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Trapped submanifolds

Consider an (n + 2)-dimensional spacetime Mn+2
1 , n ≥ 2, that is, a

time-oriented Lorentzian manifold of dimension n + 2 ≥ 4.

Let Σn be a codimension-two spacelike submanifold immersed into
the spacetime M.

That is, Σ is an n-dimensional connected manifold admitting a
smooth immersion ψ : Σ→M such that the induced metric on Σ is
Riemannian.

Second fundamental form

It is the symmetric tensor q : X(Σ)× X(Σ)→X⊥(Σ) given by

q(X,Y) = −(∇XY)⊥
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Mean curvature vector field

The mean curvature vector field is defined by

H =
1

n
tr(q)

where q is the second fundamental form of the submanifold.

The submanifold Σ is said to be

Future (past) trapped if H is timelike and future-pointing
(past-pointing) on Σ.
Future (past) marginally trapped if H is null and future-pointing
(past-pointing) on Σ.
Future (past) weakly trapped if H is causal and future-pointing
(past-pointing) on Σ.

The extreme case H = 0 corresponds to a minimal submanifold.
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Each normal space (TpΣ)⊥, p ∈ Σ, is timelike and two dimensional,
and hence admits two future-pointing null directions normal to Σ.

Under suitable orientation assumptions, Σ admits a globally defined
future-pointing normal null frame {ξ, η}, unique up to positive
pointwise scaling, satisfying 〈ξ, η〉 = −1.

Shape null operators

The shape operators associated to ξ and η are the symmetric operators
Aξ,Aη : X(Σ)→X(Σ) given by

〈AξX ,Y 〉 = 〈q(X ,Y ), ξ〉, and 〈AηX ,Y 〉 = 〈q(X ,Y ), η〉.

Null mean curvatures

The null mean curvatures (or null expansion scalars) of Σ are given by

θξ =
1

n
trace(Aξ) and θη =

1

n
trace(Aη).
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Then, we have the expression

H = −θηξ − θξη

for the mean curvature vector field.

In particular
〈H,H〉 = −2θξθη

so that

Σ is a trapped submanifold if and only if
i) either both θξ < 0 and θη < 0 (future trapped),

ii) or both θξ > 0 and θη > 0 (past trapped).

Σ is a marginally trapped submanifold if and only if
i) either θξ = 0 and θη 6= 0 (future marginally trapped if θη < 0 and

past marginally trapped if θη > 0),
ii) or θξ 6= 0 and θη = 0 (future marginally trapped if θξ < 0 and past

marginally trapped if θξ > 0).

Σ is a weakly trapped submanifold if and only if
i) either both θξ ≤ 0 and θη ≤ 0 with θ2

ξ + θ2
η > 0 (future weakly

trapped),
ii) or both θξ ≥ 0 and θη ≥ 0 with θ2

ξ + θ2
η > 0 (past weakly trapped).
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The (n + 2)-dimensional de Sitter spacetime

Let Ln+3 be the (n + 3)-dimensional Lorentz-Minkowski space,
endowed with the Lorentzian metric

〈, 〉 = −(dx0)2 + (dx1)2 + · · ·+ (dxn+2)2, x = (x0, . . . , xn+2)

The hyperquadric

Sn+2
1 = {x ∈ Ln+3 : 〈x , x〉 = 1}

endowed with the induced metric from Ln+3 is the standard model
of the de Sitter space.

Consider on Sn+2
1 the time-orientation induced by the globally

defined timelike vector field e∗0 ∈ X(Sn+2
1 ) given by

e∗0 (x) = e0 − 〈e0, x〉x = e0 + x0x , e0 = (1, 0, . . . , 0),

with
〈e∗0 (x), e∗0 (x)〉 = −1− 〈e0, x〉2 ≤ −1 < 0.
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Null hypersurfaces in de Sitter spacetime

Let ψ : Σn → Sn+2
1 be a codimension-two spacelike submanifold of

de Sitter space.

We are interested in the case where Σ is contained into one of the
two following null hypersurfaces of de Sitter space:

1 The future component of the light cone.
2 The past infinite of the steady state space.

Recall that a null hypersurface into a spacetime M is a smooth
codimension one embedded submanifold such that the pull-back of
the Lorentzian metric of M is degenerate.

As we will see later, in these cases there always exists a globally
defined future-pointing normal null frame {ξ, η} on Σ.
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Marginally trapped submanifolds into the light cone

Light cone of de Sitter spacetime

Fix a point a ∈ Sn+2
1 . The light cone in Sn+2

1 with vertex at a is the
subset

Λa = {x ∈ Sn+2
1 : 〈a, x〉 = 1, x 6= a}.

The future component of Λa is

Λ+
a = {x ∈ Sn+2

1 : 〈a, x〉 = 1, x0 > 0, x 6= a}.

Let ψ : Σn → Sn+2
1 be a codimension-two spacelike submanifold.

Define the function u : Σ→ (0,+∞) by u = −〈ψ, e0〉.
Assume that ψ(Σ) is contained into the future connected
component of the light cone, Λ+

a , that is

〈ψ,ψ〉 = 1, 〈a, ψ〉 = 1 and u > 0.
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Normal null frame

In these conditions

ξ = ψ − a and η = −1 + ‖∇u‖2 + u2

2u2
ξ +

1

u
e⊥0

are two future-pointing null normal vector fields globally defined on Σ
with 〈ξ, η〉 = −1, where we are denoting

e0 = e>0 (p) + e⊥0 (p) + 〈ψ(p), e0〉ψ(p), p ∈ Σ.

Null shape operators

The null second forms associated to the global null frame {ξ, η} are given
by

Aξ = I and Aη = −1 + ‖∇u‖2 − u2

2u2
I +

1

u
∇2u,

where ∇2u is the Hessian operator of u.
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In particular, the null expansions are θξ = 1
n tr(Aξ) = 1 and

θη =
1

n
tr(Aη) =

2u∆u − n(1 + ‖∇u‖2 − u2)

2nu2
,

where ∆u is the Laplacian of u.

The scalar curvature of Σ is given by

Scal = n(n − 1)(1 + 〈H,H〉).

Corollary 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two spacelike submanifold

which is contained in Λ+
a . The following assertions are equivalent:

Σ is (necessarily past) marginally trapped.

The positive function u = −〈ψ, e0〉 satisfies the differential equation

2u∆u− n(1 + ‖∇u‖2 − u2) = 0 on Σ.

Σ has constant scalar curvature Scal = n(n− 1).
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Example 1

For each positive smooth function f : Sn→(0,+∞), consider the
embedding ψf : Sn→Λ+ ⊂ Sn+2

1 given by

ψf (p) = (f (p), f (p)p, 1).

It is not difficult to see that for every v,w ∈ TpSn

〈d(ψf )p(v), d(ψf )p(w)〉 = f 2(p)〈v,w〉0,

〈, 〉0 the standard metric of the round sphere.

That is ψ∗f (〈, 〉) = f 2〈, 〉0, which means that ψf defines a spacelike
immersion of Sn into Λ+ with induced metric conformal to 〈, 〉0.

Moreover, ψf is marginally trapped if and only if f satisfies

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0

on Sn with respect to the conformal metric f 2〈, 〉0.
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We will see now that every codimension-two compact spacelike
submanifold in Λ+ is, up to a conformal diffeomorphism, as in
Example 1.

Every codimension-two compact spacelike submanifold in Λ+ is as in
Example 1.

Proposition 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two compact spacelike

submanifold contained in Λ+.
There exists a conformal diffeomorphism

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0) such that 〈, 〉 = u2Ψ∗(〈, 〉0),

with u = −〈ψ, e0〉 = ψ0 > 0, and ψ = ψf ◦Ψ where f = u ◦Ψ−1, and ψf

is the embedding
ψf (p) = (f (p), f (p)p, 1)

Σn u //

Φ

��

(0,+∞)

Sn
f

;;

Ψ

OO Σn ψ //

Φ

��

Λ+ ⊂ Sn+2
1

Sn
ψf

::

Ψ

OO

In particular, ψ is an embedding.
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Proof:

Without loss of generality we may assume that the vertex of the
light cone is the point a = (0, . . . , 0, 1), so that

Λ+ = {x ∈ Sn+2
1 : xn+2 = 1, x0 > 0}.

Consider ψ : Σn → Λ+ ⊂ Sn+2
1 satisfying our assumptions.

Then ψ(p) = (u(p), ψ1(p), . . . , ψn+1(p), 1) with
n+1∑
i=1

ψ2
i (p) = u2(p) > 0.

Define the function Ψ : Σn → Sn by

Ψ(p) =
1

u(p)
(ψ1(p), . . . , ψn+1(p)).

A straightforward computation yields

〈dΨp(v), dΨp(w)〉0 =
1

u2(p)
〈v,w〉

for every p ∈ Σ and v,w ∈ TpΣ.
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In particular, Ψ is a local diffeomorphism.

Assume now that Σ is complete (that is, 〈, 〉 is a complete
Riemannian metric on Σ) and u∗ = supΣ u < +∞.

Therefore the conformal metric

〈̃, 〉 =
1

u2
〈, 〉

is also complete on Σ.

Then, the map

Ψ : (Σn, 〈̃, 〉)→ (Sn, 〈, 〉0)

is a local isometry between complete Riemannian manifolds.

Hence, Ψ is a covering map, but Sn being simply connected this
means that Ψ is in fact a global diffeomorphism.

In particular, this happens when Σ is compact.

But the proof also works under any assumption which implies that

the conformal metric 〈̃, 〉 is complete.
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For instance, it is enough if Σ is complete and u satisfies

ĺım sup
r→+∞

u

r log(r)
< +∞

r the Riemannian distance from a fixed origin o ∈ Σ.

Let Φ : Sn → Σn be the inverse of Ψ.

Taking f = u ◦ Φ one has f ◦Ψ = u and

ψf ◦Ψ(p) = (f (Ψ(p)), f (Ψ(p))Ψ(p), 1)

=(u(p), ψ1(p), . . . , ψn+1(p), 1) = ψ(p).

Then, the diagrams

Σn u //

Φ

��

(0,+∞)

Sn
f

;;

Ψ

OO Σn ψ //

Φ

��

Λ+ ⊂ Sn+2
1

Sn
ψf

::

Ψ

OO

are commutative, and it completes the proof.

�
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Example 2

For every fixed vector b ∈ Rn+1, let fb : Sn→(0,+∞) be the
function

fb(p) =
1

〈p,b〉0 +
√

1 + ‖b‖2
0

where 〈, 〉0 stands both for the Euclidean metric in Rn+1 and for the
induced standard metric on the Euclidean sphere Sn.

It is not difficult to see that the corresponding embedding

ψb := ψfb : Sn→Λ+ ⊂ Sn+2
1

is a (necessarily past) marginally trapped submanifold.

To see it, it suffices to check the validity, for f = fb, of

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0 on (Sn, f 2〈, 〉0). (EQ1)

Equivalently,

2f ∆0f + (n − 4)‖∇0f ‖2
0 − nf 2(1− f 2) = 0 (EQ2)

on (Sn, 〈, 〉0).
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Example 2 (continuation)

By a direct computation we can see that

‖∇0fb‖2
0 =

1

g4
‖∇0g‖2

0, and ∆0fb = − 1

g2
∆0g +

2

g3
‖∇0g‖2

0,

with g(p) = 〈p,b〉0 +
√

1 + ‖b‖2
0.

Observe that ∇0g(p) = b− 〈p,b〉0p and ‖∇0g‖2
0 = ‖b‖2

0 − 〈p,b〉
2
0.

Then

‖∇fb(p)‖2
0 =
‖b‖2

0 − 〈p,b〉
2
0

g4(p)
. (1)

Furthermore, ∆0g(p) = −n〈p,b〉0 and

∆0fb(p) =
n〈p,b〉0
g2(p)

+
2
(
‖b‖2

0 − 〈p,b〉
2
0

)
g3(p)

. (2)

Inserting (1) and (2) into (EQ2) we get the validity of (EQ2).
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Theorem 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two compact marginally

trapped spacelike immersed submanifold contained in Λ+.

There exists a conformal diffeomorphism Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)
such that ψ = ψb ◦Ψ, where fb : Sn → (0,+∞) is

fb(p) =
1

〈p,b〉0 +
√

1 + ‖b‖2
0

for some fixed vector b ∈ Rn+1 and ψb : Sn→Λ+ ⊂ Sn+2
1 is the embedding

ψb(p) = (fb(p), fb(p)p, 1).

In particular, Σ is embedded.
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Proof:

From our previous discussion, the proof of Theorem 1 reduces to
find the positive solutions of the differential equation

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0

on (Sn, 〈, 〉) , where 〈, 〉 = f 2〈, 〉0.

Here we are denoting by ‖ · ‖2, ∇ and ∆ the norm, the gradient and
the Laplacian operator on Sn with respect to the conformal metric
〈, 〉.
We also know from Corollary 1 that (Sn, 〈, 〉) has constant scalar
curvature n(n − 1).

From a classical result by Obata (1971), a conformal metric on the
Euclidean sphere Sn has constant scalar curvature n(n − 1) if and
only if it has constant sectional curvature 1.

Therefore, (Sn, 〈, 〉) has constant sectional curvature 1.
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The problem becomes equivalent to solving the Yamabe problem
on the unit round sphere.

That is, finding the positive functions f on Sn for which the
conformal metric f 2〈, 〉0 has constant sectional curvature 1.

Obata proved that the conformal metric f 2〈, 〉0 is obtained from 〈, 〉0
by a conformal diffeomorphism of the unit round sphere.

In particular, the conformal factor f is the conformal factor of a
conformal diffeomorphism of the unit round sphere.

Recall that, up to orthogonal transformations, every conformal
diffeomorphism of (Sn, 〈, 〉0) is given by

Fc(p) =
p + (µ〈p, c〉0 + λ)c

λ(1 + 〈p, c〉0)

for all p ∈ Sn, where c ∈ Bn+1, Bn+1 the open unit ball in Rn+1, and

λ = (1− ‖c‖2
0)−1/2 and µ = (λ− 1)‖c‖2

0.
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A direct computation shows that the conformal factor f of Fc is
given by

f (p) =

√
1− ‖c‖2

0

1 + 〈p, c〉0
for c ∈ Bn+1

Equivalently,

f (p) =

√
1− ‖c‖2

0

1 + 〈p, c〉0
=

1

〈p,b〉0 +
√

1 + ‖b‖2
0

with
b =

c√
1− ‖c‖2

0

∈ Rn+1.

This completes the proof of Theorem 1.

�
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Past infinity of steady state

Fix a null vector a ∈ Ln+3, a 6= 0. Our null hypersurface in Sn+2
1 is

L = {x ∈ Sn+2
1 : 〈a, x〉 = 0}

Without loss of generality we may assume that a is past-pointing,
〈a, e0〉 > 0. The open region

Hn+2 = {x ∈ Sn+2
1 : 〈x , a〉 > 0}.

is the steady state model of the universe.

The steady state space has as boundary the null hypersurface L,
which represents the past infinity of Hn+2, usually denoted by J−.

Let ψ : Σn → Sn+2
1 be a codimension-two spacelike submanifold and

define the function u : Σ→ (0,+∞) by u = −〈ψ, e0〉.
Assume that ψ(Σ) is contained in J−.
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Normal null frame

In these conditions

ξ = −a and η = −1 + ‖∇u‖2 + u2

2〈a, e0〉2
ξ +

1

〈a, e0〉
e⊥0

are two future-pointing null normal vector fields globally defined on Σ
with 〈ξ, η〉 = −1.

Null shape operators

The corresponding null second forms associated to the global null frame
{ξ, η} are given by

Aξ = 0 and Aη =
1

〈a, e0〉
(∇2u + uI ).

Verónica L. Cánovas Trapped submanifolds in de Sitter space



Introduction
Null hypersurfaces in de Sitter spacetime

A uniqueness result on compact manifolds

Marginally trapped submanifolds into the light cone
Marginally trapped submanifolds into J−

Normal null frame

In these conditions

ξ = −a and η = −1 + ‖∇u‖2 + u2

2〈a, e0〉2
ξ +

1

〈a, e0〉
e⊥0

are two future-pointing null normal vector fields globally defined on Σ
with 〈ξ, η〉 = −1.

Null shape operators

The corresponding null second forms associated to the global null frame
{ξ, η} are given by

Aξ = 0 and Aη =
1

〈a, e0〉
(∇2u + uI ).

Verónica L. Cánovas Trapped submanifolds in de Sitter space



Introduction
Null hypersurfaces in de Sitter spacetime

A uniqueness result on compact manifolds

Marginally trapped submanifolds into the light cone
Marginally trapped submanifolds into J−

In particular, the null expansions are θξ = 1
n tr(Aξ) = 0 and

θη =
1

n
tr(Aη) =

1

n〈a, e0〉
(∆u + nu).

Therefore,

H = − 1

n〈a, e0〉
(∆u + nu)ξ

and Σ is always marginally trapped except at points where
∆u + nu = 0 (if any), where it is minimal.

Corollary 2

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two spacelike submanifold

which is contained in the past infinite of the steady state space. The Σ
is always marginally trapped, except at points where ∆u + nu = 0 (if
any), u = −〈ψ, e0〉, where it is minimal.
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Example 3

For each smooth function f : Sn→R, consider the embedding
φf : Sn→J− ⊂ Sn+2

1 given by

φf (p) = (f (p), p, f (p)).

It is not difficult to see that for every v,w ∈ TpSn

〈d(φf )p(v), d(φf )p(w)〉 = 〈v,w〉0,
〈, 〉0 the standard metric of the round sphere.

That is φ∗f (〈, 〉) = 〈, 〉0, which means that φf defines a spacelike
isometric immersion of the round sphere into J−.

Moreover, φf is marginally trapped except at points (if any) where

∆0f + nf = 0.

on Sn with respect to the pointwise conformal metric f 2〈, 〉0.
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Proposition 2

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J−.

Then Σ is compact and there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φf ◦Ψ where f = u ◦Ψ−1 with u = −〈ψ, e0〉 = ψ0, and
φf is the embedding

φf (p) = (f (p), p, f (p)).

Σn u //

Φ
��

R

Sn
f

>>

Ψ

OO Σn ψ //

Φ

��

J− ⊂ Sn+2
1

Sn
φf

99

Ψ

OO

In particular, the immersion ψ is an embedding and it is always
marginally trapped except at points where ∆u + nu = 0 (if any), where
it is minimal.
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Proof:
Let ψ : Σn → J− ⊂ Sn+2

1 be a codimension-two spacelike
submanifold contained in J−.

Assume without loss of generality that a = (−1, 0 . . . , 0,−1).Then ψ(p) = (u(p), ψ1(p), . . . , ψn+1(p), u(p)) with
n+1∑
i=1

ψ2
i (p) = 1.

Define the function Ψ : Σn → Sn by

Ψ(p) = (ψ1(p), . . . , ψn+1(p)).

For every p ∈ Σ and v,w ∈ TpΣ, we have

〈dΨp(v), dΨp(w)〉0 = 〈v,w〉.

That is, the map
Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

is a local isometry.
Therefore, if we assume Σ to be complete, Sn being simply
connected, we conclude that Ψ is in fact a global isometry.

�
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Corollary 3

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J− and having parallel mean curvature vector.

Then Σ is compact and there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φb,c ◦Ψ, where φb,c : Sn→J− ⊂ Sn+2
1 is the embedding

φb,c(p) = (〈p,b〉0 + c , p, 〈p,b〉0 + c).

for any b ∈ Rn+1 and c ∈ R.
Moreover:

(i) Σ is minimal if and only if c = 0.

(ii) Σ is future marginally trapped if and only if c < 0.

(iii) Σ is past marginally trapped if and only if c > 0.
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Proof:

Since 〈a, e0〉 = 1, it follows that

H =
1

n
(∆u + nu)a. (3)

Then, H is parallel if and only if ∆u + nu = constant on (Σ, 〈, 〉).

Equivalently, H is parallel if and only if ∆0f + nf = constant on
(Sn, 〈, 〉0).

Therefore, the Laplacian of f satisfies ∆0f = −n(f − c) for a certain
constant c .

That is,
∆0%+ n% = 0

where % = f − c .
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That is,
∆0%+ n% = 0

where % = f − c .

This implies that either % ≡ 0 or % ∈ Spec(Sn, 〈, 〉0) is a first
eigenfunction of the round sphere.

In the first case f ≡ c is constant (which corresponds to b = 0).

In the second case, %(p) = 〈p,b〉0 for some fixed vector b ∈ Rn+1,
b 6= 0, and

f (p) = 〈p,b〉0 + c .

The last assertions follow from (3) since H = ca, with a
past-pointing.

�
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Corollary 4

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J−.

Σ is minimal if and only if there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φb ◦Ψ, where φb : Sn→J− ⊂ Sn+2
1 is the embedding

φb(p) = (〈p,b〉0, p, 〈p,b〉0).

for any b ∈ Rn+1.
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A uniqueness result for the marginally trapped type
equation on compact manifolds

Motivated by the geometric meaning of the solutions to the partial
differential equation 2u∆u − n(1 + ‖∇u‖2 − u2) = 0, we establish
the following intrinsic uniqueness result for this equation.

Theorem 2

Let (Σ, 〈, 〉) be a compact, Riemannian manifold of dimension n ≥ 2 and
Ricci curvature satisfying

Ric ≥ K

for some constant K > (n − 1).
The only positive solution to the partial differential equation

2u∆u − n(1 + ‖∇u‖2 − u2) = 0 (MT)

on Σ is the constant function u ≡ 1.
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Proof:
Consider the vector field

V = u−(n−1)

(
1

2
∇‖∇u‖2 − ∆u

n
∇u
)
.

The divergence of V is given by

div(V ) =u−(n−1)

(
1

2
∆‖∇u‖2 − 1

n
((∆u)2 + 〈∇∆u,∇u〉)

)
− n − 1

2
u−n〈∇‖∇u‖2,∇u〉 − n − 1

n
u−n∆u‖∇u‖2.

(4)

Bochner-Lichnerowicz formula states that

1

2
∆‖∇u‖2 = ‖∇2u‖2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u).

Using this into (4) jointly with (MT) we obtain

div(V ) =u−(n−1)

(
‖∇2u‖2 − (∆u)2

n

)
+ u−(n−1)

(
Ric(∇u,∇u)− (n − 1)‖∇u‖2

)
.
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∆‖∇u‖2 = ‖∇2u‖2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u).

Using this into (4) jointly with (MT) we obtain

div(V ) =u−(n−1)

(
‖∇2u‖2 − (∆u)2

n

)
+ u−(n−1)

(
Ric(∇u,∇u)− (n − 1)‖∇u‖2

)
.
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Integrating this and using the divergence theorem we obtain∫
Σ

u−(n−1)

(
‖∇2u‖2 − (∆u)2

n
+ Ric(∇u,∇u)− (n − 1)‖∇u‖2

)
= 0.

(5)

We know from Cauchy-Schwarz inequality that

‖∇2u‖2 − (∆u)2

n
≥ 0,

with equality if and only if ∇u is a conformal vector field on Σ.

On the other hand, from Ric ≥ K we also have

Ric(∇u,∇u)− (n − 1)‖∇u‖2 ≥ (K − (n − 1))‖∇u‖2 ≥ 0

Therefore, from (5) we conclude that ‖∇2u‖2 − (∆u)2

n = 0, and

Ric(∇u,∇u)− (n − 1)‖∇u‖2 = (K − (n − 1))‖∇u‖2 = 0.

Since K > (n − 1), this last equation implies that u is constant and,
by (MT) it must be u ≡ 1.

�
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That’s all !!

Thanks a lot for your attention...
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