The Minkowski problem and constant curvature surfaces in \mathbb{R}^{3}

Rabah Souam
Institut de Mathématiques de Jussieu, Paris

Joint work with Antonio Alarcón

Workshop on Geometric and Complex Analysis
Granada, November 2012

Aim

The aim of this talk is to classify the family of surfaces with

- positive constant Gauss curvature in \mathbb{R}^{3},
- Gauss map a diffeomorphism onto a finitely punctured S^{2}, and
- extrinsic conformal structure a circular domain in $\overline{\mathbb{C}}$.

We will derive some applications:

- Harmonic diffeomorphisms between certain domains of S^{2}.
- Capillary surfaces in \mathbb{R}^{3}.
- A Hessian equation of Monge-Ampère type on S^{2}.

Aim and reference

The aim of this talk is to classify the family of surfaces with

- positive constant Gauss curvature in \mathbb{R}^{3},
- Gauss map a diffeomorphism onto a finitely punctured S^{2}, and
- extrinsic conformal structure a circular domain in $\overline{\mathbb{C}}$.

We will derive some applications:

- Harmonic diffeomorphisms between certain domains of S^{2}.
- Capillary surfaces in \mathbb{R}^{3}.
- A Hessian equation of Monge-Ampère type on S^{2}.
- A. Alarcón and R. Souam, The Minkowski problem, new constant curvature surfaces in \mathbb{R}^{3}, and some applications. Preprint 2012 (arXiv:1206.6066).

K-surfaces

Definition

By a K-surface we mean a surface in \mathbb{R}^{3} with constant Gauss curvature $K=1$.

K-surfaces

Definition

By a K-surface we mean a surface in \mathbb{R}^{3} with constant Gauss curvature $K=1$.

- Let S be a smooth surface and let $X: S \rightarrow \mathbb{R}^{3}$ be a K-immersion.
- I_{X} positive definite metric $\Rightarrow I I_{X}$ induces on S a conformal structure, $\mathcal{R} \equiv$ extrinsic conformal structure.

K-surfaces

Definition

By a K-surface we mean a surface in \mathbb{R}^{3} with constant Gauss curvature $K=1$.

- Let S be a smooth surface and let $X: S \rightarrow \mathbb{R}^{3}$ be a K-immersion.
- I_{X} positive definite metric $\Rightarrow I I_{X}$ induces on S a conformal structure, $\mathcal{R} \equiv$ extrinsic conformal structure.
- $z=u+\imath v$ conformal parameter on \mathcal{R}.
- Gálvez-Martínez 2000 The Gauss map $N: \mathcal{R} \rightarrow \mathrm{S}^{2}$ satisfies

$$
X_{u}=N \times N_{v} \quad \text { and } \quad X_{v}=-N \times N_{u}
$$

hence it is a harmonic local diffeomorphism.
Conversely...

K-surfaces

Definition

By a K-surface we mean a surface in \mathbb{R}^{3} with constant Gauss curvature $K=1$.

- Let S be a smooth surface and let $X: S \rightarrow \mathbb{R}^{3}$ be a K-immersion.
- I_{X} positive definite metric $\Rightarrow I_{X}$ induces on S a conformal structure, $\mathcal{R} \equiv$ extrinsic conformal structure.
- $z=u+\imath v$ conformal parameter on \mathcal{R}.
- Gálvez-Martínez 2000 The Gauss map $N: \mathcal{R} \rightarrow \mathrm{S}^{2}$ satisfies

$$
X_{u}=N \times N_{v} \quad \text { and } \quad X_{v}=-N \times N_{u}
$$

hence it is a harmonic local diffeomorphism.
Conversely...

- The outer parallel surface at distance 1 to a K-surface is an H-surface with $H=1 / 2$ and intrinsic conformal structure \mathcal{R}.

K-surfaces of revolution

- K-surfaces of revolution are classified.

- The round sphere is the only complete K-surface in \mathbb{R}^{3}. There are no complete ends in the theory.

Peaked spheres

- K-surfaces of revolution are classified.

Peaked spheres

- Gálvez-Hauswirth-Mira 2010 studied the family of K-surfaces with isolated singularities (peaked spheres).
- The extrinsic conformal structure is a circular domain $\mathcal{R} \subset \mathbb{S}^{2} \equiv \overline{\mathbb{C}}$.
- There is no peaked sphere with exactly one singularity.
- The only peaked spheres with exactly two singularities are the rotational ones.
- For $n>2$ there is a $3 n-6$ parameter family of peaked spheres with exactly n singularities, which can be parameterized by the intrinsic conformal structures.
- The Gauss map is solution to the Neumann problem for harmonic diffeomorphisms

$$
N: \overline{\mathcal{R}} \rightarrow \mathrm{S}^{2},\left.\quad \frac{\partial N}{\partial \mathbf{n}}\right|_{\partial \overline{\mathcal{R}}}=0
$$

K-surfaces of revolution

- K-surfaces of revolution are classified.

K-surfaces of revolution

- They tangentially meet planes at the ends.

K-surfaces of revolution

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a smooth convex surface.

K-surfaces of revolution

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a smooth convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.

K-surfaces of revolution

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a smooth convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.

K-surfaces of revolution

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a smooth convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.
- The extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$.

K-surfaces of revolution

- They tangentially meet planes at the ends.
- Adding the cover discs one gets a smooth convex surface.
- There is a 1-parameter family depending on the radius of the cover discs.
- The extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$.
- The Gauss map is a (harmonic) diffeomorphism

$$
N: \mathcal{R} \rightarrow \mathrm{S}^{2}-\{(0,0,1),(0,0,-1)\}
$$

hence extends continuously to $\overline{\mathcal{R}}$ being constant over each connected component of $\partial \overline{\mathcal{R}}$.

Aim

- Are there K-surfaces satisfying that properties but with $m \in \mathbb{N}$ ends?

Question

Let $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{2}$.
Do there exist K-surfaces whose extrinsic conformal structures are circular domains $\mathcal{R} \subset \overline{\mathbb{C}}$ and their Gauss maps harmonic diffeomorphisms $\mathcal{R} \rightarrow \mathbb{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$?

Classification Result

- Let $\left\{p_{1}, \ldots, p_{m}\right\}$ be a subset of S^{2}.

Theorem (Alarcón-S., 2012)
The following statements are equivalent:
(i) There exists a K-surface $S \subset \mathbb{R}^{3}$ whose extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a (harmonic) diffeomorphism

$$
\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

(ii) There exist positive real constants a_{1}, \ldots, a_{m} such that

$$
\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}
$$

Classification Result

- Let $\left\{p_{1}, \ldots, p_{m}\right\}$ be a subset of S^{2}.

Theorem (Alarcón-S., 2012)
The following statements are equivalent:
(i) There exists a K-surface $S \subset \mathbb{R}^{3}$ whose extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a (harmonic) diffeomorphism

$$
\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

(ii) There exist positive real constants a_{1}, \ldots, a_{m} such that

$$
\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}
$$

- There is no such S for $m=1$.
- If $m=2$ then $p_{2}=-p_{1}$.

Classification Result

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_{j} denotes the component of $\bar{S}-S$ corresponding to p_{j} via the Gauss map, then
(I) γ_{j} is a Jordan curve contained in an affine plane $\Pi_{j} \subset \mathbb{R}^{3}$ orthogonal to p_{j}, and
(II) $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is the boundary surface of a smooth convex body in \mathbb{R}^{3}, where D_{j} denotes the bounded component of $\Pi_{j}-\gamma_{j}$.

Classification Result

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_{j} denotes the component of $\bar{S}-S$ corresponding to p_{j} via the Gauss map, then
(I) γ_{j} is a Jordan curve contained in an affine plane $\Pi_{j} \subset \mathbb{R}^{3}$ orthogonal to p_{j}, and
(II) $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is the boundary surface of a smooth convex body in \mathbb{R}^{3}, where D_{j} denotes the bounded component of $\Pi_{j}-\gamma_{j}$.
In addition, given $\left(a_{1}, \ldots, a_{m}\right)$ satisfying (ii), there exists a unique, up to translations, K-surface S satisfying (i) such that $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j.

Classification Result

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_{j} denotes the component of $\bar{S}-S$ corresponding to p_{j} via the Gauss map, then
(I) γ_{j} is a Jordan curve contained in an affine plane $\Pi_{j} \subset \mathbb{R}^{3}$ orthogonal to p_{j}, and
(II) $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is the boundary surface of a smooth convex body in \mathbb{R}^{3}, where D_{j} denotes the bounded component of $\Pi_{j}-\gamma_{j}$.
In addition, given $\left(a_{1}, \ldots, a_{m}\right)$ satisfying (ii), there exists a unique, up to translations, K-surface S satisfying (i) such that $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j.

- If $m=2$ then S is rotational.

Convexity and the equilibrium condition

- Let $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{2}$.
- Assume there exists a K-surface $S \subset \mathbb{R}^{3}$ satisfying (i) and let us show that $\left\{p_{1}, \ldots, p_{m}\right\}$ and S satisfy (ii), (I), and (II).
- Denote by $N_{S}: S \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ the outer Gauss map of S.

Convexity and the equilibrium condition

Main ingredient: The Legendre transform

Convexity and the equilibrium condition

Main ingredient: The Legendre transform

- Fix $j \in\{1, \ldots, m\}$ and assume that $p_{j}=(0,0,1) \in \mathbb{R}^{3}$.
- Consider

$$
H=\left\{p \in S: x_{3}\left(N_{S}(p)\right) \in[1-\epsilon, 1)\right\}
$$

for $\epsilon>0$.

- Assume that H is a topological annulus with boundary and a local graph in the x_{3}-direction at any point.
- Write $\left(X_{1}, X_{2}, X_{3}\right): H \rightarrow \mathbb{R}^{3}$ the inclusion map, and $\left.\left(N_{S}\right)\right|_{H}=\left(N_{1}, N_{2}, N_{3}\right): H \rightarrow S^{2} \cap\left\{x_{3} \in[1-\epsilon, 1)\right\} \subset \mathbb{R}^{3}$.

Convexity and the equilibrium condition.

- The Legendre transform of H,

$$
\mathcal{L}=\left(\frac{N_{1}}{N_{3}}, \frac{N_{2}}{N_{3}}, \frac{N_{1}}{N_{3}} X_{1}+\frac{N_{2}}{N_{3}} X_{2}+X_{3}\right): H \rightarrow \mathbb{R}^{3}
$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^{3}, that is a local graph in the x_{3}-direction at any point.

Convexity and the equilibrium condition.

- The Legendre transform of H,

$$
\mathcal{L}=\left(\frac{N_{1}}{N_{3}}, \frac{N_{2}}{N_{3}}, \frac{N_{1}}{N_{3}} X_{1}+\frac{N_{2}}{N_{3}} X_{2}+X_{3}\right): H \rightarrow \mathbb{R}^{3}
$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^{3}, that is a local graph in the x_{3}-direction at any point.

- The map $\mathrm{S}^{2} \cap\left\{x_{3} \in[1-\epsilon, 1)\right\} \rightarrow \Omega-\{(0,0)\}$, $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$, is a diffeomorphism.

Convexity and the equilibrium condition.

- The Legendre transform of H,

$$
\mathcal{L}=\left(\frac{N_{1}}{N_{3}}, \frac{N_{2}}{N_{3}}, \frac{N_{1}}{N_{3}} X_{1}+\frac{N_{2}}{N_{3}} X_{2}+X_{3}\right): H \rightarrow \mathbb{R}^{3}
$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^{3}, that is a local graph in the x_{3}-direction at any point.

- The map $\mathrm{S}^{2} \cap\left\{x_{3} \in[1-\epsilon, 1)\right\} \rightarrow \Omega-\{(0,0)\}$,
$\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega-\{(0,0)\} \rightarrow \mathbb{R}$.

Convexity and the equilibrium condition.

- The Legendre transform of H,

$$
\mathcal{L}=\left(\frac{N_{1}}{N_{3}}, \frac{N_{2}}{N_{3}}, \frac{N_{1}}{N_{3}} X_{1}+\frac{N_{2}}{N_{3}} X_{2}+X_{3}\right): H \rightarrow \mathbb{R}^{3}
$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^{3}, that is a local graph in the x_{3}-direction at any point.

- The map $\mathbb{S}^{2} \cap\left\{x_{3} \in[1-\epsilon, 1)\right\} \rightarrow \Omega-\{(0,0)\}$,
$\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega-\{(0,0)\} \rightarrow \mathbb{R}$.
- Nelli-Rosenberg 1997φ extends continuously to Ω and its graph $\overline{\mathcal{L}(H)}$ is a convex \mathcal{C}^{0} surface with boundary.

Convexity and the equilibrium condition.

- The Legendre transform of H,

$$
\mathcal{L}=\left(\frac{N_{1}}{N_{3}}, \frac{N_{2}}{N_{3}}, \frac{N_{1}}{N_{3}} X_{1}+\frac{N_{2}}{N_{3}} X_{2}+X_{3}\right): H \rightarrow \mathbb{R}^{3}
$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^{3}, that is a local graph in the x_{3}-direction at any point.

- The map $\mathbb{S}^{2} \cap\left\{x_{3} \in[1-\epsilon, 1)\right\} \rightarrow \Omega-\{(0,0)\}$,
$\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega-\{(0,0)\} \rightarrow \mathbb{R}$.
- Nelli-Rosenberg 1997φ extends continuously to Ω and its graph $\overline{\mathcal{L}(H)}$ is a convex \mathcal{C}^{0} surface with boundary.
- The Gauss map of \mathcal{L} is given by

$$
N_{\mathcal{L}}: H \rightarrow \mathrm{~S}^{2}, \quad N_{\mathcal{L}}=\frac{\left(X_{1}, X_{2},-1\right)}{\sqrt{X_{1}^{2}+X_{2}^{2}+1}}
$$

hence $\left(X_{1}, X_{2}\right): H \rightarrow \mathbb{R}^{2}$ is bounded

Convexity and the equilibrium condition.

- The Legendre transform of H,

$$
\mathcal{L}=\left(\frac{N_{1}}{N_{3}}, \frac{N_{2}}{N_{3}}, \frac{N_{1}}{N_{3}} X_{1}+\frac{N_{2}}{N_{3}} X_{2}+X_{3}\right): H \rightarrow \mathbb{R}^{3}
$$

defines a strongly positively curved surface $\mathcal{L}(H)$ with boundary in \mathbb{R}^{3}, that is a local graph in the x_{3}-direction at any point.

- The map $\mathbb{S}^{2} \cap\left\{x_{3} \in[1-\epsilon, 1)\right\} \rightarrow \Omega-\{(0,0)\}$,
$\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$, is a diffeomorphism.
- $\mathcal{L}(H)$ is the graph of a function $\varphi: \Omega-\{(0,0)\} \rightarrow \mathbb{R}$.
- Nelli-Rosenberg 1997φ extends continuously to Ω and its graph $\overline{\mathcal{L}(H)}$ is a convex \mathcal{C}^{0} surface with boundary.
- The Gauss map of \mathcal{L} is given by

$$
N_{\mathcal{L}}: H \rightarrow \mathrm{~S}^{2}, \quad N_{\mathcal{L}}=\frac{\left(X_{1}, X_{2},-1\right)}{\sqrt{X_{1}^{2}+X_{2}^{2}+1}}
$$

hence $\left(X_{1}, X_{2}\right): H \rightarrow \mathbb{R}^{2}$ is bounded and so $X_{3}: H \rightarrow \mathbb{R}$ has a limit $(=\varphi(0,0))$.

Convexity and the equilibrium condition

- So the component γ_{j} of $\bar{S}-S$ corresponding to p_{j} via N_{S} lies in an affine plane $\Pi_{j} \perp p_{j}$

Convexity and the equilibrium condition

- So the component γ_{j} of $\bar{S}-S$ corresponding to p_{j} via N_{S} lies in an affine plane $\Pi_{j} \perp p_{j}$
- γ_{j} bounds a convex disc D_{j} in Π_{j}.

Convexity and the equilibrium condition

- So the component γ_{j} of $\bar{S}-S$ corresponding to p_{j} via N_{S} lies in an affine plane $\Pi_{j} \perp p_{j}$
- γ_{j} bounds a convex disc D_{j} in Π_{j}.
- $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is a closed locally convex \mathcal{C}^{0}-surface.
- N_{S} extends to \mathscr{S} setting $\left.\left(N_{S}\right)\right|_{\bar{D}_{j}}=p_{j}$.

Convexity and the equilibrium condition

- So the component γ_{j} of $\bar{S}-S$ corresponding to p_{j} via N_{S} lies in an affine plane $\Pi_{j} \perp p_{j}$
- γ_{j} bounds a convex disc D_{j} in Π_{j}.
- $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is a closed locally convex \mathcal{C}^{0}-surface.
- N_{S} extends to \mathscr{S} setting $\left.\left(N_{S}\right)\right|_{\bar{D}_{j}}=p_{j}$.
- $N_{S}: S \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ is one to one $\Rightarrow \mathscr{S}$ is (globally) convex.

Convexity and the equilibrium condition

- So the component γ_{j} of $\bar{S}-S$ corresponding to p_{j} via N_{S} lies in an affine plane $\Pi_{j} \perp p_{j}$
- γ_{j} bounds a convex disc D_{j} in Π_{j}.
- $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is a closed locally convex \mathcal{C}^{0}-surface.
- N_{S} extends to \mathscr{S} setting $\left.\left(N_{S}\right)\right|_{\bar{D}_{j}}=p_{j}$.
- $N_{S}: S \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ is one to one $\Rightarrow \mathscr{S}$ is (globally) convex.
- \mathscr{S} has a unique supporting plane at every point $\Rightarrow \mathscr{S}$ bounds a smooth convex body $\Rightarrow \mathscr{S}$ is \mathcal{C}^{1} and embedded.

Convexity and the equilibrium condition

- Equilibrium condition:
- $\int_{S} N_{S}(p) d p=\int_{S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}} p d p=\int_{S^{2}} p d p=0$.

Convexity and the equilibrium condition

- Equilibrium condition:
- $\int_{S} N_{S}(p) d p=\int_{S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}} p d p=\int_{S^{2}} p d p=0$.
- $\int_{\mathscr{S}} N_{S}(p) d p=0$.

Convexity and the equilibrium condition

- Equilibrium condition:
- $\int_{S} N_{S}(p) d p=\int_{\mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}} p d p=\int_{\mathrm{S}^{2}} p d p=0$.
- $\int_{\mathscr{S}} N_{S}(p) d p=0$.
- $0=\int_{\mathscr{S}-S} N_{S}(p)=\int_{\cup_{j=1}^{m} D_{j}} N_{S}(p)=\sum_{j=1}^{m} \operatorname{Area}\left(D_{j}\right) p_{j}$.
- \mathcal{R} is a circular domain $\Rightarrow \operatorname{Area}\left(D_{j}\right)>0 \forall j$.

Classification Result

- Let $\left\{p_{1}, \ldots, p_{m}\right\}$ be a subset of S^{2}.

Theorem (Alarcón-S., 2012)
The following statements are equivalent:
(i) There exists a K-surface $S \subset \mathbb{R}^{3}$ whose extrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a harmonic diffeomorphism

$$
\mathcal{R} \rightarrow \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

(ii) There exist positive real constants a_{1}, \ldots, a_{m} such that

$$
\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}
$$

Classification Result

Theorem (Alarcón-S., 2012)

Furthermore, if S is as above and γ_{j} denotes the component of $\bar{S}-S$ corresponding to p_{j} via the Gauss map, then
(I) γ_{j} is a Jordan curve contained in an affine plane $\Pi_{j} \subset \mathbb{R}^{3}$ orthogonal to p_{j}, and
(II) $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is the boundary surface of a smooth convex body in \mathbb{R}^{3}, where D_{j} denotes the bounded component of $\Pi_{j}-\gamma_{j}$.
In addition, given $\left(a_{1}, \ldots, a_{m}\right)$ satisfying (ii), there exists a unique, up to translations, K-surface S satisfying (i) such that $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j.

Existence. The Minkowski problem

- Let $X: \mathbb{S}^{2} \rightarrow \mathbb{R}^{3}$ be an immersion such that $X\left(\mathbb{S}^{2}\right)$ is a closed strictly convex surface in \mathbb{R}^{3}.
- Then the Gauss map $N_{X}: S^{2} \rightarrow S^{2}$ of X is a homeomorphism.

Existence. The Minkowski problem

- Let $X: S^{2} \rightarrow \mathbb{R}^{3}$ be an immersion such that $X\left(S^{2}\right)$ is a closed strictly convex surface in \mathbb{R}^{3}.
- Then the Gauss map $N_{X}: S^{2} \rightarrow S^{2}$ of X is a homeomorphism.
- Define $\kappa: S^{2} \rightarrow \mathbb{R}, \kappa=K \circ N_{X}^{-1}$, where $K: S^{2} \rightarrow \mathbb{R}$ denotes the Gauss curvature function of X.

Existence. The Minkowski problem

- Let $X: \mathbb{S}^{2} \rightarrow \mathbb{R}^{3}$ be an immersion such that $X\left(\mathbb{S}^{2}\right)$ is a closed strictly convex surface in \mathbb{R}^{3}.
- Then the Gauss map $N_{X}: S^{2} \rightarrow S^{2}$ of X is a homeomorphism.
- Define $\kappa: S^{2} \rightarrow \mathbb{R}, \kappa=K \circ N_{X}^{-1}$, where $K: S^{2} \rightarrow \mathbb{R}$ denotes the Gauss curvature function of X.
- Minkowski observed that κ must satisfy

$$
\int_{\mathrm{S}^{2}} \frac{p}{\kappa(p)} d p=0 .
$$

Existence. The Minkowski problem

- Let $X: \mathbb{S}^{2} \rightarrow \mathbb{R}^{3}$ be an immersion such that $X\left(S^{2}\right)$ is a closed strictly convex surface in \mathbb{R}^{3}.
- Then the Gauss map $N_{X}: S^{2} \rightarrow S^{2}$ of X is a homeomorphism.
- Define $\kappa: S^{2} \rightarrow \mathbb{R}, \kappa=K \circ N_{X}^{-1}$, where $K: S^{2} \rightarrow \mathbb{R}$ denotes the Gauss curvature function of X.
- Minkowski observed that κ must satisfy

$$
\int_{\mathrm{S}^{2}} \frac{p}{\kappa(p)} d p=0
$$

- Minkowski asked for the converse.

Existence. The generalized Minkowski problem

- Let S be a compact convex surface in \mathbb{R}^{3}, not necessarily smooth; i.e., S is the boundary of a general convex body in \mathbb{R}^{3}.

Existence. The generalized Minkowski problem

- Let S be a compact convex surface in \mathbb{R}^{3}, not necessarily smooth; i.e., S is the boundary of a general convex body in \mathbb{R}^{3}.
- The generalized Gauss map $G: S \rightarrow S^{2}$ of S is a set-valued map. It maps $p \in S$ to the set of all outer normals of the supporting planes of S passing through p.

Existence. The generalized Minkowski problem

- Let S be a compact convex surface in \mathbb{R}^{3}, not necessarily smooth; i.e., S is the boundary of a general convex body in \mathbb{R}^{3}.
- The generalized Gauss map $G: S \rightarrow S^{2}$ of S is a set-valued map. It maps $p \in S$ to the set of all outer normals of the supporting planes of S passing through p.
- Define a measure $\mu(S)$ on S^{2} called the area function of S by setting

$$
\mu(S)(E)=\operatorname{Area}(\{p \in S \mid G(p) \cap E \neq \varnothing\})
$$

for any Borel subset $E \subset S^{2}$.

Existence. The generalized Minkowski problem

- Let S be a compact convex surface in \mathbb{R}^{3}, not necessarily smooth; i.e., S is the boundary of a general convex body in \mathbb{R}^{3}.
- The generalized Gauss map $G: S \rightarrow \mathrm{~S}^{2}$ of S is a set-valued map. It maps $p \in S$ to the set of all outer normals of the supporting planes of S passing through p.
- Define a measure $\mu(S)$ on S^{2} called the area function of S by setting

$$
\mu(S)(E)=\operatorname{Area}(\{p \in S \mid G(p) \cap E \neq \varnothing\})
$$

for any Borel subset $E \subset S^{2}$.

- If S is \mathcal{C}^{2} and strictly convex, then:

$$
\mu(S)=\frac{1}{\kappa} \mu_{\mathrm{S}^{2}}
$$

where $\mu_{\mathrm{S}^{2}}$ denotes the canonical Lebesgue measure on S^{2}.

Existence. The generalized Minkowski problem

- If S is a polyhedron, then:

$$
\mu(S)=\sum_{j=1}^{n} c_{j} \delta_{v_{j}}
$$

where $\delta_{v_{j}}$ is the Dirac measure at v_{j} and c_{j} is the Euclidean area of the face of S with outer normal v_{j}.

Existence. The generalized Minkowski problem

- The convex surface \mathscr{S} in (II) agrees with the solution to the generalized Minkowski problem for the Borel measure

$$
\mu(\mathscr{S})=\mu_{\mathrm{S}^{2}}+\sum_{j=1}^{m} a_{j} \delta_{p_{j}} \quad\left(a_{j}=\operatorname{Area}\left(D_{j}\right)\right)
$$

Existence. The generalized Minkowski problem

- The convex surface \mathscr{S} in (II) agrees with the solution to the generalized Minkowski problem for the Borel measure

$$
\mu(\mathscr{S})=\mu_{\mathrm{S}^{2}}+\sum_{j=1}^{m} a_{j} \delta_{p_{j}} \quad\left(a_{j}=\operatorname{Area}\left(D_{j}\right)\right)
$$

- Minkowski, Alexandrov, Fenchel, Jessen 1958 Let μ be a non-negative Borel measure on S^{2} such that

$$
\int_{\mathrm{S}^{2}} \mathrm{i}_{\mathrm{S}^{2}} \mu=0 \in \mathbb{R}^{3}
$$

and $\mu(H)>0$ for any hemisphere $H \subset S^{2}$.
Then there exists a unique, up to translations, convex body \mathscr{K} in \mathbb{R}^{3} such that μ is the area function of $\partial \mathscr{K}$.

Existence. The generalized Minkowski problem

- The convex surface \mathscr{S} in (II) agrees with the solution to the generalized Minkowski problem for the Borel measure

$$
\mu(\mathscr{S})=\mu_{\mathrm{S}^{2}}+\sum_{j=1}^{m} a_{j} \delta_{p_{j}} \quad\left(a_{j}=\operatorname{Area}\left(D_{j}\right)\right)
$$

- Minkowski, Alexandrov, Fenchel, Jessen 1958 Let μ be a non-negative Borel measure on S^{2} such that

$$
\int_{\mathrm{S}^{2}} \mathrm{i}_{\mathrm{S}^{2}} \mu=0 \in \mathbb{R}^{3}
$$

and $\mu(H)>0$ for any hemisphere $H \subset S^{2}$.
Then there exists a unique, up to translations, convex body \mathscr{K} in \mathbb{R}^{3} such that μ is the area function of $\partial \mathscr{K}$.

- This gives the uniqueness part of the theorem.

Existence. The generalized Minkowski problem

- The convex surface \mathscr{S} in (II) agrees with the solution to the generalized Minkowski problem for the Borel measure

$$
\mu(\mathscr{S})=\mu_{\mathrm{S}^{2}}+\sum_{j=1}^{m} a_{j} \delta_{p_{j}} \quad\left(a_{j}=\operatorname{Area}\left(D_{j}\right)\right)
$$

- Minkowski, Alexandrov, Fenchel, Jessen 1958 Let μ be a non-negative Borel measure on S^{2} such that

$$
\int_{\mathrm{S}^{2}} \mathrm{i}_{\mathrm{S}^{2}} \mu=0 \in \mathbb{R}^{3}
$$

and $\mu(H)>0$ for any hemisphere $H \subset S^{2}$.
Then there exists a unique, up to translations, convex body \mathscr{K} in \mathbb{R}^{3} such that μ is the area function of $\partial \mathscr{K}$.

- This gives the uniqueness part of the theorem.
- The theorem gives no information about the regularity of $\partial \mathscr{K}$.

Existence. The Minkowski problem

- Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher dimensions)Let $\kappa: S^{2} \rightarrow \mathbb{R}$ be a smooth positive function satisfying

$$
\int_{\mathrm{S}^{2}} \frac{p}{\kappa(p)} d p=0
$$

Then there exists a unique, up to translations, smooth embedding $X: \mathrm{S}^{2} \rightarrow \mathbb{R}^{3}$ such that $X\left(\mathrm{~S}^{2}\right)$ is a closed strictly convex surface and the curvature function $K: S^{2} \rightarrow \mathbb{R}$ of X is given by

$$
K=\kappa \circ N_{X}
$$

- $X \circ N_{X}^{-1}: S^{2} \rightarrow \mathbb{R}^{3}$ has curvature function κ and Gauss map the identity map of \mathbb{S}^{2}.

Existence. The Minkowski problem

- Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher dimensions)Let $\kappa: S^{2} \rightarrow \mathbb{R}$ be a smooth positive function satisfying

$$
\int_{\mathrm{S}^{2}} \frac{p}{\kappa(p)} d p=0
$$

Then there exists a unique, up to translations, smooth embedding $X: \mathrm{S}^{2} \rightarrow \mathbb{R}^{3}$ such that $X\left(\mathrm{~S}^{2}\right)$ is a closed strictly convex surface and the curvature function $K: S^{2} \rightarrow \mathbb{R}$ of X is given by

$$
K=\kappa \circ N_{X} .
$$

- $X \circ N_{X}^{-1}: S^{2} \rightarrow \mathbb{R}^{3}$ has curvature function κ and Gauss map the identity map of S^{2}.
- The curvature function $K_{\mathscr{S}}$ of \mathscr{S} is $\left.\left(K_{\mathscr{S}}\right)\right|_{S}=1$ and $\left.\left(K_{\mathscr{S}}\right)\right|_{D_{j}}=0$, hence it is neither continuous nor positive.

Existence. The Minkowski problem

- Pogorelov 1952, Nirenberg 1953, Cheng-Yau 1976 (for higher dimensions)Let $\kappa: S^{2} \rightarrow \mathbb{R}$ be a smooth positive function satisfying

$$
\int_{\mathrm{S}^{2}} \frac{p}{\kappa(p)} d p=0
$$

Then there exists a unique, up to translations, smooth embedding $X: \mathrm{S}^{2} \rightarrow \mathbb{R}^{3}$ such that $X\left(\mathrm{~S}^{2}\right)$ is a closed strictly convex surface and the curvature function $K: S^{2} \rightarrow \mathbb{R}$ of X is given by

$$
K=\kappa \circ N_{X} .
$$

- $X \circ N_{X}^{-1}: S^{2} \rightarrow \mathbb{R}^{3}$ has curvature function κ and Gauss map the identity map of \mathbb{S}^{2}.
- The curvature function $K_{\mathscr{S}}$ of \mathscr{S} is $\left.\left(K_{\mathscr{S}}\right)\right|_{S}=1$ and $\left.\left(K_{\mathscr{S}}\right)\right|_{D_{j}}=0$, hence it is neither continuous nor positive.
- Idea: Construct approximate solutions and take limits.

Existence

- Let $\left\{p_{1}, \ldots, p_{m}\right\} \subset S^{2}$.
- Assume there exists positive constants $\left(a_{1}, \ldots, a_{m}\right)$ such that

$$
\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}
$$

and let us show a K-surface S satisfying (i) (hence (I) and (II)) with $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j.

Existence

- Denote by $B(p, r)$ the metric ball in S^{2} centered at $p \in \mathrm{~S}^{2}$ with radius $r>0$, and by $A(p, r)=B(p, 2 r)-\overline{B(p, r)}$.
- $\Sigma_{n}:=\mathrm{S}^{2}-\cup_{j=1}^{m} \overline{B\left(p_{j}, 2 / n\right)}$.

Existence

- Denote by $B(p, r)$ the metric ball in S^{2} centered at $p \in \mathrm{~S}^{2}$ with radius $r>0$, and by $A(p, r)=B(p, 2 r)-\overline{B(p, r)}$.
- $\Sigma_{n}:=\mathrm{S}^{2}-\cup_{j=1}^{m} \overline{B\left(p_{j}, 2 / n\right)}$.
- Let $\kappa_{n}: S^{2} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{\Sigma_{n}}=1,\left.\quad\left(\frac{1}{\kappa_{n}}\right)\right|_{B\left(p_{j}, 1 / n\right)}=\frac{n^{2}}{\pi} a_{j}, \quad 1 \leq\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{A\left(p_{j}, 1 / n\right)} \leq \frac{n^{2}}{\pi} a_{j}
$$

Existence

- Denote by $B(p, r)$ the metric ball in S^{2} centered at $p \in \mathrm{~S}^{2}$ with radius $r>0$, and by $A(p, r)=B(p, 2 r)-\overline{B(p, r)}$.
- $\Sigma_{n}:=\mathrm{S}^{2}-\cup_{j=1}^{m} \overline{B\left(p_{j}, 2 / n\right)}$.
- Let $\kappa_{n}: S^{2} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\begin{gathered}
\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{\Sigma_{n}}=1,\left.\quad\left(\frac{1}{\kappa_{n}}\right)\right|_{B\left(p_{j}, 1 / n\right)}=\frac{n^{2}}{\pi} a_{j}, \quad 1 \leq\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{A\left(p_{j}, 1 / n\right)} \leq \frac{n^{2}}{\pi} a_{j} \\
\int_{A\left(p_{j}, 1 / n\right)} \frac{p}{\kappa_{n}(p)} d p=\frac{4 \pi}{n^{2}} p_{j} \quad\left(=\int_{B\left(p_{j}, 2 / n\right)} p d p\right)
\end{gathered}
$$

Existence

- Denote by $B(p, r)$ the metric ball in S^{2} centered at $p \in \mathrm{~S}^{2}$ with radius $r>0$, and by $A(p, r)=B(p, 2 r)-\overline{B(p, r)}$.
- $\Sigma_{n}:=\mathrm{S}^{2}-\cup_{j=1}^{m} \overline{B\left(p_{j}, 2 / n\right)}$.
- Let $\kappa_{n}: S^{2} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\begin{gathered}
\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{\Sigma_{n}}=1,\left.\quad\left(\frac{1}{\kappa_{n}}\right)\right|_{B\left(p_{j}, 1 / n\right)}=\frac{n^{2}}{\pi} a_{j}, \quad 1 \leq\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{A\left(p_{j}, 1 / n\right)} \leq \frac{n^{2}}{\pi} a_{j} \\
\int_{A\left(p_{j}, 1 / n\right)} \frac{p}{\kappa_{n}(p)} d p=\frac{4 \pi}{n^{2}} p_{j} \quad\left(=\int_{B\left(p_{j}, 2 / n\right)} p d p\right)
\end{gathered}
$$

- Then $\int_{\mathrm{S}^{2}} \frac{p}{\kappa_{n}(p)} d p=0$

Existence

- Denote by $B(p, r)$ the metric ball in S^{2} centered at $p \in \mathrm{~S}^{2}$ with radius $r>0$, and by $A(p, r)=B(p, 2 r)-\overline{B(p, r)}$.
- $\Sigma_{n}:=\mathrm{S}^{2}-\cup_{j=1}^{m} \overline{B\left(p_{j}, 2 / n\right)}$.
- Let $\kappa_{n}: S^{2} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\begin{gathered}
\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{\Sigma_{n}}=1,\left.\quad\left(\frac{1}{\kappa_{n}}\right)\right|_{B\left(p_{j}, 1 / n\right)}=\frac{n^{2}}{\pi} a_{j}, \quad 1 \leq\left.\left(\frac{1}{\kappa_{n}}\right)\right|_{A\left(p_{j}, 1 / n\right)} \leq \frac{n^{2}}{\pi} a_{j} \\
\int_{A\left(p_{j}, 1 / n\right)} \frac{p}{\kappa_{n}(p)} d p=\frac{4 \pi}{n^{2}} p_{j} \quad\left(=\int_{B\left(p_{j}, 2 / n\right)} p d p\right)
\end{gathered}
$$

- Then $\int_{\mathrm{S}^{2}} \frac{p}{\kappa_{n}(p)} d p=0$ and the Minkowski problem can be solved for $\kappa_{n}: \mathbb{S}^{2} \rightarrow \mathbb{R}$.
- There exists a smooth embedding $X_{n}: S^{2} \rightarrow \mathbb{R}^{3}$ such that
(1) $\mathscr{S}_{n}:=X_{n}\left(\mathrm{~S}^{2}\right)$ is a closed smooth strictly convex surface,
(2) the Gauss map of X_{n} is the identity map of S^{2},
(3) the curvature function of X_{n} agrees κ_{n}; in particular $S_{n}:=X_{n}\left(\Sigma_{n}\right)$ is a K-surface,
(9) $\operatorname{Area}\left(X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right)=a_{j}$ for all j.

Existence

- Denote by $\mathscr{K}_{n} \subset \mathbb{R}^{3}$ the strictly convex body bordered by \mathscr{S}_{n}.

Existence

- Denote by $\mathscr{K}_{n} \subset \mathbb{R}^{3}$ the strictly convex body bordered by \mathscr{S}_{n}.

Claim
There exists $\xi>0$ (not depending on n) such that $\mathbb{B}(\xi) \subset \mathscr{K}_{n} \subset \mathbb{B}(1 / \xi) \forall n$. (adapting arguments in Cheng-Yau 1976.)
(5) Blaschke selection theorem $\Rightarrow\left\{\mathscr{K}_{n}\right\}_{n \in \mathbb{N}}$ converges in the Hausforff distance to a convex body \mathscr{K}.

Existence

(1) $\mathscr{S}_{n}:=X_{n}\left(\mathrm{~S}^{2}\right)$ is a closed smooth strictly convex surface,
(2) the Gauss map of X_{n} is the identity map of S^{2},
(3) the curvature function of X_{n} agrees κ_{n}; in particular $S_{n}:=X_{n}\left(\Sigma_{n}\right)$ is a K-surface,
(1) $\operatorname{Area}\left(X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right)=a_{j}$ for all j, and
(0) $\left\{\mathscr{S}_{n}\right\}_{n \in \mathbb{N}} \rightarrow \mathscr{S}:=\partial \mathscr{K}$.

Existence

(1) $\mathscr{S}_{n}:=X_{n}\left(\mathrm{~S}^{2}\right)$ is a closed smooth strictly convex surface,
(2) the Gauss map of X_{n} is the identity map of S^{2},
(3) the curvature function of X_{n} agrees κ_{n}; in particular $S_{n}:=X_{n}\left(\Sigma_{n}\right)$ is a K-surface,
(9) $\operatorname{Area}\left(X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right)=a_{j}$ for all j, and
(6) $\left\{\mathscr{S}_{n}\right\}_{n \in \mathbb{N}} \rightarrow \mathscr{S}:=\partial \mathscr{K}$.

- $\left\{\left.\left(X_{n}\right)\right|_{\Sigma_{n}}\right\}_{n \in \mathbb{N}}$ converges to a K-immersion $\mathbb{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}^{3}$ with Gauss map the identity map of $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$; denote by S the image K-surface.

Existence

(1) $\mathscr{S}_{n}:=X_{n}\left(\mathrm{~S}^{2}\right)$ is a closed smooth strictly convex surface,
(2) the Gauss map of X_{n} is the identity map of S^{2},
(3) the curvature function of X_{n} agrees κ_{n}; in particular $S_{n}:=X_{n}\left(\Sigma_{n}\right)$ is a K-surface,
(9) $\operatorname{Area}\left(X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right)=a_{j}$ for all j, and
(3) $\left\{\mathscr{S}_{n}\right\}_{n \in \mathbb{N}} \rightarrow \mathscr{S}:=\partial \mathscr{K}$.

- $\left\{\left.\left(X_{n}\right)\right|_{\Sigma_{n}}\right\}_{n \in \mathbb{N}}$ converges to a K-immersion $\mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}^{3}$ with Gauss map the identity map of $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$; denote by S the image K-surface.
- $\left\{X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right\}_{n \in \mathbb{N}}$ converges to an open disc D_{j} contained in a plane Π_{j} orthogonal to p_{j}, with $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j,

Existence

(1) $\mathscr{S}_{n}:=X_{n}\left(\mathrm{~S}^{2}\right)$ is a closed smooth strictly convex surface,
(2) the Gauss map of X_{n} is the identity map of S^{2},
(3) the curvature function of X_{n} agrees κ_{n}; in particular $S_{n}:=X_{n}\left(\Sigma_{n}\right)$ is a K-surface,
(9) $\operatorname{Area}\left(X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right)=a_{j}$ for all j, and
(5) $\left\{\mathscr{S}_{n}\right\}_{n \in \mathbb{N}} \rightarrow \mathscr{S}:=\partial \mathscr{K}$.

- $\left\{\left.\left(X_{n}\right)\right|_{\Sigma_{n}}\right\}_{n \in \mathbb{N}}$ converges to a K-immersion
$\mathbb{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}^{3}$ with Gauss map the identity map of $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$; denote by S the image K-surface.
- $\left\{X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right\}_{n \in \mathbb{N}}$ converges to an open disc D_{j} contained in a plane Π_{j} orthogonal to p_{j}, with $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j,
- $\left\{\operatorname{Area}\left(X_{n}\left(A\left(p_{j}, 1 / n\right)\right)\right)\right\}_{n \in \mathbb{N}} \rightarrow 0 \Rightarrow \mathscr{S}=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$, and

Existence

(1) $\mathscr{S}_{n}:=X_{n}\left(\mathrm{~S}^{2}\right)$ is a closed smooth strictly convex surface,
(2) the Gauss map of X_{n} is the identity map of S^{2},
(3) the curvature function of X_{n} agrees κ_{n}; in particular $S_{n}:=X_{n}\left(\Sigma_{n}\right)$ is a K-surface,
(9) $\operatorname{Area}\left(X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right)=a_{j}$ for all j, and
(5) $\left\{\mathscr{S}_{n}\right\}_{n \in \mathbb{N}} \rightarrow \mathscr{S}:=\partial \mathscr{K}$.

- $\left\{\left.\left(X_{n}\right)\right|_{\Sigma_{n}}\right\}_{n \in \mathbb{N}}$ converges to a K-immersion
$\mathbb{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}^{3}$ with Gauss map the identity map of $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$; denote by S the image K-surface.
- $\left\{X_{n}\left(B\left(p_{j}, 1 / n\right)\right)\right\}_{n \in \mathbb{N}}$ converges to an open disc D_{j} contained in a plane Π_{j} orthogonal to p_{j}, with $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j,
- $\left\{\operatorname{Area}\left(X_{n}\left(A\left(p_{j}, 1 / n\right)\right)\right)\right\}_{n \in \mathbb{N}} \rightarrow 0 \Rightarrow \mathscr{S}=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$, and
- the extrinsic conformal structure of S is a circular domain in $\overline{\mathbb{C}}$.

Application: Harmonic diffeomorphims

- Liouville There is no non-constant harmonic map $\mathbb{C} \rightarrow \mathbb{D}$, with the Euclidean metric.
- Heinz 1952 There is no harmonic diffeomorphism $\mathbb{D} \rightarrow \mathbb{C}$ with the Euclidean metric.

Question (Schoen-Yau 1985)

Are Riemannian surfaces which are related by a harmonic diffeomorphism quasiconformally related?
In particular, are there harmonic diffeomorphisms from \mathbb{C} onto the hyperbolic plane \mathbb{H}^{2} ?

- Collin-Rosenberg 2010 There exists an entire minimal graph Σ over \mathbb{H}^{2} in the Riemannian product $\mathbb{H}^{2} \times \mathbb{R}$ with the conformal type of \mathbb{C}.
In particular, the vertical projection $\Sigma \rightarrow \mathbb{H}^{2}$ is a harmonic diffeomorphism from \mathbb{C} into \mathbb{H}^{2}.

Application: Harmonic diffeomorphims

Theorem (Alarcón-S.; CMH, in press)

- For any $m \in \mathbb{N}, m \geq 2$, and any subet $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{2}$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$.

Application: Harmonic diffeomorphims

Theorem (Alarcón-S.; CMH, in press)

- For any $m \in \mathbb{N}, m \geq 2$, and any subet $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{2}$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \rightarrow \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$.
- There exists no harmonic diffeomorphism $\mathbb{D} \rightarrow S^{2}-\{p\}$, $p \in S^{2}$.

Application: Harmonic diffeomorphims

Theorem (Alarcón-S.; CMH, in press)

- For any $m \in \mathbb{N}, m \geq 2$, and any subet $\left\{p_{1}, \ldots, p_{m}\right\} \subset S^{2}$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$.
- There exists no harmonic diffeomorphism $\mathbb{D} \rightarrow S^{2}-\{p\}$, $p \in \mathrm{~S}^{2}$.
- The harmonic diffeomorphism $\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ appears as the vertical projection $\Sigma \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$, where Σ is a maximal graph over $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ in the Lorentzian manifold $\mathrm{S}^{2} \times \mathbb{R}_{1}$, with $\Sigma \cong \mathcal{R}$.
- Such a maximal graph Σ is constructed by solving Dirichlet problems.

Application: Harmonic diffeomorphims

Theorem (Alarcón-S.; CMH, in press)

- For any $m \in \mathbb{N}, m \geq 2$, and any subet $\left\{p_{1}, \ldots, p_{m}\right\} \subset S^{2}$ there exist a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$.
- There exists no harmonic diffeomorphism $\mathbb{D} \rightarrow S^{2}-\{p\}$, $p \in S^{2}$.
- The harmonic diffeomorphism $\mathcal{R} \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ appears as the vertical projection $\Sigma \rightarrow S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$, where Σ is a maximal graph over $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ in the Lorentzian manifold $S^{2} \times \mathbb{R}_{1}$, with $\Sigma \cong \mathcal{R}$.
- Such a maximal graph Σ is constructed by solving Dirichlet problems.
- The non-existence of harmonic diffeomorphisms $\mathbb{D} \rightarrow S^{2}-\{p\}$ follows from K-surface theory.

Application: Harmonic diffeomorphims

Corollary
Let $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{2}$ with $\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}$ for some positive numbers a_{1}, \ldots, a_{m}.
Then there exists a circular domain \mathcal{R} in $\overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \rightarrow \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$.

- The Gauss map of the K-surface S in (i) is such a harmonic diffeomorphism.

Application: Harmonic diffeomorphims

Corollary
Let $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbb{S}^{2}$ with $\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}$ for some positive numbers a_{1}, \ldots, a_{m}.
Then there exists a circular domain \mathcal{R} in $\overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathcal{R} \rightarrow \mathbb{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$.

- The Gauss map of the K-surface S in (i) is such a harmonic diffeomorphism.
- We do not know if those harmonic diffeomorphisms given as Gauss maps of K-surfaces in \mathbb{R}^{3} and those given as vertical projections of maximal graphs in $S^{2} \times \mathbb{R}_{1}$ are the same or not.

The support function

- The support function of S,

$$
h: S^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}, \quad h(p)=\left\langle p, N_{S}^{-1}(p)\right\rangle
$$

satisfies $\quad\left(\operatorname{det}\left(\nabla^{2} h+h \mathrm{I}\right)\right) \circ N_{S}=1(=1 / K) \quad$ on S.

The support function

- The support function of S,

$$
h: S^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}, \quad h(p)=\left\langle p, N_{S}^{-1}(p)\right\rangle
$$

satisfies $\quad\left(\operatorname{det}\left(\nabla^{2} h+h \mathrm{I}\right)\right) \circ N_{S}=1(=1 / K) \quad$ on S.

- A parameterization $X: \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}^{3}$ of S is given by

$$
X(p)=\nabla h(p)+h(p) p
$$

Application: A Hessian equation

- Fully nonlinear, elliptic second order partial differential equations of the form

$$
\mathscr{F}[h]:=F\left(\nabla^{2} h+A(\cdot, h, \nabla h)\right)=B(\cdot, h, \nabla h) \quad \text { on } \Omega \subset \mathcal{M}
$$

have been objective of considerable interest in recent years.

Application: A Hessian equation

- Fully nonlinear, elliptic second order partial differential equations of the form

$$
\mathscr{F}[h]:=F\left(\nabla^{2} h+A(\cdot, h, \nabla h)\right)=B(\cdot, h, \nabla h) \quad \text { on } \Omega \subset \mathcal{M}
$$

have been objective of considerable interest in recent years.

- The space of solutions to the Hessian one equation

$$
\operatorname{det} \nabla^{2} h=1 \quad \text { on } \mathbb{R}^{2}-\left\{q_{1}, \ldots, q_{k}\right\}
$$

was described by Gálvez-Martínez-Mira 2005 (Jorgens 1955 for $k=1$).

- Jorgens 1954 The only solutions for $k=0$ are quadratic polynomials.

Application: A Hessian equation

- Two solution u and v of the Hessian equation

$$
\operatorname{det}\left(\nabla^{2} h+h \mathrm{I}\right)=1 \quad \text { on } \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

are equivalent, $u \sim v$, if $u-v$ is the restriction to $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ of a linear function of \mathbb{R}^{3}.

Application: A Hessian equation

- Two solution u and v of the Hessian equation

$$
\operatorname{det}\left(\nabla^{2} h+h \mathrm{I}\right)=1 \quad \text { on } \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

are equivalent, $u \sim v$, if $u-v$ is the restriction to $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ of a linear function of \mathbb{R}^{3}.

Corollary

The space of equivalence classes of solutions of the above equation, under \sim, with non-removable singularities at the points $\left\{p_{1}, \ldots, p_{m}\right\}$, is in bijection with the set $\left\{\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m} \mid a_{j}>0 \forall j, \sum_{j=1}^{m} a_{j} p_{j}=0\right\}$.

Application: A Hessian equation

- Two solution u and v of the Hessian equation

$$
\operatorname{det}\left(\nabla^{2} h+h \mathrm{I}\right)=1 \quad \text { on } \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

are equivalent, $u \sim v$, if $u-v$ is the restriction to $S^{2}-\left\{p_{1}, \ldots, p_{m}\right\}$ of a linear function of \mathbb{R}^{3}.

Corollary

The space of equivalence classes of solutions of the above equation, under \sim, with non-removable singularities at the points $\left\{p_{1}, \ldots, p_{m}\right\}$, is in bijection with the set $\left\{\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m} \mid a_{j}>0 \forall j, \sum_{j=1}^{m} a_{j} p_{j}=0\right\}$.

- $h: S^{2}-\left\{p_{1}, \ldots, p_{m}\right\} \rightarrow \mathbb{R}$ is solution to the equation iff it is the support function of a surface S as those in the theorem.
- The only solution for $m=0$ is the round sphere and there is no solution for $m=1$.

Application: Capillary surfaces

- A capillary surface in a region \mathcal{B} in \mathbb{R}^{3} is a compact CMC surface meeting $\partial \mathcal{B}$ at a constant angle $\gamma \in[0, \pi]$ along its boundary. They model liquid drops inside a container in the absence of gravity.
- Capillary surfaces is a topic with large literature. Wente 1995, McCuan 1997, and Park 2005 studied capillary surfaces in polyhedral regions of \mathbb{R}^{3}.

Application: Capillary surfaces

- A capillary surface in a region \mathcal{B} in \mathbb{R}^{3} is a compact CMC surface meeting $\partial \mathcal{B}$ at a constant angle $\gamma \in[0, \pi]$ along its boundary. They model liquid drops inside a container in the absence of gravity.
- Capillary surfaces is a topic with large literature. Wente 1995, McCuan 1997, and Park 2005 studied capillary surfaces in polyhedral regions of \mathbb{R}^{3}.
- The outer parallel surface at distance 1 to a K-surface is a CMC surface with $H=1 / 2$ (i.e., an H-surface).

Application: Capillary surfaces

- Let $\left\{p_{1}, \ldots, p_{m}\right\}$ be a subset of S^{2}.

Corollary

The following statements are equivalent:
(i) There exists a (positively curved) H-surface $S \subset \mathbb{R}^{3}$ whose intrinsic conformal structure is a circular domain $\mathcal{R} \subset \overline{\mathbb{C}}$ and its Gauss map is a harmonic diffeomorphism

$$
\mathcal{R} \rightarrow \mathrm{S}^{2}-\left\{p_{1}, \ldots, p_{m}\right\}
$$

(ii) There exist positive real constants a_{1}, \ldots, a_{m} such that

$$
\sum_{j=1}^{m} a_{j} p_{j}=0 \in \mathbb{R}^{3}
$$

Application: Capillary surfaces

Corollary

Furthermore, if S is as above and γ_{j} denotes the component of $\bar{S}-S$ corresponding to p_{j} via the Gauss map, then
(I) γ_{j} is a Jordan curve contained in an affine plane $\Pi_{j} \subset \mathbb{R}^{3}$ orthogonal to p_{j}, and
(II) $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is the boundary surface of a smooth convex body in \mathbb{R}^{3}, where D_{j} denotes the bounded component of $\Pi_{j}-\gamma_{j}$.
In addition, given $\left(a_{1}, \ldots, a_{m}\right)$ satisfying (ii), there exists a unique, up to translations, H-surface S satisfying (i) such that $\operatorname{Area}\left(D_{j}\right)=a_{j}$ for all j.

Application: Capillary surfaces

Corollary

Furthermore, if S is as above and γ_{j} denotes the component of $\bar{s}-S$ corresponding to p_{j} via the Gauss map, then
(I) γ_{j} is a Jordan curve contained in an affine plane $\Pi_{j} \subset \mathbb{R}^{3}$ orthogonal to p_{j}, and
(II) $\mathscr{S}:=S \cup\left(\cup_{j=1}^{m} \bar{D}_{j}\right)$ is the boundary surface of a smooth convex body in \mathbb{R}^{3}, where D_{j} denotes the bounded component of $\Pi_{j}-\gamma_{j}$.
In addition, given $\left(a_{1}, \ldots, a_{m}\right)$ satisfying (ii), there exists a unique, up to translations, H-surface S satisfying (i) such that Area $\left(D_{j}\right)=a_{j}$ for all j.

- In particular, S is an embedded H-surface of genus zero which meets tangentially all the faces of the polyhedral region determined by the affine planes $\Pi_{j}, j=1, \ldots, m$.

