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Parabolicity: analytical approach. Liouville’s Theorem

Parabolicity: analytical approach. Liouville’s Theorem I

Theorem (Liouville)

Let us suppose that u : Rn → R is harmonic (∆u = 0) and
bounded. Then u is constant.

Remark

We say that Rn satisfies the Liouville’s property.

In R2, if u is subharmonic, (∆u ≥ 0), and bounded then u is
constant. Parabolicity.

In Rn, with n ≥ 3, there are non-constant and bounded
subharmonic functions.
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Parabolicity: analytical approach. Liouville’s Theorem

Parabolicity: analytical approach. Liouville’s Theorem II

Definition

A non-compact, complete n-dimensional manifold M is parabolic if
and only if every subharmonic and bounded function defined on it
is constant. If such non-constant function exists, then M is
hyperbolic.

Remark (Question 1)

Let M be a complete Riemannian manifold M. To give a geometric
description, (volume growth, curvature assumptions, etc.) for
parabolicity/hyperbolicity?
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Geometric conditions for parabolicity

Geometric conditions for parabolicity I

Theorem (L.V. Ahlfors, Com. Math. Helvet., 32, 1935)

Let M2
w = [0,∞)×w S1

1 be a complete 2-dimensional rotationally
symmetric manifold. Then M2

w is parabolic iff
∫∞

0
dr

Vol(Sw
r ) =∞.

Theorem (L. Karp, N. Varopoulos, A. Grigor’yan, 1983)

Let Mn be a complete Riemannian manifold. Then if, for some
point x ∈ M,

∫
M

r
Vol(Br (x)) dr =∞, M is parabolic.

In particular, if Vol(Br (x)) ≤ Cr 2, (M is of quadratic volume
growth), then M is parabolic.
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Geometric conditions for parabolicity

Geometric conditions for parabolicity II

Theorem (J. Milnor, Amer. Math. Monthly 84, 1987)

Let M2
w = [0,∞)×w S1

1 be a complete 2-dimensional rotationally
symmetric manifold. The Gaussian curvature of M2

w , K (r), is a
radial function of the distance to the center of this space.
(A) Let us suppose that K (r) ≥ − 1

r2logr
for r large. Then M2

w is
parabolic.
(B) Let us suppose that there exists ε > 0 such that
K (r) ≤ − 1+ε

r2logr
for r large. Then M2

w is hyperbolic.
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Geometric conditions for parabolicity

Geometric conditions for parabolicity III

Theorem ( K. Ichihara, Nagoya Math. J. 87, 1982)

(A) Let M2 be a complete 2-dimensional Riemannian manifold. If∫
M |KM |dσ <∞, then M2 is parabolic.

(B) Let Mn be a complete n-dimensional Riemannian manifold. If
KM ≥ KMn

w
and

∫∞
0

dr
Vol(Sw

r ) =∞, then M is parabolic.

(C) Let Mn be a complete n-dimensional Riemannian manifold. If
KM ≤ KMn

w
and

∫∞
0

dr
Vol(Sw

r ) <∞, then M is hyperbolic.
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Some examples in R3

Some examples in R3 I

Costa’s surface,
quadratic volume
growth, parabolic

	  

P-Schwartz surface,
hyperbolic,
(universal cover H2)

Catenoid, quadratic
volume growth,
parabolic

V. Palmer, UJI results in collaboration with: A. Hurtado, Univ. Granada S. Markvorsen, DTUExtrinsic isoperimetry, estimates for the capacity and parabolicity of submanifolds



Capacity and Parabolicity of Manifolds Extrinsic isoperimetry in submanifolds Capacity and Parabolicity of submanifolds

Some examples in R3

Some examples in R3 II

Helicoid, parabolic,
(conformally
difeomorphic to the
plane)

Scherk singly
periodic, quadratic
volume growth,
parabolic

Scherk doubly
periodic, hyperbolic,
(Thomassen et al)
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Some examples in R3

Some examples in R3 III

Hyperboloid of two
sheets, finite total
curvature, parabolic

Hyperbolic
paraboloid, finite
total curvature,
parabolic

15/02/12 13:47Google Image Result for http://upload.wikimedia.org/wikipedia/co…umb/4/4a/HyperbolicParaboloid.png/220px-HyperbolicParaboloid.png
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Parabolicity: physical approach. Capacity

Parabolicity: physical approach. Capacity I

Definition

Let N be a Riemmannian manifold. Let Ω ⊂ N be a precompact
subset of N, and K ⊆ Ω a compact subset. Then, the capacity of
K in Ω is given as the following integral:

Cap(K ,Ω) =

∫
Ω
‖∇φ‖2 dσ =

∫
∂K
〈∇Pφ, ν〉dµ

where ν is the unit normal to ∂K pointing into Ω− K and φ is the
solution of the Laplace equation on Ω− Kwith Dirichlet boundary
values: 

∆u = 0
u |∂Ω= 1
u |∂K = 0
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Parabolicity: physical approach. Capacity

Parabolicity: physical approach. Capacity II

Definition

Let N be a complete Riemmannian manifold. Let Ω ⊂ N be a
precompact subset of N. Let us consider {Ωi}∞i=1 an exhaustion of
N by nested and precompact sets, such that Ω ⊆ Ωi for some i .

Then, the capacity of Ω in all the manifold, (the capacity at
infinity denoted as Cap(Ω,N)) is given as the following limit:

Cap(Ω,N) = lim
i→∞

Cap(Ω,Ωi )

V. Palmer, UJI results in collaboration with: A. Hurtado, Univ. Granada S. Markvorsen, DTUExtrinsic isoperimetry, estimates for the capacity and parabolicity of submanifolds



Capacity and Parabolicity of Manifolds Extrinsic isoperimetry in submanifolds Capacity and Parabolicity of submanifolds

Parabolicity: physical approach. Capacity

Parabolicity: physical approach. Capacity III

Remark

This definition is independent of the exhaustion.

Cap(K ,Ω) decreases on expanding of Ω and on shrinking of
K.
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Parabolicity: the Kelvin-Nevanlinna-Royden Criterion

Parabolicity: the Kelvin-Nevanlinna-Royden Criterion I

Theorem (Lyons, Sullivan, 1984)

The Riemannian manifold M is hyperbolic iff some of the following
equivalent conditions holds:

1 M admits a non-constant and bounded subharmonic function

2 M has positive capacity, i.e., there exists a non-empty
precompact D ⊆ M such that Cap(D,M) > 0. Thence, M is
parabolic iff there exists D ⊆ M such that Cap(D,M) = 0.

3 The Brownian motion defined on M is transient.
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Extrinsic isoperimetry in submanifolds

Submanifolds I

Remark (Question 2)

Assume ϕ : Pm −→ Nn is an isometric immersion of a
complete non-compact Riemannian m-manifold Pm into a
complete Riemannian manifold Nn with a pole o ∈ N.

Do we have something to say about extrinsic curvatures and
capacity estimates, (hence, parabolicity of submanifolds)?
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Extrinsic distance

Extrinsic distance I

Let ϕ : Pm −→ Nn be an isometric immersion of a complete
non-compact Riemannian m-manifold Pm into a complete
Riemannian manifold Nn with a pole o ∈ N.

A pole is a point o such that the exponential map

expo : ToNn → Nn

is a diffeomorphism.
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Extrinsic distance

Extrinsic distance II

For every x ∈ Nn − {o} we define r(x) = ro(x) = distN(o, x),
and this distance is realized by the length of a unique geodesic
from o to x , which is the radial geodesic from o.

We also denote by r |P or by r the composition
r ◦ ϕ : P → R+ ∪ {0}. This composition is called the extrinsic
distance function from o in Pm.

Let ϕ : Pm −→ Nn be a C∞-immersion. Then ϕ is proper iff
ϕ−1(K ) is compact in P for all compact K in N. Roughly
speaking: when we “go to infinity” in P, then we also “go to
infinity” in the ambient manifold N.
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Extrinsic distance

Extrinsic distance III

Definition

Given ϕ : Pm −→ Nn an isometric immersion and N complete
Riemannian manifold Nn with a pole o ∈ N.
Define the extrinsic metric balls of radius t > 0 and center o ∈ N
as

Dt(o) = {x ∈ P : r(ϕ(x)) < t} = {x ∈ P : ϕ(x) ∈ BN
t (o)}

= ϕ−1(BN
t (o))

where BN
t (o) is the open geodesic t-ball centered at the pole o in

Nn. Note that the set ϕ−1(o) can be the empty set.
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Extrinsic distance

Extrinsic distance IV

The extrinsic balls are precompact sets, with smooth boundary
∂Dt , for a dense set of radius t in R by the Regular Value
Theorem and by the Morse-Sard Theorem.

Extrinsic ball in the
Helicoid

 

Extrinsic balls in
Costa’s surface and
the helicoid
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Model spaces

Model spaces I

Definition

A w−model Mm
w is a smooth warped product [0,R[×ωSm−1

1 , with
w(0) = 0, w ′(0) = 1, and w(r) > 0 for all r > 0 . The point
ow = π−1(0), where π denotes the projection onto [0,R[, is called
the center point of the model space. If R =∞, then ow is a pole
of Mm

w .

Remark

Mean curvature of geodesic

spheres Sw
r is ηω(r) = ω′(r)

ω(r)
Sectional curvatures of radial
planes are K (σx ) = −ω′′(r(x))

ω(r(x))
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Extrinsic isoperimetry

Extrinsic isoperimetry I

Theorem ( A. Hurtado, S. Markvorsen, V. Palmer, 2009 )

Let Nn be complete with a pole and with KN ≤ −w ′′(r)
w(r) .

Let ϕ : Pm −→ Nn be C∞, complete and proper immersion.
Suppose that −〈HP ,∇N r〉(x) ≤ h(r(x)) ∀x ∈ P, ( HP is the mean
curvature vector of P). Then

Vol(∂Dr )

Vol(Dr )
≥ Vol(SW

r )

Vol(BW
r )
∀ r > 0

and Vol(Dr )
Vol(BW

r )
is non-decreasing in [0,+∞), with BW

r ( resp. SW
r )

the geodesic r -ball, (resp. the geodesic r -sphere), in Mm
W .
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Extrinsic isoperimetry

Extrinsic isoperimetry II

Proof: Construction of a comparison model space

Mm
W = [0,R[×ωSm−1

1 , with W (r) = Λ
1

m−1 (r) satisfying

d

dr
(Λ(r)w(r)) = mΛ(r)(w ′(r)− h(r)w(r))

d

dr
|r=0Λ

1
m−1 (r) = 1

This new model space Mm
W must satisfy in addition a balance

condition with respect the bound h(r) for the radial mean
curvature of P and the function w(r), namely

Vol(BW
r )

Vol(SW
r )

(
w ′(r)

w(r)
− h(r)) ≥ 1

m
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Extrinsic isoperimetry

Extrinsic isoperimetry III

If P is minimal, then h(r) = 0, W (r) = w(r) and the balance

condition is satisfied when −w ′′(r)
w(r) ≤ 0, which includes

Cartan-Hadamard manifolds.

In particular, when w(r) = wb(r) = 1√
−b

sinh
√
−br , then

Mm
wb

= Hm(b), the Hyperbolic space. When
w(r) = w0(r) = r , then Mm

wo
= Rm, the Euclidean space.
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Extrinsic isoperimetry and estimates for the capacity

Extrinsic isoperimetry and estimates for the capacity I

Theorem ( S. Markvorsen, V. Palmer, 2003)

Let Pm be a complete and minimal submanifold properly immersed
in a Cartan-Hadamard manifold Nn with sectional curvatures
KN ≤ b ≤ 0. Then

Cap(Dρ,DR) ≥ Cap(Bb,m
ρ ,Bb,m

R )

with Bm,b
r is the geodesic r -ball in Hm(b) or Rm. Hence, if b < 0,

Cap(Dρ,P) ≥ Cap(Bb,m
ρ ,Hm)

≥
(m − 1) Vol(S0,m−1

1 )

(
√
−b)m−2(sinh(

√
−bρ))1−m)

> 0

so P is hyperbolic, for m ≥ 2.
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Extrinsic isoperimetry and estimates for the capacity

Extrinsic isoperimetry and estimates for the capacity I
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Extrinsic isoperimetry and estimates for the capacity

Extrinsic isoperimetry and estimates for the capacity:
sketch of the Proof I

Key idea of the proof: Our (geometric ) approach uses a covering
exhaustion of the (sub)-manifold by extrinsic metric balls {Dt}t∈R.
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Extrinsic isoperimetry and estimates for the capacity

Extrinsic isoperimetry and estimates for the capacity:
sketch of the Proof II
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Extrinsic isoperimetry and estimates for the capacity

The ambient space Nn satisfies KN ≤ b = −w ′′b
wb

, so, as P is
minimal, then W (r) = wb(r) and Mm

wb
will be the Hyperbolic

space or the Euclidean space.

The solution of 
∆Mm

w ψ = 0 on [ρ,R]
ψ(ρ) = 0
ψ(R) = 1

is (radial) ψρ,R(r) where ψ′ρ,R(r) ≥ 0

To transplant ψρ,R(r) to the annulus in P determined by the
extrinsic balls Aρ,R = DR(o) \ D̄ρ(o).
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Extrinsic isoperimetry and estimates for the capacity

Use Greene and Wu’s comparison for the Hessian of the
distance function r and that ψ′ρ,R(r) ≥ 0. Then

∆Pψρ,R(r(x)) ≥ 0 = ∆Pv(x)

where v(x) is the solution of the Laplace equation in
Aρ,R = DR \ Dρ.

Applying Maximum Principle,

ψρ,R(r(x)) − v(x) ≤ 0 , ∀ x ∈ Aρ,R

and ψρ,R(r(x)) ≤ v(x) , ∀ x ∈ Aρ,R .

V. Palmer, UJI results in collaboration with: A. Hurtado, Univ. Granada S. Markvorsen, DTUExtrinsic isoperimetry, estimates for the capacity and parabolicity of submanifolds



Capacity and Parabolicity of Manifolds Extrinsic isoperimetry in submanifolds Capacity and Parabolicity of submanifolds

Extrinsic isoperimetry and estimates for the capacity

Then

Cap(Aρ,R) =

∫
∂Dρ

‖∇Pv(x)‖ dν ≥
∫
∂Dρ

‖∇PΨρ,R‖ dµ

= ψ′ρ,R(ρ)

∫
∂Dρ

‖∇P r‖ dµ.

We have
∫
∂Dρ
‖∇P r‖ dµ ≥ Vol(Sb,m−1

ρ ) using the
isoperimetric inequality

Vol(∂Dr )

Vol(Dr )
≥ Vol(Sb,m−1

r )

Vol(Bb,m
r )
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Extrinsic isoperimetry and estimates for the capacity

Hence

Cap(Aρ,R) ≥ ψ′ρ,R(ρ)

∫
∂Dρ

‖∇P r‖ dµ

≥ ψ′ρ,R(ρ) Vol(Sb,m−1
ρ ) = Cap(Bb,m

ρ ,Bb,m
R )
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A generalization of Ichihara’s theorem

A generalization of Ichihara’s theorem I

Theorem ( S. Markvorsen, V. Palmer, 2005)

Nn complete with a pole o. Suppose Ko,N (σx ) ≤ −ω
′′(r)
ω(r) , ∀x.

Pm complete, properly immersed in N with
−〈HP ,∇N r〉(x) ≤ h(r(x)) ≤ ηω(r) ∀r . Then, if

∫ ∞
ρ

Gm(r)

ωm−1(r)
dr <∞ where G(r) = exp(

∫ r

ρ

h(t) dt)

we have that Pm es hyperbolic.

⇒

Theorem (Ichihara, 1982)

Let Mn be a complete n-dimensional
Riemannian manifold. If KM ≤ KMn

w

and
∫∞

0
dr

Vol(Sw
r ) <∞, then M is

hyperbolic.

⇓

Theorem (Ahlfors, 1934)

Let M2
w = [0,∞)×w S1

1 be a
complete 2-dimensional rotationally
symmetric manifold. Then M2

w is

parabolic iff
∫∞

0
dr

Vol(Sw
r ) =∞.

⇓

Theorem (Markvorsen-Palmer, 2003)

Pm complete, minimal, properly immersed in Nn

(Cartan-Hadamard), with Ksec ≤ b ≤ 0.

Pm is hyperbolic if, either (b < 0 y m ≥ 2), or
(b = 0 y m ≥ 3).
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A generalization of Ichihara’s theorem

A generalization of Ichihara’s theorem: sketch of the Proof
I

Given w(r) and h(r), define
Lψ(r) = ψ′′(r) + ψ′(r) ((m − 1)ηw (r)−mh(r)) on radial
functions ψ(r)

The solution of 
Lψ = 0 on [ρ,R]

ψ(ρ) = 0
ψ(R) = 1

is ψρ,R(r) =

∫ r
ρ Λ(t) dt∫ R
ρ Λ(t) dt

, where ψ′ρ,R(r) = Λ(ρ)
(∫ R

ρ Λ(t) dt
)−1

and Λ(r) = Gm(r)
ωm−1(r)

with G(r) = exp(
∫ r
ρ h(t)) dt.
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A generalization of Ichihara’s theorem

A generalization of Ichihara’s theorem: sketch of the Proof
II

It is straightforward to check that

0 ≤ ψρ,R(r) ≤ 1 ∀r ∈ [0,R]and ∀R > 0

To transplant ψρ,R(r) to the annulus in P determined by the
extrinsic balls Aρ,R = DR(o) \ D̄ρ(o). Then use Greene and
Wu’s comparison for the Hessian of the distance function r
and that ψ′ρ,R(r) ≥ 0. Then

∆Pψρ,R(r(x)) ≥ 0 = ∆Pv(x)

where v(x) is the solution of the Laplace equation in
Aρ,R = DR \ Dρ. Hence ψρ,R(r(x)) is subharmonic ∀R > 0
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A generalization of Ichihara’s theorem: sketch of the Proof
III

On the other hand, fixing x ∈ P such that r(x) > ρ, we have
that {ψρ,R(r(x))}R>ρ is decreasing because
d

dRψρ,R(r(x)) = −Λ(R)
∫ r(x)
ρ Λ(t) ≤ 0 ∀R.

Then, define ψρ : P \ D̄ρ(o) −→ R as

ψρ(x) := limR→∞

∫ r(x)
ρ Λ(t) dt∫ R
ρ Λ(t) dt

Well defined, non-constant, bounded and subharmonic.
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Thank you
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