Extrinsic isoperimetry, estimates for the capacity and parabolicity of submanifolds

V. Palmer, UJI

results in collaboration with:

A. Hurtado, Univ. Granada S. Markvorsen, DTU

November 21, 2012

Index of the Talk I

- Capacity and Parabolicity of Manifolds:
 - Parabolicity: analytical approach. Liouville's Theorem.
 - Geometric conditions for parabolicity
 - \bullet Some examples in \mathbb{R}^3
 - Parabolicity: physical approach. Capacity.
 - Parabolicity: the Kelvin-Nevanlinna-Royden Criterion
- 2 Extrinsic isoperimetry in submanifolds
- Opacity and Parabolicity of submanifolds
 - Extrinsic isoperimetry and estimates for the capacity
 - A generalization of Ichihara's theorem

Parabolicity: analytical approach. Liouville's Theorem

Capacity and Parabolicity of Manifolds

Parabolicity: analytical approach. Liouville's Theorem I

Theorem (Liouville)

Let us suppose that $u : \mathbb{R}^n \to \mathbb{R}$ is harmonic $(\Delta u = 0)$ and bounded. Then u is constant.

Remark

- We say that \mathbb{R}^n satisfies the Liouville's property.
- In \mathbb{R}^2 , if u is subharmonic, $(\Delta u \ge 0)$, and bounded then u is constant. Parabolicity.
- In \mathbb{R}^n , with $n \geq 3$, there are non-constant and bounded subharmonic functions.

Parabolicity: analytical approach. Liouville's Theorem

Parabolicity: analytical approach. Liouville's Theorem II

Definition

A non-compact, complete n-dimensional manifold M is parabolic if and only if every subharmonic and bounded function defined on it is constant. If such non-constant function exists, then M is hyperbolic.

Remark (Question 1)

Let M be a complete Riemannian manifold M. To give a geometric description, (volume growth, curvature assumptions, etc.) for parabolicity/hyperbolicity?

Geometric conditions for parabolicity I

Theorem (L.V. Ahlfors, Com. Math. Helvet., 32, 1935)

Let $M_w^2 = [0, \infty) \times_w S_1^1$ be a complete 2-dimensional rotationally symmetric manifold. Then M_w^2 is parabolic iff $\int_0^\infty \frac{dr}{Vol(S_v^w)} = \infty$.

Theorem (L. Karp, N. Varopoulos, A. Grigor'yan, 1983)

Let M^n be a complete Riemannian manifold. Then if, for some point $x \in M$, $\int_M \frac{r}{\operatorname{Vol}(B_r(x))} dr = \infty$, M is parabolic.

In particular, if $Vol(B_r(x)) \leq Cr^2$, (M is of quadratic volume growth), then M is parabolic.

Geometric conditions for parabolicity II

Theorem (J. Milnor, Amer. Math. Monthly 84, 1987)

Let $M_w^2 = [0, \infty) \times_w S_1^1$ be a complete 2-dimensional rotationally symmetric manifold. The Gaussian curvature of M_w^2 , K(r), is a radial function of the distance to the center of this space.

- (A) Let us suppose that $K(r) \ge -\frac{1}{r^2 log r}$ for r large. Then M_w^2 is parabolic.
- (B) Let us suppose that there exists $\epsilon > 0$ such that $K(r) \leq -\frac{1+\epsilon}{r^2 \log r}$ for r large. Then M_w^2 is hyperbolic.

Geometric conditions for parabolicity III

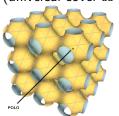
Theorem (K. Ichihara, Nagoya Math. J. **87**, 1982)

- (A) Let M^2 be a complete 2-dimensional Riemannian manifold. If $\int_M |K_M| d\sigma < \infty$, then M^2 is parabolic.
- (B) Let M^n be a complete n-dimensional Riemannian manifold. If $K_M \geq K_{M_w^n}$ and $\int_0^\infty \frac{dr}{Vol(S_r^w)} = \infty$, then M is parabolic.
- (C) Let M^n be a complete n-dimensional Riemannian manifold. If $K_M \leq K_{M_w^n}$ and $\int_0^\infty \frac{dr}{Vol(S_w^n)} < \infty$, then M is hyperbolic.

Some examples in \mathbb{R}^3 I

Costa's surface, quadratic volume growth, parabolic

P-Schwartz surface, hyperbolic, (universal cover \mathbb{H}^2)

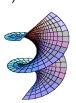


Catenoid, quadratic volume growth, parabolic

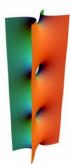


Some examples in \mathbb{R}^3 II

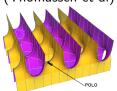
Helicoid, parabolic, (conformally difeomorphic to the plane)



Scherk singly periodic, quadratic volume growth, parabolic



Scherk doubly periodic, hyperbolic, (Thomassen et al)



Capacity and Parabolicity of Manifolds

Some examples in \mathbb{R}^3 III

Hyperboloid of two sheets, finite total curvature, parabolic

Hyperbolic paraboloid, finite total curvature, parabolic

Parabolicity: physical approach. Capacity I

Definition

Let N be a Riemmannian manifold. Let $\Omega \subset N$ be a precompact subset of N, and $K \subseteq \Omega$ a compact subset. Then, the *capacity* of K in Ω is given as the following integral:

$$extit{Cap}(K,\Omega) = \int_{\Omega} \left\|
abla \phi
ight\|^2 d\sigma = \int_{\partial K} \langle
abla^P \phi,
u
angle d\mu$$

where ν is the unit normal to ∂K pointing into $\Omega - K$ and ϕ is the solution of the Laplace equation on $\Omega - K$ with Dirichlet boundary values:

$$\left\{ \begin{array}{l} \Delta u = 0 \\ u \mid_{\partial \Omega} = 1 \\ u \mid_{\partial K} = 0 \end{array} \right.$$

Parabolicity: physical approach. Capacity

Parabolicity: physical approach. Capacity II

Definition

Let N be a complete Riemmannian manifold. Let $\Omega \subset N$ be a precompact subset of N. Let us consider $\{\Omega_i\}_{i=1}^{\infty}$ an exhaustion of N by nested and precompact sets, such that $\Omega \subseteq \Omega_i$ for some i.

Then, the capacity of Ω in all the manifold, (the *capacity at infinity* denoted as $Cap(\Omega, N)$) is given as the following limit:

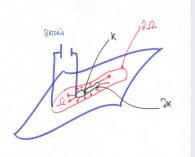
$$Cap(\Omega, N) = \lim_{i \to \infty} Cap(\Omega, \Omega_i)$$

Parabolicity: physical approach. Capacity

Parabolicity: physical approach. Capacity III

Remark

- This definition is independent of the exhaustion.
- $Cap(K,\Omega)$ decreases on expanding of Ω and on shrinking of K.



Parabolicity: the Kelvin-Nevanlinna-Royden Criterion I

Theorem (Lyons, Sullivan, 1984)

The Riemannian manifold M is hyperbolic iff some of the following equivalent conditions holds:

- 1 M admits a non-constant and bounded subharmonic function
- ② M has positive capacity, i.e., there exists a non-empty precompact $D \subseteq M$ such that Cap(D, M) > 0. Thence, M is parabolic iff there exists $D \subseteq M$ such that Cap(D, M) = 0.
- **3** The Brownian motion defined on M is transient.

Submanifolds I

Remark (Question 2)

- Assume $\varphi: P^m \longrightarrow \mathbb{N}^n$ is an isometric immersion of a complete non-compact Riemannian m-manifold P^m into a complete Riemannian manifold \mathbb{N}^n with a pole $o \in \mathbb{N}$.
- Do we have something to say about extrinsic curvatures and capacity estimates, (hence, parabolicity of submanifolds)?

Extrinsic distance I

- Let $\varphi: P^m \longrightarrow N^n$ be an isometric immersion of a complete non-compact Riemannian m-manifold P^m into a complete Riemannian manifold N^n with a pole $o \in N$.
- A pole is a point o such that the exponential map

$$\exp_o : T_o N^n \to N^n$$

is a diffeomorphism.

Extrinsic distance II

- For every $x \in N^n \{o\}$ we define $r(x) = r_o(x) = \operatorname{dist}_N(o, x)$, and this distance is realized by the length of a unique geodesic from o to x, which is the *radial geodesic from* o.
- We also denote by r|_P or by r the composition r ∘ φ : P → ℝ₊ ∪ {0}. This composition is called the *extrinsic* distance function from o in P^m.
- Let $\varphi: P^m \longrightarrow N^n$ be a C^{∞} -immersion. Then φ is proper iff $\varphi^{-1}(K)$ is compact in P for all compact K in N. Roughly speaking: when we "go to infinity" in P, then we also "go to infinity" in the ambient manifold N.

Extrinsic distance III

Definition

Given $\varphi: P^m \longrightarrow N^n$ an isometric immersion and N complete Riemannian manifold N^n with a pole $o \in N$.

Define the *extrinsic metric balls* of radius t > 0 and center $o \in N$ as

$$D_t(o) = \{x \in P : r(\varphi(x)) < t\} = \{x \in P : \varphi(x) \in B_t^N(o)\}\$$

= $\varphi^{-1}(B_t^N(o))$

where $B_t^N(o)$ is the open geodesic t-ball centered at the pole o in N^n . Note that the set $\varphi^{-1}(o)$ can be the empty set.

Extrinsic distance IV

Capacity and Parabolicity of Manifolds

 The extrinsic balls are precompact sets, with smooth boundary ∂D_t , for a dense set of radius t in \mathbb{R} by the Regular Value Theorem and by the Morse-Sard Theorem.

Extrinsic ball in the Helicoid

Extrinsic balls in Costa's surface and the helicoid

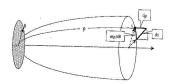
Model spaces I

Definition

A w-model M_w^m is a smooth warped product $[0, R[\times_\omega \mathbb{S}_1^{m-1}, \text{ with } w(0) = 0, \ w'(0) = 1, \ \text{and } w(r) > 0 \ \text{ for all } r > 0 \ \text{.}$ The point $o_w = \pi^{-1}(0)$, where π denotes the projection onto [0, R[, is called the *center point* of the model space. If $R = \infty$, then o_w is a pole of M_w^m .

Remark

Mean curvature of geodesic spheres S_r^w is $\eta_\omega(r) = \frac{\omega'(r)}{\omega(r)}$ Sectional curvatures of radial planes are $K(\sigma_x) = -\frac{\omega''(r(x))}{\omega(r(x))}$



Extrinsic isoperimetry I

Capacity and Parabolicity of Manifolds

Theorem (A. Hurtado, S. Markvorsen, V. Palmer, 2009)

Let N^n be complete with a pole and with $K_N \leq -\frac{w''(r)}{w(r)}$. Let $\varphi: P^m \longrightarrow N^n$ be C^{∞} , complete and proper immersion. Suppose that $-\langle H_P, \nabla^N r \rangle(x) \leq h(r(x)) \ \forall x \in P$, (H_P is the mean curvature vector of P). Then

$$\frac{\operatorname{Vol}(\partial D_r)}{\operatorname{Vol}(D_r)} \ge \frac{\operatorname{Vol}(S_r^W)}{\operatorname{Vol}(B_r^W)} \ \forall \ r > 0$$

and $\frac{\operatorname{Vol}(D_r)}{\operatorname{Vol}(B_r^W)}$ is non-decreasing in $[0,+\infty)$, with B_r^W (resp. S_r^W) the geodesic r-ball, (resp. the geodesic r-sphere), in M_W^m .

Extrinsic isoperimetry II

• Proof: Construction of a comparison model space $M_W^m = [0, R[\times_\omega \mathbb{S}_1^{m-1}, \text{ with } W(r) = \Lambda^{\frac{1}{m-1}}(r) \text{ satisfying}$

$$\frac{d}{dr}(\Lambda(r)w(r)) = m\Lambda(r)(w'(r) - h(r)w(r))$$

$$\frac{d}{dr}|_{r=0}\Lambda^{\frac{1}{m-1}}(r) = 1$$

• This new model space M_W^m must satisfy in addition a balance condition with respect the bound h(r) for the radial mean curvature of P and the function w(r), namely

$$\frac{\operatorname{Vol}(B_r^W)}{\operatorname{Vol}(S_r^W)}(\frac{w'(r)}{w(r)} - h(r)) \ge \frac{1}{m}$$

Extrinsic isoperimetry III

- If P is minimal, then h(r) = 0, W(r) = w(r) and the balance condition is satisfied when $-\frac{w''(r)}{w(r)} \le 0$, which includes Cartan-Hadamard manifolds.
- In particular, when $w(r) = w_b(r) = \frac{1}{\sqrt{-b}} \sinh \sqrt{-b}r$, then $M_{w_b}^m = \mathbb{H}^m(b)$, the Hyperbolic space. When $w(r) = w_0(r) = r$, then $M_{w_a}^m = \mathbb{R}^m$, the Euclidean space.

Extrinsic isoperimetry and estimates for the capacity I

Theorem (S. Markvorsen, V. Palmer, 2003)

Let P^m be a complete and minimal submanifold properly immersed in a Cartan-Hadamard manifold N^n with sectional curvatures $K_N \leq b \leq 0$. Then

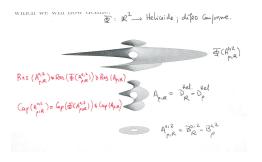
$$Cap(D_{
ho},D_R)\geq Cap(B_{
ho}^{b,m},B_R^{b,m})$$

with $B_r^{m,b}$ is the geodesic r-ball in $\mathbb{H}^m(b)$ or \mathbb{R}^m . Hence, if b < 0,

$$egin{aligned} extit{Cap}(D_
ho,P) &\geq extit{Cap}(B_
ho^{b,m},\mathbb{H}^m) \ &\geq rac{(m-1)\operatorname{Vol}(S_1^{0,m-1})}{(\sqrt{-b})^{m-2}(\sinh(\sqrt{-b}
ho))^{1-m})} > 0 \end{aligned}$$

so P is hyperbolic, for $m \ge 2$.

Extrinsic isoperimetry and estimates for the capacity I



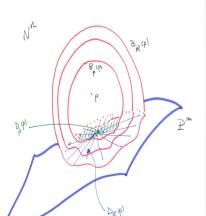
Capacity and Parabolicity of Manifolds

Extrinsic isoperimetry and estimates for the capacity: sketch of the Proof I

Key idea of the proof: Our (geometric) approach uses a covering exhaustion of the (sub)-manifold by extrinsic metric balls $\{D_t\}_{t\in\mathbb{R}}$.

Capacity and Parabolicity of Manifolds

Extrinsic isoperimetry and estimates for the capacity: sketch of the Proof II



- The ambient space N^n satisfies $K_N \leq b = -\frac{w_b''}{w_b}$, so, as P is minimal, then $W(r) = w_b(r)$ and $M_{w_b}^m$ will be the Hyperbolic space or the Euclidean space.
- The solution of

$$\left\{ \begin{array}{ll} \Delta^{M_w^m}\psi=0 & \text{on } [\rho,R] \\ \psi(\rho)=0 \\ \psi(R)=1 \end{array} \right.$$

is (radial)
$$\psi_{\rho,R}(r)$$
 where $\psi_{\rho,R}'(r) \geq 0$

• To transplant $\psi_{\rho,R}(r)$ to the annulus in P determined by the extrinsic balls $A_{\rho,R} = D_R(o) \setminus \bar{D}_{\rho}(o)$.

• Use Greene and Wu's comparison for the Hessian of the distance function r and that $\psi'_{\rho,R}(r) \geq 0$. Then

$$\Delta^P \psi_{\rho,R}(r(x)) \ge 0 = \Delta^P v(x)$$

where v(x) is the solution of the Laplace equation in $A_{\rho,R}=D_R\setminus D_{\rho}.$

Applying Maximum Principle,

$$\psi_{\rho,R}(r(x)) - v(x) \leq 0$$
, $\forall x \in A_{\rho,R}$

and
$$\psi_{\rho,R}(r(x)) \leq v(x)$$
, $\forall x \in A_{\rho,R}$.

Then

$$Cap(A_{\rho,R}) = \int_{\partial D_{\rho}} \|\nabla^{P} v(x)\| d\nu \ge \int_{\partial D_{\rho}} \|\nabla^{P} \Psi_{\rho,R}\| d\mu$$
$$= \psi'_{\rho,R}(\rho) \int_{\partial D_{\rho}} \|\nabla^{P} r\| d\mu.$$

• We have $\int_{\partial D_{\rho}} \|\nabla^{P} r\| d\mu \ge \operatorname{Vol}(S_{\rho}^{b,m-1})$ using the isoperimetric inequality

$$\frac{\operatorname{Vol}(\partial D_r)}{\operatorname{Vol}(D_r)} \geq \frac{\operatorname{Vol}(S_r^{b,m-1})}{\operatorname{Vol}(B_r^{b,m})}$$

Hence

$$egin{aligned} extit{Cap}(A_{
ho,R}) &\geq \psi_{
ho,R}'(
ho) \int_{\partial D_
ho} \|
abla^{
ho} r\| \, d\mu \ &\geq \psi_{
ho,R}'(
ho) \operatorname{Vol}(S^{b,m-1}_
ho) = extit{Cap}(B^{b,m}_
ho, B^{b,m}_R) \end{aligned}$$

A generalization of Ichihara's theorem I

Theorem (S. Markvorsen, V. Palmer, 2005)

 N^n complete with a pole o. Suppose $K_{o,N}(\sigma_x) \leq -\frac{\omega''(r)}{\omega'(r)}, \forall x$. P^m complete, properly immersed in N with $-\langle H_P, \nabla^N r \rangle(x) < h(r(x)) < \eta_\omega(r) \ \forall r.$ Then, if

$$\int_{\rho}^{\infty} \frac{\mathcal{G}^{\textit{m}}(\textit{r})}{\omega^{\textit{m}-1}(\textit{r})} \, \textit{dr} < \infty \ \textit{where} \ \mathcal{G}(\textit{r}) = \exp(\int_{\rho}^{\textit{r}} \textit{h}(\textit{t}) \, \textit{dt})$$

we have that Pm es hyperbolic.

Theorem (Markvorsen-Palmer, 2003)

P^m complete, minimal, properly immersed in Nⁿ (Cartan-Hadamard), with $K_{sec} < b < 0$.

 P^m is hyperbolic if, either $(b < 0 \ y \ m > 2)$, or $(b = 0 \ v \ m > 3).$

Theorem (Ichihara, 1982)

Let Mⁿ be a complete n-dimensional Riemannian manifold. If $K_M \leq K_{M,n}$ and $\int_0^\infty \frac{dr}{Vol(S_x^W)} < \infty$, then M is hyperbolic.

Theorem (Ahlfors, 1934)

Let $M_w^2 = [0, \infty) \times_w S_1^1$ be a complete 2-dimensional rotationally symmetric manifold. Then M_w² is parabolic iff $\int_0^\infty \frac{dr}{Vol(S_v^W)} = \infty$.

A generalization of Ichihara's theorem: sketch of the Proof

- Given w(r) and h(r), define $L\psi(r)=\psi''(r)+\psi'(r)\left((m-1)\eta_w(r)-mh(r)\right)$ on radial functions $\psi(r)$
- The solution of

$$\begin{cases} L\psi = 0 \text{ on } [\rho, R] \\ \psi(\rho) = 0 \\ \psi(R) = 1 \end{cases}$$

is
$$\psi_{\rho,R}(r) = \frac{\int_{\rho}^{r} \Lambda(t) dt}{\int_{\rho}^{R} \Lambda(t) dt}$$
, where $\psi'_{\rho,R}(r) = \Lambda(\rho) \left(\int_{\rho}^{R} \Lambda(t) dt\right)^{-1}$ and $\Lambda(r) = \frac{\mathcal{G}^{m}(r)}{\omega^{m-1}(r)}$ with $\mathcal{G}(r) = \exp(\int_{\rho}^{r} h(t)) dt$.

A generalization of Ichihara's theorem

A generalization of Ichihara's theorem: sketch of the Proof

• It is straightforward to check that

$$0 \le \psi_{\rho,R}(r) \le 1 \ \forall r \in [0,R]$$
 and $\forall R > 0$

• To transplant $\psi_{\rho,R}(r)$ to the annulus in P determined by the extrinsic balls $A_{\rho,R}=D_R(o)\setminus \bar{D}_\rho(o)$. Then use Greene and Wu's comparison for the Hessian of the distance function r and that $\psi'_{\rho,R}(r)\geq 0$. Then

$$\Delta^P \psi_{\rho,R}(r(x)) \geq 0 = \Delta^P v(x)$$

where v(x) is the solution of the Laplace equation in $A_{\rho,R} = D_R \setminus D_{\rho}$. Hence $\psi_{\rho,R}(r(x))$ is subharmonic $\forall R > 0$

A generalization of Ichihara's theorem

A generalization of Ichihara's theorem: sketch of the Proof Ш

- On the other hand, fixing $x \in P$ such that $r(x) > \rho$, we have that $\{\psi_{\rho,R}(r(x))\}_{R>\rho}$ is decreasing because $\frac{d}{dR}\psi_{o,R}(r(x)) = -\Lambda(R) \int_{0}^{r(x)} \Lambda(t) \leq 0 \ \forall R.$
- Then, define $\psi_{\rho}: P \setminus \bar{D}_{\rho}(o) \longrightarrow \mathbb{R}$ as

$$\psi_{\rho}(x) := lim_{R \to \infty} \frac{\int_{\rho}^{r(x)} \Lambda(t) dt}{\int_{\rho}^{R} \Lambda(t) dt}$$

Well defined, non-constant, bounded and subharmonic.

Capacity and Parabolicity of Manifolds A generalization of Ichihara's theorem

Thank you