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Cheeger isoperimetric constant I

Given Mn a complete and non compact Riemannian manifold of dimension
greater than 1 (n ≥ 2) , the Cheeger isoperimetric constant is defined by
this quotient

I∞(M) := inf
Ω⊂M

Voln−1(∂Ω)

Voln(Ω)
. (1)

where Ω ranges over compact open subsets Ω ⊂ M with smooth
boundaries ∂Ω.

Cheeger constant examples

I∞(Rn) = 0.

I∞(Hn(b)) = (n − 1)
√
−b.
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Fundamental tone I

The fundamental tone λ∗(M) of a smooth Riemannian manifold M is
defined by the infimum of the quotient between the squared norm of the
gradient and the squared norm of functions

λ∗(M) = inf
f ∈L2

1,0(M)\{0}

{∫
M |∇f |2dµ∫
M f 2dµ

}
(2)

where the functions ranges in L2
1,0(M), the completion of smooth functions

with compact support C∞0 (M) with respect to this norm
‖φ‖2 =

∫
M φ2dµ+

∫
M |∇φ|2dµ
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Theorem (Cheeger)

Let M be a complete non compact manifold, then the Cheeger
isoperimetric constant is a bound for the fundamental tone

λ∗(M) ≥ I∞(M)2

4
(3)

And for minimal submanifolds of the Hyperbolic space

Corollary (S-T Yau, McKean, Chavel)

Let Mn ↪→ Hm(b) be a complete, minimally immersed submanifold of
Hm(b), then the Cheeger constant (and so the fundamental tone) are
bounded from below by the following expressions

I∞(M) ≥(n − 1)
√
−b,

λ∗(M) ≥−(n − 1)2b

4
.

(4)
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Corollary

Let Mn ↪→ N be a complete, minimally immersed submanifold of a
Cartan-Hadamard manifold N (simply connected with sectional curvatures
KN bounded above by KN ≤ b ≤ 0), then the Cheeger constant (and so
the fundamental tone) are bounded from below by the following
expressions

I∞(M) ≥(n − 1)
√
−b,

λ∗(M) ≥−(n − 1)2b

4
.

(5)
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proof I

By the expression of the Hessian for submanifolds and the Hessian
comparisons given by Greene-Wu for the extrinsic distance function

∆M r ≥ (n − 1)cotb(r),

being

cotb(r) =

{
1
r if b = 0,√
−b cotanh(

√
−br) if b < 0

Therefore,

∆M r ≥ (n − 1)
√
−b,

Integrating on Ω ⊂ M∫
Ω

∆M rdV ≥ (n − 1)
√
−b Voln(Ω),
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proof II

By the divergence theorem∫
∂Ω
〈∇r , ν〉dA ≥ (m − 1)

√
−b Voln(Ω),

Hence,

Voln−1(∂Ω) ≥ (n − 1)
√
−b Voln(Ω),
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¿what was known? I

Theorem A. Candel, Transactions AMS, 2007

Let M be a complete simply connected stable minimal surface in the
hyperbolic space H3(−1), then

1

4
≤ λ∗(M) ≤ 3

4
.

Theorem A. Candel, Transactions AMS, 2007

The fundamental tone of the minimal catenoids (given in Do Carmo -
Dajczer, Rotation hypersurfaces in spaces of constant curvature. Trans.
Amer. Math. Soc. ,1983) in the hyperbolic space H3(−1) is

λ∗(M) =
1

4
.
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¿what was known? II

The minimal catenoids satisfy∫
M
|A|2dµ <∞ . (6)
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Theorem K. Seo, J. Korean Math. Soc., 2011

Let Mn be a complete stable minimal hypersurface in Hn+1(−1) with∫
M |A|2dµ <∞. Then we have

(n − 1)2

4
≤ λ∗(M) ≤ n2 . (7)
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What I thought?

Corollary V. Gimeno (REAG-ICMAT 2012)

Given a complete submanifold Mn ↪→ N properly and minimaly immersed
in a Cartan Hadamard N ambient manifold with sectional curvatures KN

bounded above KN ≤ b ≤ 0, suppose moreover that the immersion has
finite volume growth. Then, we obtain the following upper bound for the
fundamental tone of the submanifold

λ∗(M) ≤ 4I2
∞(M) = −4(n − 1)2b. (8)
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Extrinsic distance and extrinsic balls I

In order to understand the volume growth we need some previous concepts
as the extrinsic distance and the extrinsic balls.

The extrinsic distance is the restriction from the distance function in
the ambient manifold to the submanifold.

The extrinsic ball is the sublevel set defined by the extrinsic distance
function.

Definition of extrinsic distance

Let ϕ : Mn → N be a complete, and proper immersion. Given two points
o, p ∈ M, the extrinsic distance from o to p is

ro(p) := distN (ϕ(o), ϕ(p)) (9)

where distN denotes the geodesic distance in N.
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Extrinsic distance and extrinsic balls II

Definition of extrinsic ball

The extrinsic ball DR(o) of radius R centered in o ∈ M is the set of points
whose extrinsic distance to o is at most R

DR(o) := {p ∈ M ; ro(p) < R} (10)

Where ro(p) is the extrinsic distance form o to p.
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Volume growth I

With these extrinsic balls we can define the volume comparison quotient

Qb(R) :=
Vol(DR)

Vol(Bb,n
R )

, (11)

where Bb,n
R stands for the geodesic ball of radius R in Kn(b).

Theorem volume growth (V. Palmer PLMS 1999)

Let ϕ : M → N be a proper and minimal immersion into a
Cartan-Hadamard ambient manifold N (KN ≤ b ≤ 0), then the volume
comparison quotient Qb(R) is a non decreasing function on R.
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From the previous theorem we can define

Definition

Let ϕ : M → N be a proper and minimal immersion into a
Cartan-Hadamard ambient manifold N (KN ≤ b ≤ 0). M has finite
volume growth if and only if

sup
R
Qb(R) = lim

R→∞
Q(R) <∞.

the volume comparison quotient has a finite upper bound.
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Relation volume growth - Second fundamental form

Theorem, V Gimeno V. Palmer, JGEA 2013

Let Mn → Hm(b) be a proper and complete minimal immersion n > 2.
Suppose that

‖A‖ ≤ δ(r)

e2
√
−br

, such that δ → 0 when r →∞.

Then :

1 M has finite topological type.

2 M has finite volume growth.

3

supR Qb(R) ≤ E(M) = ends of M.
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Theorem, V. Gimeno V. Palmer, Israel J. of Math., 2013

Let M2 → Hm(b) be a complete minimal immersion, suppose that∫
M2

‖A‖2dV <∞

then

sup
R
Qb(R) ≤ 1

4π

∫
M2

‖A‖2dV + χ(M2) .
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Topological Ends

Let M be a non-compact connected manifold. We define an equivalence
relation in the set A = {α : [0,∞)→ M|α is a proper arc}, by setting
α1 ∼ α2 if for every compact set C ⊂ M, α1, α2 lie eventually in the same
component of M − C .

Definition

Each equivalence class in E(M) = A/ ∼ is called an end of M.
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Counting ends I

Given an exhaution by compact sets {Ki} of the manifold P (Ki ⊂ Ki+1

and ∪i∈NKi = P) , the number of ends E(P) of P is the supremum of the
number of connected components with non compact closure of P − Ki .
(see Tkachev’s paper Manuscripta Math. 82, 1994 and Anderson’s
I.E.H.S. preprint 1984)
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Some examples

1 The number of ends of any compact space is zero.

2 The real line R has two ends.

3 If n > 1, then the Euclidean space Rn has only one end. This is
because Rn \ F has only one unbounded component for any compact
set F .

4 The catenoid has two ends

5 the periodic surface of Callahan-Hoffman-Meeks has infinitely many
ends
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What I know? I

Theorem, V. Gimeno V. Palmer, PAMS 2013

Let ϕ : Mn → N be a proper complete minimal immersion in a
Cartan-Hadamart ambient manifold N (KN ≤ b ≤ 0). Suposse that the
submanifold has finite volume growth,

sup
R
Q(R) <∞,

then
I∞(M) = (n − 1)

√
−b
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What I know? II

Theorem, V. Gimeno, POTA 2013

Let ϕ : Mn → N be a proper complete minimal immersion in a
Cartan-Hadamart ambient manifold N (KN ≤ b ≤ 0). Suposse that the
submanifold has finite volume growth,

sup
R
Q(R) <∞,

then

λ∗(M) =
−(n − 1)2b

4
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Sketch of the proof I

For any Φ ∈ L2
1,0(M) \ {0}

λ∗(M) ≤
∫
M |∇Φ|2dV∫
M |Φ|2dV

Pick

Φ : M → R; Φ = φR ◦ r .

φR(t) =


sin

(
2π(t−R

2 )
R

)
Vol(Sb

t )
1
2

if t ∈ [R2 ,R]

0 otherwise.
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Sketch of the proof II

By the Rayleigh quotient definition and the coarea formula

λ∗(M) ≤
∫
M〈∇Φ,∇Φ〉dµ∫

M Φ2dµ
=

∫
M(φ′)2〈∇rp,∇rp〉dµ∫

M Φ2dµ
≤
∫
M(φ′)2dµ∫
M Φ2dµ

=

∫ R
0

[∫
∂Ds

(φ′)2

|∇r |

]
ds∫ R

0

[∫
∂Ds

φ2

|∇r |

]
ds

=

∫ R
R
2

(φ′(s))2
[∫
∂Ds

1
|∇r |

]
ds∫ R

R
2
φ2(s)

[∫
∂Ds

1
|∇r |

]
ds

=

∫ R
R
2

(φ′(s))2 (Vol(Ds))′ ds∫ R
R
2
φ2(s) (Vol(Ds))′ ds

.

(12)

From the definition of Qb and taking into account that Q is a
non-decreasing function

(lnQb(s))′ =
(VolDs)′

(VolDs)
− Vol(Sb

s )

Vol(Bb
s )
≥ 0 . (13)
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Sketch of the proof III

So,

Qb(s) Vol(Sb
s ) ≤ (Vol(Ds))′ ≤ (lnQb(s))′ Vol(Bb

s )Qb(s)+Qb(s) Vol(Sb
s ) .
(14)

Lemma

There exists an upper bound function Λ : R+ → R+ to∫ R
0 (φ′)2 Vol(Sb

s )ds∫ R
0 φ2 Vol(Sb

s )ds
≤ Λ(R) (15)

such that

lim
R→∞

Λ(R) =
−(n − 1)2b

4
(16)
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Denoting now,

F (R) :=

(
(m − 1)2

4
Cotb(R/2)2 +

4π2

R2
+

2(m − 1)π

R
Cotb(R/2)

)
δ(R) :=

∫ R

R
2

(lnQ(s))′ ds,

λ∗(M) ≤Q(R)

Q(R2 )

[
Vol(Bb

R)

Vol(Sb
R)

4

R
F (R)δ(R) + Λ(R)

]
(17)

Letting R tend to infinity and taking into account that

lim
R→∞

F (R) =− (n − 1)2b

4
,

lim
R→∞

δ(R) =0 ,

lim
R→∞

Vol(Bb
R)

Vol(Sb
R)

4

R
=

{
4

m−1 if b = 0,

0 if b < 0.

lim
R→∞

Q(R)

Q(R2 )
=1 .

(18)
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An improvement? I

Theorem, S Ilias, B. Nelli, M. Soret, Arxiv aug 2013

Let ϕ : Mn → N, N Cartan-Hadamard, if

sup
R
Qb(R) <∞

then:

I∞(M) ≤ (m − 1)
√
−b

if M is minimal, λ∗(M) = −(m−1)2b
4

They make use of the volume entropy µM of M

µM := lim sup
R→∞

(
ln(Vol(DR))

R

)
<∞.

Since
Vol(DR) ≤ sup

R
Qb(R) Vol(Bb

R)
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An improvement? II

,

µM = lim sup
R→∞

(
ln(supR Qb(R))

R
+

ln(Vol(Bb
R))

R

)
<∞.

Therefore,

µM := µHn(b).

Independence on the volume growth

¿ sup
R
Qb(R) ?

We only need its finiteness.
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We have seen
sup
R
Qb(R) ∼ E(M)

There exists an other relation?
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Capacity I

Given a compact set K ⊂ M in a Riemannian manifold M and an open set
Ω ⊂ M containing K , we call the couple (K ,Ω) a capacitor. Each
capacitor has capacity defined by

Cap(K ,Ω) := inf
u

∫
Ω\K
‖∇u‖dµ , (19)

where the inf is taken over all Lipschitz functions u with compact support
in Ω such that u = 1 on K .
When Ω is precompact, the infimum is attained for the function u = Ψ
which is the solution of the following Dirichlet problem in Ω \ K :

∆Ψ = 0

Ψ|∂K = 0

Ψ|∂Ω = 1

(20)
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Capacity II

From a physical point of view, the capacity of the capacitor (K ,Ω)
represents the total electric charge (generated by the electrostatic
potential Ψ) flowing into the domain Ω \ K through the interior boundary
∂K . Since the total current stems from a potential difference of 1 between
∂K and ∂Ω, we get from Ohm’s Law that the effective resistance of the
domain Ω \ K is

Reff(Ω \ K ) =
1

Cap(K ,Ω)
. (21)
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MAT.ES 2005 11

* u representa el potencial electrostático

generado por una concentración de carga en

el interior de K.

* y la cantidad Cap(K,Ω) representa la

corriente total fluyendo en el interior de Ω ∼
K a través de ∂K.
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Capacity of extrinsic annuli

Given an isometric immersion ϕ : M → N, the extrinsic annulus is

Aρ,R := {x ∈ M |ρ ≤ r(x) ≤ R}

Theorem, S. Markvorsen V. Palmer, GAFA 2002

Let ϕ : Mn → N be a proper and minimal immersion into a
Cartan-Hadamard ambient manifold with curvatures bounded from above
by Kn ≤ b ≤ 0, then

Cap(Aρ,R) ≥ Cap(A
Kn

b
ρ,R).
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Theorem, V. Gimeno S. Markvorsen, in preparation

Let ϕ : Mn → N be a proper and minimal immersion into a
Cartan-Hadamard ambient manifold with curvatures bounded from above
by Kn ≤ b ≤ 0, then

1 ≤ Cap(Aρ,R)

Cap(A
Kn

b
ρ,R)
≤ sup

R
Qb(R).
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Catenoid
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Theorem, Jorge-Meeks

Let M2 be a minimal surface embedded in R3 with finite total curvature,
then

sup
R
Q(R) = E(M2) = number of ends of M.
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Scherk’s singly periodic surface
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The Scherk’s singly periodic surface has

sup
R
Q(R) = 2.

Vicent Gimeno (Universitat Jaume I) Capacity and number of ends 2013 48 / 56



Vicent Gimeno (Universitat Jaume I) Capacity and number of ends 2013 49 / 56



Volume growth number of ends I

Theorem, Anderson + Qing Chen, Manuscripta Math., 1997

Let M be an n−dimensional complete properly immersed minimal
submanifold in Rm which satisfies

lim sup r‖A‖ = 0

Then

lim
R→∞

Vol(DR)

ωnRn
= E(M) <∞.

Generalizing the ambient manifold

Rm → Model space Mm
w .
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Volume growth number of ends II

Model space

A w−model space Mn
w is a simply connected n-dimensional smooth

manifold Mn
w with a point ow ∈ Mn

w called the center point of the model
space such that Mn

w − {ow} is isometric to a smooth warped product with
base B1 = ( 0, Λ) ⊂ R (where 0 < Λ ≤ ∞ ), fiber F n−1 = Sn−1

1 (i.e. the
unit (n − 1)−sphere with standard metric), and positive warping function
w : [ 0, Λ )→ R+. Namely:

gMn
w

= π∗
(
g( 0,Λ)

)
+ (w ◦ π)2σ∗

(
gSn−1

1

)
, (22)

being π : Mn
w → ( 0, Λ) and σ : Mn

w → Sn−1
1 the projections onto the

factors of the warped product.

Vicent Gimeno (Universitat Jaume I) Capacity and number of ends 2013 51 / 56



Volume growth number of ends III

Examples

Kn
b = Mn

wb
.

wb(r) =


1√
b

sin(
√
br) if b > 0

r if b = 0
1√
−b sinh(

√
−br) if b < 0

Balanced models

Balanced from below:
Vol(Bw

r )

Vol(Sw
r )

w ′(r)

w(r)
≥ 1

m

Balanced from above:

Vol(Bw
r )

Vol(Sw
r )

w ′(r)

w(r)
≤ 1

m − 1
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Volume growth number of ends IV

Theorem, V. Gimeno, V. Palmer, JGEA 2013

Let ϕ : Mn → Mm
w be a proper and complete minimal immersion into a

balanced from below model space Mm
w . Suppose that :

n > 2,

w ′(r) ≥ d > 0.

w ′(r)w(r)‖A‖ ≤ ε(r) such that ε→ 0 when r →∞.
Then, M has finite topological type and

1 ≤ lim
R→∞

Vol(DR)

Vol(Bw
R )
≤ E(M).
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Volume growth number of ends V

Theorem,Qing Chen, Manuscripta Math., 1997

Let Mn be a complete , proper and n−dimensional minimal submanifold of
Rm. Suppose that:

sup
R>0

Vol(DR)

ωnRn
<∞.

Then

E(M) ≤ sup
R>0

Vol(DR)

ωnRn
.
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Volume growth number of ends VI
Theorem, V. Gimeno and S. Markvorsen, in preparation

Let ϕ : Mn → Nm be a proper minimal and complete immersion. Where:

N possesses a pole

The sectional curvatures KN of N are bounded by the radial
curvatures Kw of a balanced from below model space Mn

w

KN (p) ≤ KMn
w

(r (p)) = −w ′′

w
(r (p)) .

w ′ > 0 and there exist R0 such that KMn
w

(R) ≤ 0 for any R > R0

lim sup
t→∞

(∫ t
0 w(s)m−1ds

tm/m

)
= Cw <∞ .

Then, if M has finite w−volume growth,

E(P) ≤ 2mCw lim
t→∞

Vol(Dt)

Vol(Bw
t )
. (23)
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Thanks!!
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