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Geodesic completeness

Let (M, g) be a semi-Riemannian Mannigfaltigkeit, its V Levi-Civita connection.
» Geodesics y : (a,b) = M:V;7;, =0,V te(a,b).
> Picard-Lindeléf — For v e T,M 3! maximal geodesic y : Inax — M with
¥(0)=p. ¥(0)=v.

» (M, g) is geodesically complete if I,.x = R for all maximal geodesics.
> If (M, g) is Riemannian, then
> geodesics are critical points of the energy functional

b
EN = [ 0 00.50) a
> (M. dg) metric space, dg(p. q) := inf{y(y) : p A a}

> Hopf-Rinow Theorem: (M, dy) complete < (M, g) geodesically complete.

Theorem
Compact Riemannian manifolds are geodesically complete. J
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Completeness of compact Riemannian manifolds

» Define the vector field X on TM by the geodesic flow on TM
M3 (p.v) = Xl == (). 5(0))izo,
¥ geodesic with y(0) = p, (0) = v € T,M
» y geodesic = ¢g(7,7) = R% > 0, d.h.
y(t) € Si' «— spherein T,y)M ~ R" of radius R.

= intgeral curves of X remain in compact set in TM.

> integral curves of X defined on R and hence Ip.c = R.

For indefinite metrics, Qc = {X eRY 1 g(X,X) = C} =

=
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Clifton-Pohl torus

M := R2 \ {0} with Lorentzian metric g := Xz‘Tyz dx dy.

> geodesic equation

2 2

_2xx _2yy
7X2+y2 ’ y7X2_~_y2
» Solution for initial conditions y(0) = (1,0), #(0) = e4:
A
1-t

y(t) = ( 0), te (_0071), y(t) = ;281 € Qo

(1-1

u(x,y) = (2x, 2y) isometry of g ~ incomplete Lorentzian metric on
M := M/{u) ~ T? non flat 2-Torus

This can be generalised to higher dimensions,

n

I(uvxyxn) = 20U (dv — (sin(v) - Z aj(cos(x;) — 1))du] Z dx

i=1

descends to an incomplete metric on T2,
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Motivation

Fact: If (M,g) — (M, g) is an isometric covering, then (M, g) is complete
(M., g) is complete.

> Let (M, g) be compact with some curvature condition (e.g., flat, constant
curvature, or VR = 0).

» If (M, g) is geodesically complete, then (M, g) is covered by a model space
(I\7, 9), i-e., a (simply connected) complete manifold with the curvature
condition.

» M= M/l fora properly discontinuous co-compact group of isometries, i.e.,
classification of compact manifolds is reduced to classification of such I’s
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flat, R =0 constant curvature , R=cgA g | locally symmetric, VR =0

Riemannian R sn H" Gss/Hmax comp
model sphere hyperbolic space symmetric space
Lorentzian R gtn-1 H-n- CW}J = Osc?'2/R"2,
model de Sitter anti-de Sitter Cahen-Wallach space,

05c21~2 = R w<p bhei(n)

(M, g) compact Riemannian = complete and hence:

R"/T snr H"/T MNG/H
I translations [Wolf] hyperbolic Clifford-Klein forms
[Bieberbach]
(M, g) compacgt Lorentzian, complete ?
v [Carriere '89) V' [Klingler '96] V' [Schliebner & L '13]
RM1/T none H'2k-1r cwp/r
I' polycyclic I = lattice in Osc2'2
[Goldman&Kamishima] [Calabi-Markus] [Kulkarni] [Kath & Olbrich]
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Further results

(M, g) compact Lorentzian implies complete, if (M, g)
> is homogeneous [Marsden '72] (pseudo-Riemannian)
> has a timelike conformal vector field [Sanchez & Romero '95]
> has n = 3 and is locally homogeneous [Dumitrescu & Zeghib ’10]

> is a pp-wave [Schliebner & L ’13]
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Holonomy groups

Levi-Civita connection V of (M, g) defines parallel transport

P
> Ty(O)MB Xo '_y) X(1) € Ty(1)M,
X(t) solution of ODE V;;) X(t) = 0 with X(0) = X;.

For p € M" we define the (connected) holonomy group

HolX(M.g) = [, | ¥(0) = ¥(1) = p. ~ (p)} € O(T,M. g) ~ O(r.5)

» For p, q € M: Hol,(M, g) ~ Holy(M, g) conjugated in O(r, s).
> Hol(M, g) c Hol,(M, g) normal and

surjects

Mi(M.p) > ] [P,] € Holy(M,g)/HolS(M, g)
> Ambrose-Singer holonomy theorem: hol,(M, g) is spanned by
P;1 o Ry)(X,Y)oP, € s0(TpM,gp),

where y(0) = p, R,(1) the curvature at y(1), X, Y € T,(;yM.
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Decomposable holonomy

Assume that Hol,(M, g) admits an invariant non-degenerate subspace V c T,M.

Then several things happen:
» (M, g) is locally a semi-Riemannian product.
> hol) (M. g) =~ s @b acting on V @ V* and b; are Berger algebras.
> If (M, g) is complete and simply connected, then
(M, g) = (Mi,g1) x (M2, g») a global semi-Riemannian product and

HOl(M, g) = HO](M1 R g1) X HOl(MZ, gg)

Assume that Hol is indecomposable, i.e., no non-degenerate invariant subspace.

We say that (M, g) has special holonomy if hol(M, g) # so(t, s) and
indecomposable.
> For Riemannian metrics indecomposable = irreducible
> classification of irreducible connected (semi-)Riemannian holonomy groups
— Berger’s list ['55]:

U(p), SU(p), Sp(qg). Sp(1) x Sp(q), G2, Spin(7)

where 2p = n and 4n = q, or isotropy of a Riemannian symmetric space.
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Special Lorentzian holonomy

A Lorentzian manifold (M"+2, g) has special holonomy if Hol® # SO°(1,n -+ 1)
and Hol° acts indecomposably on T, M.

Fundamental difference to Riemannian (where we have Berger’s list):
[DiScala,Olmos]

» HcS0%(1,n+ 1)irreducible == H=S0°1,n+1).

» Special holonomy = Hol%-invariant null lineL. = VNV* c ToM,
i.e., HOIO C Stabso(1’n+1)(L) = Slm(n) = (R>0 X SO(n)) < R,

> Lie algebra
aeR
veR", .
A € so(n)

There is a classification of Lorentzian special holonomy algebras:
> description of indecomposable subalgebras of so(1,n + 1) [Berard-Bergery &
Ikemakhen '93]
> prso(,,)(bol) is a Riemannian holonomy algebra [L ‘03] ~» Berger’s list
> Construction of local metrics for all possible groups [ ... Galaev '05]

a vl 0
hol € sim(n) = (R@® so(n)) xR" = {[ 0 A -v }

0 0" -a
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Geometric structures on Lorentzian manifolds with special holonomy

> M admits a parallel null line bundle L, i.e., fibres are invariant under parallel
transport and Vy : (L) — (L)
= L* is integrable and hence involutive yielding a foliation A’ of M into leafs of
L+,
> Screen bundle over M:
S=LYR-L A(XLIYD=9(X.Y),  Vi[YI=[VxY],

is a vector bundle with positive def. metric and compatible connection V°.

> Hol(V®) = pr,,bol(M, g) is a Riemannian holonomy algebra (product of
groups on Berger'’s list)

» Fixing a time-like unit vf T € I'(M), or a null vector field Z transversal to V*
gives a canonical identification of S with a tangent subbundle, the screen
distribution

S=L*NnZ*'cT™M

» There are incomplete compact Lorentzian manifolds with special holonomy.

E.g., the above generalisation of the Clifton-Pohl torus has holonomy R =< R".
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pp-waves

Definition
A Lorentzian mf is called pp-wave, if it admits a parallel null vector field V, i.e.,
g(V.V)=0andVV =0, and

R(X.Y): V- —R-V, ¥YX,YeTM.

l.e.,inabasis V, Ey,..., E, Z with

o o 1 0 KX.Y) 0
g= (0 1, 0], itis R(X, Y) = (0 0 rT(X, Y)]
10 0O 0 0 0

> In coordinates (v, x',...,x", u):
g=g":=2dudv+2H(u,x") du? + &; dx' dx! ()

> curvature: r(9;,dy) = (9;0;H)[_, Ric = A(H) >, A=3", ﬁ flat
Laplace-operator,

» standard pp-wave if defined on R"*2, screen bundle S = span(9;)
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Plane waves and Cahen-Wallach spaces

> A pp-wave is a plane wave &L V\R=0VXeV: e H= Si(u)x'x.

> A locally symmetric pp-wave is called Cahen-Wallach space. This is
equivalent to H = Syx'x/ with S; constant.

Theorem (Cahen & Wallach ’'70)
An indecomposable, locally symmetric Lorentzian manifold either has constant
curvature or is a Cahen-Wallach space.

» Cahen Wallach spaces have solvable transvection group Osc%,"‘z,
CWJ = Oscg 2 /R"2

» constant curvature: de Sitter or anti de Sitter, i.e, SO(1,n-1)/SO(n—1) or
S0(2,n—2)/SO(1,n-2).

> neither de Sitter spaces [Calabi-Markus '62] nor even dimensional anti de
Sitter spaces [Kulkarni '81] have compact quotients.

» compact quotients of Cahen-Wallach spaces: [Kath & Olbrich *15]
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Some history

> Brinkmann '25 in conformal geometry: an Einstein metric g can be rescaled
to another Einstein metric e2’g < g is a warped product of R with a
space of constant curvature (if [Vl # 0), or a pp-wave metric (if [[V|| # 0).

» GR: wave-like solutions of the vacuum Einstein equations, A(H) = 0.
[Einstein & Rosen "35]
propagation in direction of V = 4,, wave fronts {(v, u) = const} with induced
Riemannian metric are flat.

> Ehlers-Kundt ‘62 (in Dimension 4): “plane fronted with parallel rays”.
“Prove that complete, Ricci-flat pp-waves are plane waves, no matter which
topology one chooses!”

> Penrose ’76: Every spacetime has a plane wave as limit, “Penrose limit”.

> pp-waves have the submaximal number of parallel spinors ~» supergravity
backgrounds [Hull ‘84, Figueroa O’Farrill].

> pp-waves have no scalar invariants, i.e., all functions obtained from
derivatives of the metric and the curvature vanish.

> Hol c R" is abelian
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The screen bundle of a pp-wave

Let (M, g) be a Lorentzian manifolds with parallel null vector field V.

Equivalences: (M, g) is a pp-wave
& the screen bundle S = V+/R - Vis flat,
& For each leaf N of V+ the connection V" induced by V9 is flat.

< each local screen distribution admits orthonormal sections S, ... S, with
VS, = o/ ® V, where o' local one-forms with da/|y.,y. = 0.

Let (M, g) be a pp-wave and S a screen distribution (locally, globally on M, or
along a leaf N of V*).

» S s horizontal &= [V.S]cS & VS5 =0 < VisKilling vector field
for the Riemannian metric h®, defined on the leafs of V* by

h*(V.V) =1, h°(V,8) =0, hlsxs = Glsxs.

> S is horizontal and involutive (i.e., [S,S] ¢ S) & h® is flat.
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Examples of compact pp-waves

h flat metric on the torus T", H € C*(T") smooth. M := T2 x T" with
9" = 2d0dy + 2Hd¢? + h,

= complete pp-wave metric on the torus T"*2, in general not a plane wave.
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Example without involutive and horizontal screen:

» Torus T" with canonical 1-forms &', ...,&". Set

n
w=13> ag Ad e Q¥(T")
ij=1
with constants a; such that 0 # [w] € H3(T", Z).
» Letx: N - T" be the S'-bundle with 1st Chern class [w], A € T*"S®iR the
S'-connection with curvature F := dA = —2rin*w.
> M:= NxS', function H € C*(T"), n € T*S', o' = horizontal lifts of &/,

n
g=2(Hn-iA) -n+ Z(o”‘)2 = pp-wave metric on M.
i=1

with parallel null vector field V, which is the fundamental vector field to the
S’ actionon N, i.e., A(V) =i.
> Note: (M, g) does not admit an involute and horizontal screen distribution.
> Since S; are horizontal lifts, [V, S;] =0, so S = span(St, ..., Sy) is horizontal.
> But [S;, Sj] =iF(Si, Sj) # 0, so not involutive.
> Change screen §; = S; + b;V, then, with 8 = bjc we have
[V.8] =-dbi(V)V, [8.8]|=(iF((S. ) - dB(Si. §)) + by (V)) V.,

> Hence, since [F] # 0, F is not exact, and § cannot be involutive and horizontal at
the same time.
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The universal covering of a compact pp-wave

Theorem A (schiiebner & L '13]

A compact pp-wave is universally and isometrically covered by R™2 with the
standard pp-wave metric g = g" = 2dudv + 2H(u, x")du? + §;dx'dx’.

Proof — Step 1: Let 7 : (M, g) — (M, g) be the universal covering and = V*
» V¥V =0 = dn =0 and in particular ker(n) = V* integrable.
» M compact = d complete vector field Z: n(Z) = 1.
> Milnor ’63: leat ?f Vi flowlon

RxN= M , (up)— ?(p)

Step 2: Fix screen S = span(S;) on N, with S, lifts from N and thus complete.
> dof =0 = & = db
» § = span(§; = S; - b;V) is involutive and horizontal. Hence, h® is flat on N.
» Since Vis complete, N = R x 8. Use this to show that é,- are complete.
> Palais '57: N = R™".
Step 3: Then show that g = g" (very technical).
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Is (R”*g, 9" = 2dudv + 2H(u, x")du? + 6,-,-dx'dxf) complete?

u =0

e kaH _ o208H
v = 2ax asg;
5'(i — az oH

ox!

In general not complete, e.g., n =1, H(x,u) := % x4

Solution:

x(t) = 5

= u(t)=at+b

— solution on R if x¥ on R def.

(*)

2

te(-c,1), fa=0.

Note: Solutions of (x) defined on R, if 2% Lipschitz.

Lemma

If M is compact, then 57 ,6,

is bounded, hence

Lrpschltz.

(x) &= X =2a%x®

Proof: Define bilinear form on M, using the vector field Z,

Q(X.Y):=R(X.Z,Z,Y)

and compute using 7 : (M, g") — (M, g),

9(Q.Q) = ¢"(n"Q, 7" Q) = Z(n Q(0:,8)))

ij=1
€C (M)
bounded

ij=

ZR 05,05,00, 02 = ) (5
ij=1

)2>0.
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Completeness of compact pp-waves

Theorem B (schiiebner & L "13]
A compact pp-wave is geodesically complete. J

Ehlers-Kundt ‘62 (in Dimension 4): “Prove that complete, Ricci-flat pp-waves are
plane waves, no matter which topology one chooses!”

> Recall: plane wave EL YR =0VX eVt = H(x', u) = Aj(u)x'x.

Corollary
Every compact Ricci-flat pp-wave is a plane wave. J

Proof:
» g" Ricci-flat = H harmonic = 8;8;(H) harmonic.
> 8;0;(H) bounded = 9,8;(H) constant w.r.t. x's, i.e., H = Aj(u)x'x.

» (M, g) and therefore (M, g) is a plane wave.
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Corollary for Cahen-Wallach spaces

Corollary
Every indecomposable compact locally symmetric Lorentzian manifold is
complete.

» (M, g) indecomposable = (M, g) locally isometric to
» constant curvature and hence complete [Klingler '96]
> or Cahen-Wallach space 2du(dv + x" Sxdu) + dx" dx.
» (M, g) compact and locally isometric to Cahen-Wallach = (M, g) complete.
> Difficulty: (M, g) might not have have a global parallel null vector field, just a
parallel null line bundle.
> Assume that

a * *
Hol(M,g)Bh—[O A J,
0 0 af
with a € R4o and A € O(n). Then h - R = R, which implies S = a?AT SA.
Hence a°® = 1
> Time orientable cover admits a parallel null vector field and is a compact Cahen
Wallach space, which then is complete. Hence, (M, g) is complete.
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Generalisation

Generalise completeness result to compact Lorentzian manifolds with special
holonomy, i.e., with parallel null line:

» Counterexample in the case when (M, g) does not admit a parallel null
vector field (generalisation of Clifton Pohl torus).

Conjecture:
A compact Lorentzian manifold with parallel null vector field is complete. J

> The proof is work in progress, needs a few assumptions and still has a few
gaps (see next slides).
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(M, g) a compact Lorentzian manifold with parallel null vector field V

Theorem
Assume that there is a screen distribution on M such that

(H) S is horizontal, and
() there is a compact leaf N of V* such that S|y is involutive (with leaf S).
Then there is a local diffeomorphism
®:M=R>xS —>M suchthat g:=®"g=_2du(dv+ u,)+ h,
where u, and h, are u-dependent families of 1-forms and metrics on S such that:
(A) hy is complete, and
(B) the norm (w.r.t. h,) of u, and d,h, are bounded functions on S.

Theorem
A Lorentzian mfd (I\7I,§) as above is complete if it has properties (A) and (B).

Corollary
If (M, g) admits a screen distribution with (H) and (1) then it is complete.
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Involutive/horizontal screens and basic cohomology

Problem: We do not we always have a screen with (H) and (1), recall the example.
When do we have an involutive or horizontal screen?

> A Riemannian flow ¥ on a manifold N is the flow of a non-vanishing vector
field F such that 3 Riemannian metric h with (Lgh)|grxrr = 0.

> ¥ is an isometric flow, if F is given by a Killing vf K for a metric h.

> Basic forms for (N, 7): Q) :=={e € Q" | F _Ja = F _1da =0} s Q.

> If a flow is isometric, then the following cohomology sequence is exact

b
P p K pp-1 dKA bt
..—>Hb—>HdR—>Hb —>Hb - ...,

Apply this to N = leaf of V* and ¥ = V. Given S, F is a Riemannian flow via h®.

» If S is horizontal, then V is Killing for h® and ¥ is isometric.

. . [Sergiescu & Molino’85] . i
> F isometric = Hp # 0. Hence the existence of an horizontal

screen implies that H] # 0.

> If H} # H], then H] # 0. Then the exact sequence can be used to show that
there is a closed one form 7 with (V) # 0 and hence an involutive screen.
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iMuchas Gracias!
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