j is the Euclidean area of the face of S with outer normal ν_j .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The convex surface \mathscr{S} in (II) agrees with the solution to the *generalized Minkowski problem* for the Borel measure

$$\mu(\mathscr{S}) = \mu_{\mathbb{S}^2} + \sum_{j=1}^m a_j \delta_{p_j} \quad (a_j = \operatorname{Area}(D_j)).$$

• The convex surface \mathscr{S} in (II) agrees with the solution to the *generalized Minkowski problem* for the Borel measure

$$\mu(\mathscr{S}) = \mu_{S^2} + \sum_{j=1}^m a_j \delta_{P_j} \quad (a_j = \operatorname{Area}(D_j)).$$

• Minkowski, Alexandrov, Fenchel, Jessen 1958 Let μ be a non-negative Borel measure on \mathbb{S}^2 such that

$$\int_{\mathbb{S}^2} \mathrm{i}_{\mathbb{S}^2}\,\mu = \mathsf{0} \in \mathbb{R}^3$$

and $\mu(H) > 0$ for any hemisphere $H \subset \mathbb{S}^2$. Then there exists a unique, up to translations, convex body \mathcal{K} in \mathbb{R}^3 such that μ is the *area function* of $\partial \mathcal{K}$.

• The convex surface \mathscr{S} in (II) agrees with the solution to the *generalized Minkowski problem* for the Borel measure

$$\mu(\mathscr{S}) = \mu_{S^2} + \sum_{j=1}^m a_j \delta_{P_j} \quad (a_j = \operatorname{Area}(D_j)).$$

• Minkowski, Alexandrov, Fenchel, Jessen 1958 Let μ be a non-negative Borel measure on \mathbb{S}^2 such that

$$\int_{\mathbb{S}^2} \mathrm{i}_{\mathbb{S}^2}\,\mu = \mathsf{0} \in \mathbb{R}^3$$

and $\mu(H) > 0$ for any hemisphere $H \subset \mathbb{S}^2$. Then there exists a unique, up to translations, convex body \mathcal{H} in \mathbb{R}^3 such that μ is the *area function* of $\partial \mathcal{H}$.

• This gives the uniqueness part of the theorem.

• The convex surface \mathscr{S} in (II) agrees with the solution to the *generalized Minkowski problem* for the Borel measure

$$\mu(\mathscr{S}) = \mu_{S^2} + \sum_{j=1}^m a_j \delta_{P_j} \quad (a_j = \operatorname{Area}(D_j)).$$

• Minkowski, Alexandrov, Fenchel, Jessen 1958 Let μ be a non-negative Borel measure on \mathbb{S}^2 such that

$$\int_{\mathbb{S}^2} \mathrm{i}_{\mathbb{S}^2}\, \mu = \mathbf{0} \in \mathbb{R}^3$$

and $\mu(H) > 0$ for any hemisphere $H \subset \mathbb{S}^2$. Then there exists a unique, up to translations, convex body \mathcal{H} in \mathbb{R}^3 such that μ is the *area function* of $\partial \mathcal{H}$.

- This gives the uniqueness part of the theorem.
- The theorem gives no information about the regularity of $\partial \mathcal{K}$.

Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher dimensions)Let κ : S² → ℝ be a smooth positive function satisfying

$$\int_{\mathbb{S}^2} \frac{p}{\kappa(p)} \, dp = 0.$$

Then there exists a unique, up to translations, *smooth* embedding $X : \mathbb{S}^2 \to \mathbb{R}^3$ such that $X(\mathbb{S}^2)$ is a closed *strictly convex* surface and the curvature function $K : \mathbb{S}^2 \to \mathbb{R}$ of X is given by

$$K = \kappa \circ N_X.$$

• $X \circ N_X^{-1} : \mathbb{S}^2 \to \mathbb{R}^3$ has curvature function κ and Gauss map the identity map of \mathbb{S}^2 .

• Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher dimensions)Let $\kappa : \mathbb{S}^2 \to \mathbb{R}$ be a *smooth positive* function satisfying

$$\int_{\mathbb{S}^2} \frac{p}{\kappa(p)} \, dp = 0.$$

Then there exists a unique, up to translations, *smooth* embedding $X : \mathbb{S}^2 \to \mathbb{R}^3$ such that $X(\mathbb{S}^2)$ is a closed *strictly convex* surface and the curvature function $K : \mathbb{S}^2 \to \mathbb{R}$ of X is given by

$$K = \kappa \circ N_X.$$

- $X \circ N_X^{-1} : \mathbb{S}^2 \to \mathbb{R}^3$ has curvature function κ and Gauss map the identity map of \mathbb{S}^2 .
- The curvature function $K_{\mathscr{S}}$ of \mathscr{S} is $(K_{\mathscr{S}})|_{S} = 1$ and $(K_{\mathscr{S}})|_{D_{j}} = 0$, hence it is neither continuous nor positive.

Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher dimensions)Let κ : S² → ℝ be a smooth positive function satisfying

$$\int_{\mathbb{S}^2} \frac{p}{\kappa(p)} \, dp = 0.$$

Then there exists a unique, up to translations, *smooth* embedding $X : \mathbb{S}^2 \to \mathbb{R}^3$ such that $X(\mathbb{S}^2)$ is a closed *strictly convex* surface and the curvature function $K : \mathbb{S}^2 \to \mathbb{R}$ of X is given by

$$K = \kappa \circ N_X.$$

- $X \circ N_X^{-1} : \mathbb{S}^2 \to \mathbb{R}^3$ has curvature function κ and Gauss map the identity map of \mathbb{S}^2 .
- The curvature function $K_{\mathscr{S}}$ of \mathscr{S} is $(K_{\mathscr{S}})|_{S} = 1$ and $(K_{\mathscr{S}})|_{D_{j}} = 0$, hence it is neither continuous nor positive.
- Idea: Construct approximate solutions and take limits.

- Let $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$.
- Assume there exists positive constants (a_1, \ldots, a_m) such that

$$\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3$$
 ,

and let us show a K-surface S satisfying (i) (hence (I) and (II)) with $Area(D_j) = a_j$ for all j.

(日) (日) (日) (日) (日) (日) (日) (日)

• Denote by B(p, r) the metric ball in \mathbb{S}^2 centered at $p \in \mathbb{S}^2$ with radius r > 0, and by $A(p, r) = B(p, 2r) - \overline{B(p, r)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\Sigma_n := \mathbb{S}^2 - \bigcup_{j=1}^m B(p_j, 2/n).$$

- Denote by B(p, r) the metric ball in S² centered at p ∈ S² with radius r > 0, and by A(p, r) = B(p, 2r) B(p, r).
 Σ_n := S² ∪^m_{i=1}B(p_j, 2/n).
- Let $\kappa_n: \mathbb{S}^2 \to \mathbb{R}$ be a smooth function such that

$$(rac{1}{\kappa_n})|_{\Sigma_n} = 1, \quad (rac{1}{\kappa_n})|_{B(p_j, 1/n)} = rac{n^2}{\pi} \, a_j, \quad 1 \leq (rac{1}{\kappa_n})|_{A(p_j, 1/n)} \leq rac{n^2}{\pi} \, a_j$$

- Denote by B(p, r) the metric ball in S² centered at p ∈ S² with radius r > 0, and by A(p, r) = B(p, 2r) B(p, r).
 Σ_n := S² ∪^m_{i=1}B(p_j, 2/n).
- Let $\kappa_n: \mathbb{S}^2 \to \mathbb{R}$ be a smooth function such that

$$\begin{aligned} (\frac{1}{\kappa_n})|_{\Sigma_n} &= 1, \quad (\frac{1}{\kappa_n})|_{B(p_j, 1/n)} = \frac{n^2}{\pi} a_j, \quad 1 \le (\frac{1}{\kappa_n})|_{A(p_j, 1/n)} \le \frac{n^2}{\pi} a_j, \\ \int_{A(p_j, 1/n)} \frac{p}{\kappa_n(p)} dp &= \frac{4\pi}{n^2} p_j \quad \left(= \int_{B(p_j, 2/n)} p \, dp \right). \end{aligned}$$

- Denote by B(p, r) the metric ball in S² centered at p ∈ S² with radius r > 0, and by A(p, r) = B(p, 2r) B(p, r).
 Σ_n := S² ∪^m_{i=1} B(p_i, 2/n).
- Let $\kappa_n: \mathbb{S}^2 \to \mathbb{R}$ be a smooth function such that

$$\begin{aligned} & (\frac{1}{\kappa_n})|_{\Sigma_n} = 1, \quad (\frac{1}{\kappa_n})|_{B(p_j, 1/n)} = \frac{n^2}{\pi} a_j, \quad 1 \le (\frac{1}{\kappa_n})|_{A(p_j, 1/n)} \le \frac{n^2}{\pi} a_j, \\ & \int_{A(p_j, 1/n)} \frac{p}{\kappa_n(p)} dp = \frac{4\pi}{n^2} p_j \quad \left(= \int_{B(p_j, 2/n)} p \, dp \right). \end{aligned}$$
Then
$$\int_{S^2} \frac{p}{\kappa_n(p)} dp = 0$$

- Denote by B(p, r) the metric ball in S² centered at p ∈ S² with radius r > 0, and by A(p, r) = B(p, 2r) B(p, r).
 Σ_n := S² ∪^m_{i=1} B(p_i, 2/n).
- Let $\kappa_n: \mathbb{S}^2 \to \mathbb{R}$ be a smooth function such that

$$\begin{aligned} (\frac{1}{\kappa_n})|_{\Sigma_n} &= 1, \quad (\frac{1}{\kappa_n})|_{B(p_j, 1/n)} = \frac{n^2}{\pi} \, a_j, \quad 1 \le (\frac{1}{\kappa_n})|_{A(p_j, 1/n)} \le \frac{n^2}{\pi} \, a_j, \\ \int_{A(p_j, 1/n)} \frac{p}{\kappa_n(p)} \, dp = \frac{4\pi}{n^2} \, p_j \quad \left(= \int_{B(p_j, 2/n)} p \, dp \right). \end{aligned}$$

- Then $\int_{\mathbb{S}^2} \frac{p}{\kappa_n(p)} dp = 0$ and the Minkowski problem can be solved for $\kappa_n : \mathbb{S}^2 \to \mathbb{R}$.
- There exists a smooth embedding X_n : S² → ℝ³ such that
 𝒮_n := X_n(S²) is a closed smooth strictly convex surface,
 - **2** the Gauss map of X_n is the identity map of \mathbb{S}^2 ,
 - the curvature function of X_n agrees κ_n; in particular
 S_n := X_n(Σ_n) is a K-surface,
 - Area $(X_n(B(p_j, 1/n))) = a_j$ for all j.

• Denote by $\mathscr{K}_n \subset \mathbb{R}^3$ the strictly convex body bordered by \mathscr{S}_n .

(ロ)、(型)、(E)、(E)、 E) の(の)

• Denote by $\mathscr{K}_n \subset \mathbb{R}^3$ the strictly convex body bordered by \mathscr{S}_n .

Claim

There exists $\xi > 0$ (not depending on n) such that $\mathbb{B}(\xi) \subset \mathscr{K}_n \subset \mathbb{B}(1/\xi) \ \forall n$. (adapting arguments in Cheng-Yau 1976.)

Solution Blaschke selection theorem ⇒ $\{\mathscr{K}_n\}_{n \in \mathbb{N}}$ converges in the Hausforff distance to a convex body \mathscr{K} .

• $\mathscr{S}_n := X_n(\mathbb{S}^2)$ is a closed smooth strictly convex surface,

- **2** the Gauss map of X_n is the identity map of \mathbb{S}^2 ,
- the curvature function of X_n agrees κ_n; in particular
 S_n := X_n(Σ_n) is a K-surface,
- Area $(X_n(B(p_j, 1/n))) = a_j$ for all j, and

$$\{\mathscr{S}_n\}_{n\in\mathbb{N}}\to\mathscr{S}:=\partial\mathscr{K}.$$

- $\mathscr{S}_n := X_n(\mathbb{S}^2)$ is a closed smooth strictly convex surface,
- **2** the Gauss map of X_n is the identity map of \mathbb{S}^2 ,
- the curvature function of X_n agrees κ_n; in particular
 S_n := X_n(Σ_n) is a K-surface,
- Area $(X_n(B(p_j, 1/n))) = a_j$ for all j, and

$$\{\mathscr{S}_n\}_{n\in\mathbb{N}}\to\mathscr{S}:=\partial\mathscr{K}.$$

• $\{(X_n)|_{\Sigma_n}\}_{n\in\mathbb{N}}$ converges to a *K*-immersion $\mathbb{S}^2 - \{p_1, \dots, p_m\} \to \mathbb{R}^3$ with Gauss map the identity map of $\mathbb{S}^2 - \{p_1, \dots, p_m\}$; denote by *S* the image *K*-surface.

- $\mathscr{S}_n := X_n(\mathbb{S}^2)$ is a closed smooth strictly convex surface,
- **2** the Gauss map of X_n is the identity map of \mathbb{S}^2 ,
- the curvature function of X_n agrees κ_n; in particular
 S_n := X_n(Σ_n) is a K-surface,
- Area $(X_n(B(p_j, 1/n))) = a_j$ for all j, and

$$\{\mathscr{S}_n\}_{n\in\mathbb{N}}\to\mathscr{S}:=\partial\mathscr{K}.$$

- $\{(X_n)|_{\Sigma_n}\}_{n\in\mathbb{N}}$ converges to a *K*-immersion $\mathbb{S}^2 - \{p_1, \dots, p_m\} \to \mathbb{R}^3$ with Gauss map the identity map of $\mathbb{S}^2 - \{p_1, \dots, p_m\}$; denote by *S* the image *K*-surface.
- {X_n(B(p_j, 1/n))}_{n∈ℕ} converges to an open disc D_j contained in a plane Π_j orthogonal to p_j, with Area(D_j) = a_j for all j,

- $\mathscr{S}_n := X_n(\mathbb{S}^2)$ is a closed smooth strictly convex surface,
- 2 the Gauss map of X_n is the identity map of S^2 ,
- the curvature function of X_n agrees κ_n; in particular
 S_n := X_n(Σ_n) is a K-surface,
- Area $(X_n(B(p_j, 1/n))) = a_j$ for all j, and

$$\{\mathscr{S}_n\}_{n\in\mathbb{N}}\to\mathscr{S}:=\partial\mathscr{K}.$$

- $\{(X_n)|_{\Sigma_n}\}_{n\in\mathbb{N}}$ converges to a *K*-immersion $\mathbb{S}^2 - \{p_1, \dots, p_m\} \to \mathbb{R}^3$ with Gauss map the identity map of $\mathbb{S}^2 - \{p_1, \dots, p_m\}$; denote by *S* the image *K*-surface.
- {X_n(B(p_j, 1/n))}_{n∈ℕ} converges to an open disc D_j contained in a plane Π_j orthogonal to p_j, with Area(D_j) = a_j for all j,
- $\{\operatorname{Area}(X_n(A(p_j, 1/n)))\}_{n \in \mathbb{N}} \to 0 \Rightarrow \mathscr{S} = S \cup (\bigcup_{j=1}^m \overline{D}_j), \text{ and }$

- $\mathscr{S}_n := X_n(\mathbb{S}^2)$ is a closed smooth strictly convex surface,
- **2** the Gauss map of X_n is the identity map of \mathbb{S}^2 ,
- the curvature function of X_n agrees κ_n; in particular
 S_n := X_n(Σ_n) is a K-surface,
- Area $(X_n(B(p_j, 1/n))) = a_j$ for all j, and

$$\{\mathscr{S}_n\}_{n\in\mathbb{N}}\to\mathscr{S}:=\partial\mathscr{K}.$$

- $\{(X_n)|_{\Sigma_n}\}_{n\in\mathbb{N}}$ converges to a *K*-immersion $\mathbb{S}^2 - \{p_1, \dots, p_m\} \to \mathbb{R}^3$ with Gauss map the identity map of $\mathbb{S}^2 - \{p_1, \dots, p_m\}$; denote by *S* the image *K*-surface.
- {X_n(B(p_j, 1/n))}_{n∈ℕ} converges to an open disc D_j contained in a plane Π_j orthogonal to p_j, with Area(D_j) = a_j for all j,
- $\{\operatorname{Area}(X_n(A(p_j, 1/n)))\}_{n \in \mathbb{N}} \to 0 \Rightarrow \mathscr{S} = S \cup (\bigcup_{j=1}^m \overline{D}_j), \text{ and }$
- the extrinsic conformal structure of S is a circular domain in $\overline{\mathbb{C}}$.

Application: Harmonic diffeomorphims

- Liouville There is no non-constant harmonic map $\mathbb{C}\to\mathbb{D},$ with the Euclidean metric.
- Heinz 1952 There is no harmonic diffeomorphism $\mathbb{D}\to\mathbb{C}$ with the Euclidean metric.

Question (Schoen-Yau 1985)

Are Riemannian surfaces which are related by a harmonic diffeomorphism quasiconformally related? In particular, are there harmonic diffeomorphisms from \mathbb{C} onto the hyperbolic plane \mathbb{H}^2 ?

Collin-Rosenberg 2010 There exists an entire minimal graph Σ over ℍ² in the Riemannian product ℍ² × ℝ with the conformal type of ℂ.
 In particular, the vertical projection Σ → ℍ² is a harmonic

diffeomorphism from $\mathbb C$ into $\mathbb H^2.$
Theorem (Alarcón-S.; CMH, in press)

For any m ∈ N, m ≥ 2, and any subet {p₁,..., p_m} ⊂ S² there exist a circular domain R ⊂ C and a harmonic diffeomorphism R → S² - {p₁,..., p_m}.

Theorem (Alarcón-S.; CMH, in press)

• For any $m \in \mathbb{N}$, $m \ge 2$, and any subet $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}$.

 There exists no harmonic diffeomorphism D → S² - {p}, p ∈ S².

Theorem (Alarcón-S.; CMH, in press)

- For any $m \in \mathbb{N}$, $m \ge 2$, and any subet $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \to \mathbb{S}^2 \{p_1, \ldots, p_m\}$.
- There exists no harmonic diffeomorphism D → S² {p}, p ∈ S².
- The harmonic diffeomorphism R → S² {p₁,..., p_m} appears as the vertical projection Σ → S² {p₁,..., p_m}, where Σ is a maximal graph over S² {p₁,..., p_m} in the Lorentzian manifold S² × ℝ₁, with Σ ≅ R.

(日) (同) (三) (三) (三) (○) (○)

• Such a maximal graph Σ is constructed by solving Dirichlet problems.

Theorem (Alarcón-S.; CMH, in press)

- For any $m \in \mathbb{N}$, $m \ge 2$, and any subet $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \to \mathbb{S}^2 \{p_1, \ldots, p_m\}$.
- There exists no harmonic diffeomorphism D → S² {p}, p ∈ S².
- The harmonic diffeomorphism R → S² {p₁,..., p_m} appears as the vertical projection Σ → S² {p₁,..., p_m}, where Σ is a maximal graph over S² {p₁,..., p_m} in the Lorentzian manifold S² × ℝ₁, with Σ ≅ R.
- Such a maximal graph Σ is constructed by solving Dirichlet problems.
- The non-existence of harmonic diffeomorphisms $\mathbb{D} \to \mathbb{S}^2 \{p\}$ follows from *K*-surface theory.

Corollary

Let $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$ with $\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3$ for some positive numbers a_1, \ldots, a_m . Then there exists a circular domain \mathcal{R} in $\overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}$.

• The Gauss map of the *K*-surface *S* in (i) is such a harmonic diffeomorphism.

Corollary

Let $\{p_1, \ldots, p_m\} \subset \mathbb{S}^2$ with $\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3$ for some positive numbers a_1, \ldots, a_m . Then there exists a circular domain \mathcal{R} in $\overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}$.

- The Gauss map of the *K*-surface *S* in (i) is such a harmonic diffeomorphism.
- We do not know if those harmonic diffeomorphisms given as Gauss maps of K-surfaces in R³ and those given as vertical projections of maximal graphs in S² × R₁ are the same or not.

• The support function of S,

$$\begin{split} h: \mathbb{S}^2 - \{p_1, \dots, p_m\} \to \mathbb{R}, \quad h(p) = \langle p, N_S^{-1}(p) \rangle, \\ \text{satisfies} \quad \left(\det(\nabla^2 h + h\mathrm{I}) \right) \circ N_S = 1 \ \left(= 1/\mathcal{K} \right) \quad \text{on } S. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• The support function of S,

$$h: \mathbb{S}^2 - \{p_1, \ldots, p_m\} \to \mathbb{R}, \quad h(p) = \langle p, N_S^{-1}(p) \rangle,$$

satisfies $\left(\det(\nabla^2 h + hI)\right) \circ N_S = 1 \ \left(=1/K\right)$ on S.

• A parameterization $X:\mathbb{S}^2-\{p_1,\ldots,p_m\}
ightarrow\mathbb{R}^3$ of S is given by

$$X(p) = \nabla h(p) + h(p)p.$$

• Fully nonlinear, elliptic second order partial differential equations of the form

$$\mathscr{F}[h] := F(\nabla^2 h + A(\cdot, h, \nabla h)) = B(\cdot, h, \nabla h) \quad \text{on } \Omega \subset \mathcal{M},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

have been objective of considerable interest in recent years.

• Fully nonlinear, elliptic second order partial differential equations of the form

$$\mathscr{F}[h] := F(\nabla^2 h + A(\cdot, h, \nabla h)) = B(\cdot, h, \nabla h) \quad \text{on } \Omega \subset \mathcal{M},$$

have been objective of considerable interest in recent years.

• The space of solutions to the Hessian one equation

det
$$abla^2 h = 1$$
 on $\mathbb{R}^2 - \{q_1, \dots, q_k\}$

was described by Gálvez-Martínez-Mira 2005 (Jorgens 1955 for k = 1).

• Jorgens 1954 The only solutions for k = 0 are quadratic polynomials.

• Two solution u and v of the Hessian equation

$$\det \left(\nabla^2 h + h \mathbf{I} \right) = 1 \quad \text{on } \mathbb{S}^2 - \{ p_1, \dots, p_m \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

are equivalent, $u \sim v$, if u - v is the restriction to $\mathbb{S}^2 - \{p_1, \dots, p_m\}$ of a linear function of \mathbb{R}^3 .

• Two solution *u* and *v* of the Hessian equation

$$\det \left(
abla^2 h + h \mathrm{I}
ight) = 1 \quad ext{on } \mathbb{S}^2 - \{ p_1, \dots, p_m \}$$

are equivalent, $u \sim v$, if u - v is the restriction to $\mathbb{S}^2 - \{p_1, \dots, p_m\}$ of a linear function of \mathbb{R}^3 .

Corollary

The space of equivalence classes of solutions of the above equation, under \sim , with non-removable singularities at the points $\{p_1, \ldots, p_m\}$, is in bijection with the set $\{(a_1, \ldots, a_m) \in \mathbb{R}^m \mid a_j > 0 \ \forall j, \sum_{i=1}^m a_j p_j = 0\}.$

• Two solution *u* and *v* of the Hessian equation

$$\det \left(
abla^2 h + h \mathbf{I} \right) = 1$$
 on $\mathbb{S}^2 - \{ p_1, \dots, p_m \}$

are equivalent, $u \sim v$, if u - v is the restriction to $\mathbb{S}^2 - \{p_1, \dots, p_m\}$ of a linear function of \mathbb{R}^3 .

Corollary

The space of equivalence classes of solutions of the above equation, under \sim , with non-removable singularities at the points $\{p_1, \ldots, p_m\}$, is in bijection with the set $\{(a_1, \ldots, a_m) \in \mathbb{R}^m \mid a_j > 0 \ \forall j, \sum_{j=1}^m a_j p_j = 0\}.$

- h: S² {p₁,..., p_m} → ℝ is solution to the equation iff it is the support function of a surface S as those in the theorem.
- The only solution for m = 0 is the round sphere and there is no solution for m = 1.

- A capillary surface in a region B in ℝ³ is a compact CMC surface meeting ∂B at a constant angle γ ∈ [0, π] along its boundary. They model liquid drops inside a container in the absence of gravity.
- Capillary surfaces is a topic with large literature. Wente 1995, McCuan 1997, and Park 2005 studied capillary surfaces in polyhedral regions of R³.

- A capillary surface in a region B in ℝ³ is a compact CMC surface meeting ∂B at a constant angle γ ∈ [0, π] along its boundary. They model liquid drops inside a container in the absence of gravity.
- Capillary surfaces is a topic with large literature. Wente 1995, McCuan 1997, and Park 2005 studied capillary surfaces in polyhedral regions of R³.
- The outer parallel surface at distance 1 to a K-surface is a CMC surface with H = 1/2 (i.e., an H-surface).

Application: Capillary surfaces

• Let
$$\{p_1, \ldots, p_m\}$$
 be a subset of \mathbb{S}^2 .

Corollary

The following statements are equivalent:

(i) There exists a (positively curved) *H*-surface $S \subset \mathbb{R}^3$ whose intrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a harmonic diffeomorphism

$$\mathcal{R} \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}.$$

(ii) There exist positive real constants a_1, \ldots, a_m such that

$$\sum_{j=1}^m a_j p_j = 0 \in \mathbb{R}^3.$$

Application: Capillary surfaces

Corollary

Furthermore, if S is as above and γ_j denotes the component of $\overline{S} - S$ corresponding to p_j via the Gauss map, then

- (I) γ_j is a Jordan curve contained in an affine plane $\Pi_j \subset \mathbb{R}^3$ orthogonal to p_j , and
- (II) $\mathscr{S} := S \cup (\bigcup_{j=1}^{m} \overline{D}_{j})$ is the boundary surface of a smooth convex body in \mathbb{R}^{3} , where D_{j} denotes the bounded component of $\Pi_{j} \gamma_{j}$.

In addition, given (a_1, \ldots, a_m) satisfying (ii), there exists a unique, up to translations, H-surface S satisfying (i) such that $Area(D_j) = a_j$ for all j.

Application: Capillary surfaces

Corollary

Furthermore, if S is as above and γ_j denotes the component of $\overline{S} - S$ corresponding to p_j via the Gauss map, then

- (I) γ_j is a Jordan curve contained in an affine plane $\Pi_j \subset \mathbb{R}^3$ orthogonal to p_j , and
- (II) $\mathscr{S} := S \cup (\bigcup_{j=1}^{m} \overline{D}_{j})$ is the boundary surface of a smooth convex body in \mathbb{R}^{3} , where D_{j} denotes the bounded component of $\Pi_{j} \gamma_{j}$.

In addition, given (a_1, \ldots, a_m) satisfying (ii), there exists a unique, up to translations, H-surface S satisfying (i) such that Area $(D_j) = a_j$ for all j.

 In particular, S is an embedded H-surface of genus zero which meets tangentially all the faces of the polyhedral region determined by the affine planes Π_j, j = 1,..., m.