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Compact CMC surfaces in the 3-sphere

Surfaces with special geometric properties like minimal or constant
mean curvature (CMC) surfaces have always played a prominent role
in differential geometry.

While there are no compact minimal surfaces and no compact
embedded CMC surfaces except the round sphere in R3 there do
exists compact embedded examples of minimal and CMC surfaces in
the round 3-sphere for all genera.

Due to the vanishing of the Hopf differential, all CMC spheres in S3

are round. Recently, Brendle proved that the only embedded minimal
torus in the 3-sphere is the Clifford torus, and Andrews and Li
confirmed the Pinkall-Sterling conjecture that all embedded CMC tori
are the unduloidal rotational Delaunay tori.



Compact CMC surfaces in the 3-sphere

Surfaces with special geometric properties like minimal or constant
mean curvature (CMC) surfaces have always played a prominent role
in differential geometry.

While there are no compact minimal surfaces and no compact
embedded CMC surfaces except the round sphere in R3 there do
exists compact embedded examples of minimal and CMC surfaces in
the round 3-sphere for all genera.

Due to the vanishing of the Hopf differential, all CMC spheres in S3

are round. Recently, Brendle proved that the only embedded minimal
torus in the 3-sphere is the Clifford torus, and Andrews and Li
confirmed the Pinkall-Sterling conjecture that all embedded CMC tori
are the unduloidal rotational Delaunay tori.



Compact CMC surfaces in the 3-sphere

Surfaces with special geometric properties like minimal or constant
mean curvature (CMC) surfaces have always played a prominent role
in differential geometry.

While there are no compact minimal surfaces and no compact
embedded CMC surfaces except the round sphere in R3 there do
exists compact embedded examples of minimal and CMC surfaces in
the round 3-sphere for all genera.

Due to the vanishing of the Hopf differential, all CMC spheres in S3

are round.

Recently, Brendle proved that the only embedded minimal
torus in the 3-sphere is the Clifford torus, and Andrews and Li
confirmed the Pinkall-Sterling conjecture that all embedded CMC tori
are the unduloidal rotational Delaunay tori.



Compact CMC surfaces in the 3-sphere

Surfaces with special geometric properties like minimal or constant
mean curvature (CMC) surfaces have always played a prominent role
in differential geometry.

While there are no compact minimal surfaces and no compact
embedded CMC surfaces except the round sphere in R3 there do
exists compact embedded examples of minimal and CMC surfaces in
the round 3-sphere for all genera.

Due to the vanishing of the Hopf differential, all CMC spheres in S3

are round. Recently, Brendle proved that the only embedded minimal
torus in the 3-sphere is the Clifford torus,

and Andrews and Li
confirmed the Pinkall-Sterling conjecture that all embedded CMC tori
are the unduloidal rotational Delaunay tori.



Compact CMC surfaces in the 3-sphere

Surfaces with special geometric properties like minimal or constant
mean curvature (CMC) surfaces have always played a prominent role
in differential geometry.

While there are no compact minimal surfaces and no compact
embedded CMC surfaces except the round sphere in R3 there do
exists compact embedded examples of minimal and CMC surfaces in
the round 3-sphere for all genera.

Due to the vanishing of the Hopf differential, all CMC spheres in S3

are round. Recently, Brendle proved that the only embedded minimal
torus in the 3-sphere is the Clifford torus, and Andrews and Li
confirmed the Pinkall-Sterling conjecture that all embedded CMC tori
are the unduloidal rotational Delaunay tori.



Moreover, all CMC tori in S3 can be parametrized via algebraic
geometric data on their associated spectral curves as a consequence
of the work of Pinkall-Sterling, Hitchin and Bobenko.

The moduli space of all CMC tori in the 3-sphere can be studied by
these integrable system methods. This space real 1-dimensional at
its smooth points, and one can navigate in it by deforming the
spectral data via the Whitham flow.

In strong contrast, all known examples of compact higher genus CMC
surfaces in space forms are given implicitly by methods from
geometric analysis, e.g., the Lawson minimal surfaces are patched
together from fundamental pieces which solve the Plateau problem
for special geodesic boundaries or the compact CMC surfaces of
higher genus in euclidean 3-space which have been constructed by
Kapouleas.

There is no theory yet which describes the whole moduli space of
higher genus CMC surfaces in the 3-sphere nor are there methods
which produce the generic surface.
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The family of flat connections

For every conformal CMC immersion f from a Riemann surface M into
the S3 there exists an associated family of flat SL(2,C)-connections

λ ∈ C∗ 7→ ∇λ = ∇+ λ−1Φ− λΦ∗

on a hermitian rank 2 bundle V → M which is unitary along S1 ⊂ C∗
and trivial at two points λ1, λ2 ∈ S1.

∇ is the spin connection of the immersion, Φ ∈ H0(M,K End0(V )) is
nowhere vanishing and nilpotent and Φ∗ is its adjoint.

The mean curvature H of the immersion is given by H = i λ1+λ2
λ1−λ2

.
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f can be recovered as the gauge between ∇λ1 and ∇λ2 where we
identify SU(2) = S3.

Conversely, for every family of flat SL(2,C)-connections λ ∈ C∗ 7→ ∇λ
on a Riemann surface satisfying the properties as above there exists
a CMC immersion f : M → S3 which is the gauge between the two
trivial connections ∇λ1 and ∇λ2 .

It became apparent that in many situations it is easier to deal with
families of flat connections (systems of ODE’s) than with a CMC
immersion itself.
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The monodromy representation

From now on we restrict to compact oriented CMC surfaces in S3.
Then, there are three cases induced by the complexity of the
associated monodromy representations:

• All connections ∇λ are trivial: It was shown by Hitchin, that f
must be totally umbilic, i.e., a round sphere.

• All connections ∇λ have abelian monodromy: the family of flat
connections is given via its spectral data which parametrize the
flat parallel eigenline bundles (Hitchin).The line bundle
connections are determined by meromorphic differentials on the
spectral curve with double poles and integer periods.

• The generic connection ∇λ is irreducible: this is always the case
for CMC immersions from compact Riemann surfaces of genus
g ≥ 2 [Ohnita, H., Gerding].
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General construction of higher genus CMC surfaces

Theorem (H.)
Let ∇λ be a holomorphic C∗-family of flat SL(2,C)-connections on a
compact Riemann surface M of genus g ≥ 2 such that

• ∇̃λ ∼ λ−1Ψ + ∇̃+ ..., where Ψ ∈ Γ(M,K End0(V )) is nowhere
vanishing and nilpotent;

• for all λ ∈ S1 ⊂ C there is a hermitian metric on V such that ∇̃λ
is unitary with respect to this metric;

• ∇̃λ is trivial for λ1 6= λ2 ∈ S1.

Then there exists a unique CMC surface f : M → S3 of mean
curvature H = i λ1+λ2

λ1−λ2
such that its associated family of flat

connections ∇λ and the family ∇̃λ are gauge equivalent, i.e., there
exists a λ-dependent holomorphic family of gauge transformations g
which extends through λ = 0 such that ∇λ · g(λ) = ∇̃λ for all λ.

The idea is to apply loop group factorization methods as in the theory
of Dorfmeister, Pedit and Wu.
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Connections and holomorphic structures
Connections ∇ on a complex vector bundle V over a Riemann
surface split into a complex linear and a complex anti-linear part

∇ =
1
2

(∇− i ?∇) +
1
2

(∇+ i ?∇) =: ∂∇+∂̄
∇
.

∂∇ is a anti-holomorphic structure and ∂̄∇ is a holomorphic structure.
For a unitary metric on V and a holomorphic structure there is a
anti-holomorphic structure such that their sum is a unitary
connection.

For a (generic) holomorphic structure with trivial determinant on a
complex vector bundle V over a compact Riemann surface there is a
unique unitary metric such that the corresponding unitary connection
is flat. This is known as the Narasimhan-Seshadri correspondence
between holomorphic structures and unitary flat connections.

Two flat connections with the same holomorphic structure differ by a
so-called Higgs field, a holomorphic endomorphism-valued 1-form.
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Example: Holomorphic structures on tori

The generic holomorphic structure ∂̄ with trivial determinant on an
elliptic curve splits into the direct sum of dual holomorphic line
bundles.

If ∇ is a generic flat SL(2,C)-connection with ∂̄∇ = ∂̄ then
the two dual holomorphic line subbundles are also parallel with
respect to ∇.

Equivalently, for generic flat SL(2,C)-connections ∇, the parallel
endomorphisms are exactly the holomorphic endomorphisms with
respect to ∂̄∇. Therefore, CMC tori can also be described by
polynomial families of parallel endomorphisms - the polynomial Killing
field.
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Any ideas for higher genus CMC surfaces?

The monodromy representation of ∇λ is non-abelian for generic
λ ∈ C∗.

Thus, there are no parallel eigenlines, and the connections
∇λ do not reduce in an obvious way to flat line bundle connections.
There is no direct generalization of the spectral curve approach.

Idea: Weaken the conditions on the line bundles, polynomial Killing
fields and so on:

• do only consider holomorphic subbundles (resp.
anti-holomorphic) and not parallel ones;

• do only consider families of Higgs fields instead of polynomial
Killing fields;

• let the spectral curve parametrize those objects instead of the
parallel ones.
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Killing fields;

• let the spectral curve parametrize those objects instead of the
parallel ones.
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Lawson symmetric CMC surfaces

From now on we restrict to the case of compact oriented CMC
surfaces of genus 2 which admit the following (extrinsic, space
orientation preserving) symmetries:

• the hyper-elliptic involution ϕ2 which commutes with the other
symmetries;

• a Z3-symmetry generated by ϕ3 with 4 fix points which is also
holomorphic on the surface;

• a holomorphic involution τ with only 2 fix points.
The underlying Riemann surface structure is given by the equation

y3 =
z2 − 1
z2 − α

,

where α = −1 corresponds to the Lawson surface itself. The Hopf
differential is a multiple of (dz)2

(z2−α)(z2−1)
.
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Lawson symmetric connections

Lawson symmetric flat connections (or holomorphic structures) on a
Lawson symmetric Riemann surface as above are those which are
equivariant with respect to the symmetries ϕ2, ϕ3 and τ.

The ”moduli space"A2 of gauge equivalence classes of Lawson
symmetric flat SL(2,C)- connections is complex 2-dimensional. It can
be considered as an affine holomorphic bundle over the ”moduli
space"M = CP1 of isomorphism classes of Lawson symmetric
holomorphic structures (with trivial determinant) by taking the
complex anti-linear part of the connection.

The fiber over a Lawson symmetric holomorphic structure ∂̄ consist of
the line of Lawson symmetric Higgs fields Ψ ∈ H0(M,K End0(V , ∂̄)).
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Hitchin’s abelianization

The determinant of a generic Lawson symmetric Higgs field is a
non-zero multiple of the Hopf differential Q and thus has simple
zeros.

The eigenlines L± of a Higgs field with simple zeros are well-defined
on a double covering

π : M̃ = {α ∈ KM | α2 = Q} → M.

and give rise to special holomorphic line bundles.

These eigenline bundles are given by the elements of the Jacobian of
the torus M̃/Z3, and we obtain a two-to-one correspondence between
Jac(M̃/Z3) and the moduli spaceM of Lawson symmetric
holomorphic structures.
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Abelianization of Lawson symmetric connections
One also obtains an explicit two-to-one correspondence between flat
line bundles on M̃/Z3 and Lawson symmetric flat
SL(2,C)-connections.

In the case of the Lawson surface a line bundle connection
d + aπdz − xπdz̄ on the torus M̃/Z3 = C/(2Z + 2iZ) corresponds to
a connection of the form:

d +

(
πadz − πxdz̄ c θ(z−2x)

θ(z) e−4πix Im(z)dz
c θ(z+2x)

θ(z) e4πix Im(z)dz −πadz + πxdz̄

)

where θ is the theta-function of C/(Z + iZ) with simple zero at 0 and

c =
1
6

√
θ′(0)2

θ(2x)θ(−2x)
.

For every x there exists a unique a = au(x) such that the
corresponding flat SL(2,C)-connection is unitary. We call au the
Narasimhan-Seshadri section.
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The spectral curve
In order to parametrize the family of flat connections λ 7→ ∇λ we need
a spectral curve Σ together with maps L : Σ→ Jac(M̃/Z3) and
D : Σ→ A1(M̃/Z3)

such that

Σ
L //

p

��

Jac(M̃/Z3)

Π

��
C

[∂̄
λ

]

//M

and
A1

′′

��
abelianization

��

Σ

D

66

L
//

p

��

Jac(M̃/Z3)

C∗
[∇λ] // A2

commute.
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Properties of the spectral data

The spectral curve branches over 0, L is holomorphic and D has a
first order pole over 0.

The spectral data have to satisfy the reality condition

au(L(µ)) = D(µ)

for all µ ∈ Σ with p(µ) ∈ S1 and the closing condition

L(µk ) = L(
γ1 + γ2

2
− 0)

for p(µk ) = λk , where γ1 and γ2 are the periods of the torus M̃/Z3.
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Theorem (H.)
Spectral data (Σ,L,D) as above satisfying the reality condition and
the extrinsic closing condition give rise to a unique Lawson symmetric
CMC surface.



Experiments (joint work with Nick Schmitt)

For the Lawson surface of genus 2 we have performed the following
numerical computations and experiments:

• the computation of the section au(x) which corresponds to flat
unitary connections;

• a numerical search for the spectral data (L,D) on the spectral
disc Σ given by t2 = z satisfying the reality condition
D(µ) = au(L(µ) for µ ∈ p−1(S1) and the extrinsic closing
condition;

• computing the conformal immersion out of these data by
implementing the theorem on the general construction; an
energy formula yields an area of 21.91 for our spectral data;

• a visualization of the conformal immersion in the xlab software of
Schmitt.
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The Lawson surface ξ2,1 again



The theory and the experiments can be extended easily to the
Lawson surfaces ξg,1 for arbitrary genus g.



The Lawson surface ξ3,1



The Lawson surface ξ4,1



The Lawson surface ξ5,1



The Lawson surface ξ6,1



Deformations of Lawson symmetric CMC surfaces

Physical idea: Break a space-orientation reversing symmetry of the
Lawson surface in order to study deformations of ξ2,1 through Lawson
symmetric CMC surfaces by increasing the pressure outside.

For tori, this yields the homogeneous CMC tori of rectangular
conformal type. They may be obtained by the Whitham flow of the
Clifford torus.

For higher genus, the idea is to use a modified isospectral flow of the
spectral data of the Lawson surfaces ξg,1 such that the asymptotic,
the reality condition and the extrinsic closing conditions remain valid.
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A distinct family of Lawson symmetric CMC surfaces
of genus 2.



The button perspective



The moduli space of Lawson symmetric CMC surfaces
of genus 2
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