Cubic minimal cone 00000000000 Cubic Jordan algebras 000000 Non-calssical solutions

Cubic minimal cones and Jordan algebras

Vladimir Tkachev

Linköping University

Non-calssical solutions 000

Introduction 0000000	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
	00000000000	000000	000
Entire solu	utions		

Bernstein's theorem, 1916

Any solution $u(x_1, x_2)$ of the minimal surface equation (=MSE)

$$H[u] := \Delta u + \Delta_1 u$$
$$= (1 + |Du|^2)\Delta u - \frac{1}{2}Du \cdot (D|Du|^2) = 0$$

defined in the whole \mathbb{R}^2 is an affine function: $u(x) = \mathbf{x} \cdot \mathbf{a} + b$.

Here H(u) stands for the mean curvature operator and

$$\Delta_p u := |Du|^2 \Delta u + \frac{p-2}{2} Du \cdot D|Du|^2$$

is the p-Laplace operator.

Introduction 0000000	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
	00000000000	000000	000
Entire solu	itions		

The "Bernstein property" (= B.P.) for $n \ge 3$

- ▶ W.H. Fleming (1962) and E. De Giorgi (1965): to prove the B.P. for solutions in \mathbb{R}^n is sufficed to check that no non-trivial minimal cones existed in \mathbb{R}^n .
- There are no minimal cones in \mathbb{R}^n for $n \leq 7$: Fleming n = 3 (1962), F.J. Almgren n = 4 (1966), and J. Simons $n \leq 7$ (1968).
- ▶ In 1969, E. Bombieri, E. De Giorgi and E. Giusti found the first non-affine entire solution of the minimal surface equation

 $(1+|Du|^2)\Delta u - \frac{1}{2}Du \cdot (D|Du|^2) = 0, \qquad x \in \mathbb{R}^8.$

The construction heavily depends on certain properties of the quadratic minimal (Clifford–Simons) cones over $\mathbb{S}^3 \times \mathbb{S}^3$, namely

$$\{(x, y) \in \mathbb{R}^4 \times \mathbb{R}^4 : |x|^2 - |y|^2 = 0\}.$$

More examples in \mathbb{R}^n , $n \geq 8$, were found by L. Simon (1989).

▶ There is no explicit representation available for the constructed examples.

Introduction 0000000	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
	0000000000	000000	000
Some imp	ortant questions	S	

▶ Why 8?

▶ Is it possible to provide any explicit entire (non-affine) solution of MSE?

▶ Are there any polynomial solutions of MSE?

Introduction
0000000

Cubic minimal cones

Cubic Jordan algebras 000000 Non-calssical solutions

Some more motivations

Doubly and triply periodic examples in the Minkowski space-times $\mathbb{R}^{1,2}$ and $\mathbb{R}^{1,3}$ due to V. Sergienko and V.Tk. (2001), and J. Hoppe (1995), resp.

A fourfold periodic minimal hypersurface in \mathbb{R}^4 , V.Tk. (2008)

Let $s(x): \mathbb{R} \to [-1, 1]$ be the Jacobi sinus of modulus $\sqrt{-1}$, i.e. $s'^2(t) = 1 - s^4(t)$, $s(t + \omega) = -s(t)$, where $\omega = \frac{\Gamma(\frac{1}{4})^2}{2\sqrt{2\pi}}$. Then

 $M = \{ x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : s(x_1)s(x_2) - s(x_3)s(x_4) = 0 \},\$

is an embedded minimal 4-periodic minimal hypersurface in \mathbb{R}^4 with isolated Clifford cone type singularities at the vertices of a periodic lattice Λ :

$$x_1x_2 - x_3x_4 = 0$$
 or $x_1^2 + x_2^2 = x_3^2 + x_4^2$.

Let $\Gamma \subset O(4)$ be the stabilizer of Λ . Then M is Γ -invariant.

Remark. The proof uses the following Jacobi sinus function identity:

$$\begin{split} S(Ax) &= Q(x)S(x+h\omega), \quad h = \frac{1}{2}(1,1,1,1) \in \mathbb{R}^4\\ \text{where } Q(x) \neq 0 \text{ is bounded in } \mathbb{R}^4 \text{ and}\\ S(x) &= s(x_1)s(x_2) - s(x_3)s(x_4). \end{split}$$

Introduction 000000	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
	0000000000	000000	000
and a	few more motiva	tions	

- embedded minimal hypersurfaces in \mathbb{R}^n with conic singularities;
- minimal hypersurfaces in the spheres;
- searching for explicit entire solutions of MSE;

. . .

Introduction	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
Eigencubi	CS		

Suppose *u* is a homogeneous polynomial, deg $u = k \ge 2$ then the cone $u^{-1}(0)$ is minimal if and only if *u* divides $\Delta_1 u$, i.e.

$$\Delta_1 u = |Du|^2 \Delta u - \frac{1}{2} Du \cdot (D|Du|^2) \equiv 0 \mod u \tag{1}$$

W. Hsiang, J. Diff. Geom., 1(1967)

Problem 1. How does one classify irreducible minimal cubic forms in n variables, $n \geq 4$, with respect to the natural action of O(n)? Or we may ask a weaker question, namely, whether there are always irreducible minimal cubic forms in n variables for all $n \geq 4$.

 $[\ldots]$ For example, it is very difficult to classify irreducible cubic forms in n variables such that

$$\Delta_1 u = |Du|^2 \Delta u - \frac{1}{2} Du \cdot (D|Du|^2) = \lambda |x|^2 u(x).$$

Problem 2. For a given dimension $n, n \ge 4$, are there irreducible homogeneous polynomials in n real variables of *arbitrary high degree*, which give minimal cones of codimension one in \mathbb{R}^n ? Or, if the degree is bounded, how does one express the bound in terms of n?

Problem 3. Are there any closed minimal submanifolds of codimension one in \mathbb{S}^m which are not algebraic? Or, if possible, show that every closed minimal submanifold of codimension one in \mathbb{S}^m is algebraic.

Cubic minimal cones

Cubic Jordan algebras 000000 Non-calssical solutions

Definition

A polynomial solution of $\Delta_1 u \equiv 0 \mod u$ is called an **eigenfunction**.

An eigenfunction of $\deg u = 3$ is called an **eigencubic**.

A solution of $\Delta_1 u(x) = \lambda |x|^2 \cdot u$ is called a **radial** eigencubic.

Cubic minimal cones

Cubic Jordan algebras 200000

Definition

A polynomial solution of $\Delta_1 u \equiv 0 \mod u$ is called an **eigenfunction**. An eigenfunction of deg u = 3 is called an **eigencubic**. A solution of $\Delta_1 u(x) = \lambda |x|^2 \cdot u$ is called a **radial** eigencubic.

- any *linear* function is an eigenfunction of Δ_1 ;
- ▶ the only quadratic eigenfunctions are $u(x) = (q-1)(x_1^2 + \ldots + x_p^2) - (p-1)(x_{p+1}^2 + \ldots + x_n^2), \quad p+q = n.$

▶ in degree $k \ge 3$ the main difficulty is the absence of any normal form;

▶ some eigenfunctions of deg u = 3, 4, 6 sporadically distributed in \mathbb{R}^n were found in 1960s-1970s.

In what follows, we always suppose that $\deg u = 3$.

Remark. Observe that two cubic forms u_1 and u_2 produces two congruent cones in \mathbb{R}^n if and only if they are **congruent**, i.e.

$$u_2(x) = C \cdot u_1(Ox), \qquad O \in O(n).$$

・ロト ・回ト ・ヨト

Introduction 0000000	Cubic minimal cones $000000000000000000000000000000000000$	Cubic Jordan algebras 000000	Non-calssical solutions
0000000	000000000	000000	000
Hsiang's t	rick		

Let $\mathfrak{G}'(k,\mathbb{R})$ be the real vector space of quadratic forms of k real variables with **trace zero**:

$$\mathfrak{G}'(k,\mathbb{R}) \cong \operatorname{Herm}'_{k}(\mathbb{R}) \cong \mathbb{R}^{N}, \qquad \text{where } N := \frac{(k-1)(k+2)}{2} \\ \uparrow \qquad \uparrow \\ O(k) \hookrightarrow O(N)$$

▶ $\mathfrak{G}'(k, \mathbb{R})$ is invariant under action of O(k) as substitutions

• $det(x + \lambda \mathbf{1}) = \lambda^k + b_2(x)\lambda^{k-2} + \ldots + b_k(x)$ is a basic O(k)-invariant:

 $\mathbb{R}[x_1,\ldots,x_N]^{O(k)} = \mathbb{R}[b_2,\ldots,b_k]$

▶ it is well-known that Δ_1 is O(N)-invariant; in particular, if u is an invariant polynomial with respect to $O(k) \hookrightarrow O(N)$, then so also is $\Delta_1 u$, therefore

 $\Delta_1: \mathbb{R}[b_2, \ldots, b_k] \to \mathbb{R}[b_2, \ldots, b_k];$

• in view of $\deg \Delta_1 b_3 = 5$ one has

$$\Delta_1 b_3 = c_1 \cdot b_2 b_3 + c_2 \cdot b_5,$$

and it follows that for $k \leq 4$

$$\Delta_1 b_3 = c_1 b_2 \cdot b_3$$

i.e. b_3 is an eigenfunction!

Introduction 0000000	Cubic minimal cones $000000000000000000000000000000000000$	Cubic Jordan algebras 000000	Non-calssical solutions 000
Hsiang	g's trick: $k = 3$		
For		= 1 and deg $ Db_3 ^2 = 4$, hence ${}_{3}b_2^2 = c_3 x ^4$ and $\Delta b_3 = 0$.	
É. C	artan (1938)		
The	only cubic polynomial solut	ions of	
	Du(x)	$^{2} = 9 x ^{4}, \qquad \Delta u(x) = 0$	(2)
are			
u_{i}	$l(x) := rac{3\sqrt{3}}{2} \det \begin{pmatrix} x_2 - rac{1}{\sqrt{3}} \\ z_1 \\ z_2 \end{pmatrix}$	$egin{array}{cccc} x_1 & ar{z}_1 & ar{z}_2 \ & -x_2 - rac{1}{\sqrt{3}} x_1 & ar{z}_3 \ & z_3 & rac{2}{\sqrt{3}} x_1 \end{array} ight),$	$x \in \mathbb{R}^{3d+2},$ (3)
when	e $z_k \in \mathbb{R}^d \cong \mathbb{F}_d$ is the real d	livision algebra of dimension d	$\in \{1, 2, 4, 8\}.$
		to u_1 . nogeneity of u_d and (2) implies $\frac{1}{2}Du_d \cdot D Du_d ^2 = -54 x ^2u_d.$	

Thus, **all** u_d are eigencubics in $\mathbb{R}^5, \mathbb{R}^8, \mathbb{R}^{14}, \mathbb{R}^{26}$.

(日) (四) (王) (王)

Introduction	Cubic minimal cones $000000000000000000000000000000000000$	Cubic Jordan algebras	Non-calssical solutions
0000000		000000	000
Hsiang's	trick: $k = 4$		

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

0000000 TT···	00000000	000000	000
Hsiang's 1	trick: $k = 4$		

For k = 4 one obtains the **Hsiang eigencubic** in \mathbb{R}^9 given by

 $h_1(x) = b_3(X) \sim \operatorname{tr} X^3,$

where

$$X = \begin{pmatrix} x_1 - \frac{x_2}{\sqrt{3}} - \frac{x_3}{\sqrt{6}} & \bar{z}_4 & \bar{z}_5 & \bar{z}_6 \\ z_4 & -x_1 - \frac{x_2}{\sqrt{3}} - \frac{x_3}{\sqrt{6}} & \bar{z}_7 & \bar{z}_8 \\ z_5 & z_7 & \frac{2x_2}{\sqrt{3}} - \frac{x_3}{\sqrt{6}} & \bar{z}_9 \\ z_6 & z_8 & z_9 & \frac{\sqrt{2}x_3}{\sqrt{3}} \end{pmatrix}, \quad z_i \in \mathbb{R}$$

Remarks.

- **(**) In fact, one still has a similar result for h_d for $z_i \in \mathbb{F}_d$ and d = 1, 2, 4, but not for d = 8.
- 2 By the Allison-Faulkner (1980) 'extracting Jordan algebras theorem':

$$h_1(x) \cong \det \begin{pmatrix} x_1' & x_2' & x_3' \\ x_4' & x_5' & x_6' \\ x_7' & x_8' & x_9' \end{pmatrix}$$

< E

	Cubic minimal cones	Cubic Jordan algebras	
0000000	0000000000	000000	000
Clifford e	igencubics		

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Introduction	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
0000000		000000	000
Clifford of	eigencubics		

Start with the Lawson cubic (1970)

$$\begin{split} u &= \operatorname{Im} v^2 w = 2 x_1 x_2 x_3 + x_4 (x_1^2 - x_2^2), \\ & \text{where} \quad v = x_1 + x_2 i, \; w = x_3 + x_4 i \\ &= x_3 \cdot v^\top \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) v + x_4 \cdot v^\top \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) v \end{split}$$

In general, given a **Clifford system**, i.e. a family $\mathcal{A} = \{A_i\}_{0 \le i \le q}$ of self-adjoint endomorphisms of \mathbb{R}^{2m} s.t.

$$A_i A_j + A_j A_i = 2\delta_{ij} \cdot \mathbf{1}_{\mathbb{R}^{2m}},$$

we define

$$u_{\mathcal{A}} = v^{\top} A_w v := v^{\top} (\sum_{i=0}^q A_i w_i) v, \qquad x = (v, w) \in \mathbb{R}^{2m} \times \mathbb{R}^{q+1}.$$

Remark. An obstruction to the existence of a Clifford system is $\delta(q)|m$, where

イロト イヨト イヨト イヨト

Introduction	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
0000000		000000	000
Clifford e	eigencubics		

Classification of Clifford eigencubics, [Tka10b]

- $u_{\mathcal{A}}$ is an eigencubic: $\Delta_1 u_{\mathcal{A}} = -8|x|^2 u;$
- ▶ u_A and u_B are congruent iff the Clifford systems A and B are geometrically equivalent;
- the pair (q, m) (called the **index**) is an inner invariant of $u_{\mathcal{A}}$;
- ▶ the number of congruence classes of Clifford eigencubics of index (q, m) is 1 if $q \neq 0 \pmod{4}$, and $\lfloor m/2\delta(q) \rfloor + 1$ if $q \equiv 0 \pmod{4}$;
- ▶ the following trace formula holds:

$$tr(D^2 u)^3 = -24(q-1)u.$$

Practically, the index is restored from u by

$$q = 1 + \frac{|x|^2 \cdot \operatorname{tr}(D^2 u)^3}{\Delta_1 u}, \qquad m = n - q - 1.$$

Radial ei	gencubics		
Introduction	Cubic minimal cones $0000000 \bullet 000$	Cubic Jordan algebras 000000	Non-calssical solutions

In summary: all known irreducible eigencubics are radial eigencubics, i.e.

$$\Delta_1 u(x) = \lambda |x|^2 \cdot u \tag{4}$$

A D > A D >

Remark. There exist, however, non-radial reducible eigencubics, e.g.,

$$u = x_5(2x_1^2 + 2x_2^2 - x_3^2 - x_4^2 - x_5^2),$$

which satisfies

$$\Delta_1 u = Q \cdot u,$$

with

$$Q(x) = -12(2x_1^2 + 2x_2^2 + x_3^2 + x_4^2 + 3x_5^2) \neq \lambda |x|^2.$$

Problem. Do there exist *irreducible* eigencubics?

→ ∃ →

Introduction 0000000	Cubic minimal cones $000000000000000000000000000000000000$	Cubic Jordan algebras 000000	Non-calssical solutions 000
Radial e	gencubics		
	<u> </u>		
Definitio	n		
		ord eigencubic if it is congru	ent to some $u_{\mathcal{A}}$.
Otherwis	e, u is called exceptional .		

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

roduction	Cubic minimal cones $000000000000000000000000000000000000$	Cubic Jordan algebras 000000	Non-calssical solutions
adial ei	gencubics		
Definition			
	igencubic u is called Cliffo , u is called exceptional .	ord eigencubic if it is congru	ent to some $u_{\mathcal{A}}$.
Propostio	n		
The Carta	an eigencubic u_d is exception	onal.	
Proof. In	deed, suppose in some orth	nogonal coordinates,	
	$u_d(x) = C \cdot v^\top A_w v$	$v, C \in \mathbb{R}, \ x = (v, w) \in \mathbb{R}^n$	
that $ Du_d $	$ a ^2$ is at most quadratic in $ a ^2 = 9 x ^4$. A contradiction and $ x ^4$ are orthogonal	<i>w</i> -variables. On the other h follows because both the so invariants.	nand, we know quared norm of

(日) (四) (注) (注) (注) (注)

Introduction 0000000	Cubic minimal cones $000000000000000000000000000000000000$	Cubic Jordan algebras 000000	Non-calssical solution
Classifica	tion of radial eig	gencubics, I	

Theorem A [Tka10c]

- (a) Any radial eigencubic u is harmonic.
- (b) There exists $\mathbb{R}^n = V_{\xi} \oplus V_{\eta} \oplus V_{\zeta} \oplus \mathbb{R}e_n$ such that

 $u \cong x_n^3 + \frac{3}{2}x_n(-2\xi^2 - \eta^2 + \zeta^2) + \Psi_{030} + \Psi_{111} + \Psi_{102} + \Psi_{012},$

where $\Psi_{ijk} \in \xi^i \otimes \eta^j \otimes \zeta^k$.

- (c) $n = 3n_1 + 2n_2 1$, where dim $V_{\xi} = n_1$ and dim $V_{\eta} = n_2$;
- (d) The trace formula: $\operatorname{tr}(D^2 u)^3 = 3(n_1 1)\lambda \cdot u$.
- (e) A hidden Jordan algebra structure: $|D\Psi_{030}|^2 = 9|\eta|^4$.
- (f) A hidden Clifford algebra structure: $(n_2 + n_1 1) | \delta(n_1 1)$.

IntroductionCubic minimal cones
coococococoCubic Jordan algebras
cococococoNon-calssical solutions
cocClassification of radial eigencubics, I

Definition

It follows from (c) and (d) that the pair $(n_1, n_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ is an inner invariant of u, and is called the **type** of u.

Remark 1. The type of u is recovered by invariant formulae

$$n_1 = \frac{|x|^2 \cdot \operatorname{tr}(D^2 u)^3}{3\Delta_1 u} + 1, \qquad n_2 = \frac{n+1-3n_1}{2}.$$

Remark 2. A Clifford eigencubic $u_{\mathcal{A}}$ has type

 $(n_1, n_2) = (q, m + 1 - q).$

Remark 3. The only type is insufficient for determining whether a given radial eigencubic is exceptional or Clifford. For instance, there are radial eigencubics of both kinds having the same type $(n_1, n_2) = (1, 5)$.

Introduction	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
0000000	0000000000		000
A short e	xcursion into Jo	rdan algebras	

Seminario de Geometría

October 26, 2012

A short excursion into Jordan algebras

P. Jordan (1932): a program to discover a new algebraic setting for quantum mechanics by capture intrinsic algebraic properties of Hermitian matrices.

A Jordan (J.) algebra

J is vector space with a bilinear commutative product $\bullet:J\times J\to J$ satisfying the the Jordan identity

$$x^{2} \bullet (x \bullet y) = x \bullet (x^{2} \bullet y)$$

The algebra J is formally real if additionally $x^2 + y^2 = 0$ implies x = y = 0.

For any $x \in J$, the subalgebra J(x) generated by x is associative. The **rank** of J is $\max{\dim J(x) : x \in J}$ and the **minimum polynomial** of x is

 $m_x(\lambda) = \lambda^r - \sigma_1(x)\lambda^{r-1} + \ldots + (-1)^r \sigma_r(x)$ such that $m_x(x) = 0$.

 $\sigma_1(x) = \text{Tr } x = \text{the generic trace of } x,$ $\sigma_n(x) = N(x) = \text{the generic norm}$ (or generic determinant) of x.

Example 1. An associative algebra becomes a J. algebra with $x \bullet y = \frac{1}{2}(xy + yx)$.

Example 2. The Jordan algebra of $n \times n$ matrices over \mathbb{R} : rank x = n, Tr $x = \operatorname{tr} x$, $N(x) = \det x$.

イロト イポト イヨト イヨト

		Cubic Jordan algebras	
		00000	
Formally r	eal Jordan alge	bras	

Classification of formally real Jordan algebras

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Math., **1934**

Any (finite-dimensional) formally real J. algebra is a direct sum of the simple ones:

- the algebra $\mathfrak{h}_n(\mathbb{F}_1)$ of symmetric matrices over the reals;
- the algebra $\mathfrak{h}_n(\mathbb{F}_2)$ of Hermitian matrices over the complexes;
- the algebra $\mathfrak{h}_n(\mathbb{F}_4)$ of Hermitian matrices over the quaternions;
- the spin factors $\mathfrak{J}(\mathbb{R}^{n+1})$ with $(x_0, x) \bullet (y_0, y) = (x_0y_0 + \langle x, y \rangle; x_0y + y_0x);$
- **b** $\mathfrak{h}_3(\mathbb{F}_8)$, the Albert exceptional algebra.

In particular, the only possible formally real J. algebras J with rank(J) = 3 are:

a Jordan algebra	the norm of a trace free element
$J = \mathfrak{h}_3(\mathbb{F}_d), \ d = 1, 2, 4, 8$	$\sqrt{2}N(x) = u_d(x)$
$J = \mathbb{R} \oplus \mathfrak{J}(\mathbb{R}^{n+1})$	$\sqrt{2}N(x) = 4x_n^3 - 3x_n x ^2$
$J=\mathbb{F}_1^3=\mathbb{R}\oplus\mathbb{R}\oplus\mathbb{R}$	$\sqrt{2}N(x) = x_2^3 - 3x_2x_1^2$

According [Tka10a], the second column is exactly the only cubic solutions to

$$|Du(x)|^2 = 9|x|^4.$$

Does there exist any explicit correspondence between cubic solutions of the latter equation and formally real cubic Jordan algebras? $(\Box \mapsto \langle \overline{\Box} \rangle \land \overline{\Box} \Rightarrow \langle \overline{\Box} \rangle \Rightarrow \langle \overline{\Box} \rangle \Rightarrow \langle \overline{\Box} \rangle \land \Box \Rightarrow \langle \overline{\Box} \rangle \Rightarrow \langle \overline{\Box} \land \Box \rangle \Rightarrow \langle \overline{\Box} \rangle \Rightarrow \langle \overline{\Box}$

Cubic minimal cones 00000000000 Cubic Jordan algebras ○○●○○○ Non-calssical solutions

Cubic eiconals and cubic Jordan algebras

Theorem , N. Nadirashvili, S. Vlåduţ and V.T. [NTV12b]

Let u be a cubic solution of

$$Q(Du) = 9Q(x)^2$$

on a quadratic space (V, Q). Then the multiplication

$$(x_0, x) \bullet (y_0, y) = (x_0 y_0 + Q(x, y), x_0 y + y_0 x + \frac{1}{3\sqrt{2}} hess u(x, y)$$

turn $J_u := \mathbb{R} \oplus \mathbb{R}^n$ into a cubic Jordan algebra with the generic norm

$$N_u(x_0, x) = x_0^3 - \frac{3x_0Q(x)}{2} + \frac{u(x)}{\sqrt{2}}.$$

Conversely, if (J, N) is a cubic Jordan algebra then

$$u(x) = \sqrt{2}N(x), \qquad x \in \{x \in J_u : \text{Tr} \, x = 0\}.$$

Two solutions u_1 and u_2 are orthogonally equivalent if and only if the associated Jordan algebras J_{u_1} and J_{u_2} are isomorphic.

Introduction	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
0000000	0000000000	000●00	000
Classifica	tion of radial ei	rencubics II	

Theorem B, [Tka10c], [Tka12]

Let u be a radial eigencubic and let $\mathbb{R}^n = V_{\xi} \oplus V_{\eta} \oplus V_{\zeta} \oplus \mathbb{R}e_n$ be the associated orthogonal decomposition. Then there exists a natural Jordan algebra structure on $J := \mathbb{R}e_n \oplus V_{\eta}$ such that

$$|u(x)|_J = \operatorname{Tr}(x^3), \quad x \in J$$

where Tr is the generic trace on J. Moreover, the following conditions are equivalent:

u is an exceptional radial eigencubic;

- $\Psi_{030} \equiv u|_{V_n}$ is reducible;
- Ψ_{030} is harmonic and $n_2 \neq 2$;
- ▶ J is a **simple** Jordan algebra;
- $\operatorname{tr}(D^2 u)^2 = \operatorname{const} \cdot |x|^2$ and $n_2 \in \{0, 5, 8, 14, 26\}.$

In particular, a radial eigencubic is exceptional iff $tr(D^2 u)^2 = c|x|^2$ and $n_2 \in \{0, 5, 8, 14, 26\}$.

T.	1	1	2	3	5	9	0	1	2	4	0	1	2	5	9	0	1	3	1	3	7	
T.	2	0	0	0	0	0	5	5	5	5	8	8	8	8	8	14	14	14	26	26	26)
r	,	2	5	8	14	26	9	12	15	21	15	18	21	30	42	27	30	36	54	60	72	
									?				?	?	?			?	?	?	?	

Theorem C, [Tka10c]

Let u be a radial eigencubic in \mathbb{R}^n of type (n_1, n_2) and $n_2 \neq 0$. Then u is congruent to the cubic form

$$u = (|\xi|^2 - |\eta|^2)x_n + a(\xi,\zeta) + b(\eta,\zeta) + c(\xi,\eta,\zeta),$$
(5)

where

 $x = (\xi, \eta, \zeta, x_n) \in \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^{n-2m-1} \times \mathbb{R}^1$

and $a \in \xi \otimes \zeta^2$, $b \in \eta \otimes \zeta^2$, $c \in \xi \otimes \eta \otimes \zeta$. Moreover, the **quartic** polynomials

$$\begin{split} h_0(\xi,\eta) &:= (|\xi|^2 + |\eta|^2)^2 - 2|D_\zeta c|^2 \in \operatorname{Isop}(n_1 - 1, m - n_1), \\ h_1(\xi,\eta) &:= -|\xi|^4 + 6|\xi|^2|\eta|^2 - |\eta|^4 - 2|D_\zeta c|^2 \in \operatorname{Isop}(n_1, m - n_1 - 1). \end{split}$$

If f, in addition, is an **exceptional** eigencubic then m is uniquely defined by $m = d + n_1 + 1$, where $n_2 = 3d + 2$, $d \in \{1, 2, 4, 8\}$.

Remark. Combining the latter correspondence with the recent characterization of isoparametric hypersurfaces with 4 principal curvatures (by T. Cecil, Q.S.Chi, G. Jensen, S. Immerwoll), one obtains an obstruction to the existence of some exceptional families of radial eigencubics.

(D) (A) (A) (A) (A) (A)

Introduction	Cubic minimal cones	Cubic Jordan algebras	Non-calssical solutions
0000000	0000000000	○○○○○●	000
Radial ei	gencubics revisite	d	

A unified construction [Tka12]

Let W be a simple rank 3 Jordan algebra over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, and let $J \subset W$ be a simple (Jordan) subalgebra of W. Let $\mathbb{R}^n = W \ominus J$ be the Euclidean vector space equipped with the inner product $\langle x, y \rangle = \operatorname{Tr} x \overline{y}$. Then

$$u(x) := \operatorname{Re}\operatorname{Tr} x^3, \qquad x \in \mathbb{R}^n,$$

is an exceptional radial eigencubic.

Example 5. Consider $J = \mathfrak{h}_3(\mathbb{F}_1) \subset \mathfrak{h}_3(\mathbb{F}_8) = W$. Then $W \ominus J \cong \mathbb{R}^{21}$ is the vector space of matrices

$$x := \begin{pmatrix} 0 & z_3 & z_2 \\ -z_3 & 0 & z_1 \\ -z_2 & -z_1 & 0 \end{pmatrix}, \quad \bar{z}_i = -z_i \in \mathbb{F}_d = \mathbb{O},$$

hence $u := \operatorname{Re} \operatorname{Tr} x^3$ is an exceptional eigencubic in \mathbb{R}^{21} .

Introduction 0000000 Cubic minimal cones

Cubic Jordan algebras 000000 Non-calssical solutions

Singular solutions of fully-nonlinear PDE's

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <の<0</p>

Evans, Crandall, Lions, Jensen, Ishii: If $\Omega \subset \mathbb{R}^n$ is bounded with C^1 -boundary, ϕ continuous on $\partial\Omega$, F uniformly elliptic operator then the Dirichlet problem

 $F(D^2u) = 0, \text{ in } \Omega$ $u = \phi \text{ on } \partial \Omega$

has a unique viscosity solution $u \in C(\Omega)$;

- ▶ Krylov, Safonov, Trudinger, Caffarelli, early 80's: the solution is always $C^{1,\varepsilon}$
- ▶ Nirenberg, 50's: if n = 2 then u is classical (C^2) solution
- ▶ Nadirashvili, Vlăduţ, 2007: if n = 12 then there are solutions which are not C^2

		Cubic Jordan algebras	Non-calssical solutions
000000	0000000000	000000	000

In 2005–2011, N. Nadirashvili and S. Vlåduţ constructed (uniformly elliptic) Hessian equations with F(S) being smooth, homogeneous, depending only on the eigenvalues of S, and such that they have singular $C^{1,\delta}$ -solutions.

$$u(x) = rac{\operatorname{Re} z_1 z_2 z_3}{|x|}, \qquad x = (z_1, z_2, z_3),$$

where $z_i \in \mathbb{F}_d$, d = 4, 8 (quaternions, octonions), is a viscosity solution of a fully nonlinear uniformly elliptic equation. In fact,

$$u(x)=rac{N(x)}{|x|},\qquad x\in \mathfrak{h}_3(\mathbb{F}_d)\ominus \mathbb{R}^3$$

is an exceptional eigencubic.

▶ N.N., S.V., V.T. [NTV12a]:

$$u(x)=rac{N(x)}{|x|},\qquad x\in \mathfrak{h}_3(\mathbb{R})\oplus \mathbb{R}^1$$

is a non-classical solution in \mathbb{R}^5 .

Cubic minimal cone 00000000000 Cubic Jordan algebras 000000

Thank you!

N. Nadirashvili, V.G. Tkachev, and S. Vlăduţ, A non-classical solution to a Hessian equation from Cartan isoparametric cubic, Adv. Math. 231 (2012), no. 3-4, 1589–1597.

_____, preprint.

- V. G. Tkachev, A generalization of Cartan's theorem on isoparametric cubics, Proc. Amer. Math. Soc. **138** (2010), no. 8, 2889–2895.
- Minimal cubic cones via Clifford algebras, Complex Anal. Oper. Theory **4** (2010), no. 3, 685–700.
- , On a classification of minimal cubic cones, i, preprint (2010).
 - _____, On a classification of minimal cubic cones, ii, preprint (2012).