
Introduction Cubic minimal cones Cubic Jordan algebras Non-calssical solutions

Cubic minimal cones and Jordan algebras

Vladimir Tkachev
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Entire solutions

Bernstein’s theorem, 1916

Any solution u(x1, x2) of the minimal surface equation (=MSE)

H[u] := ∆u+ ∆1u

= (1 + |Du|2)∆u− 1

2
Du · (D|Du|2) = 0.

defined in the whole R2 is an affine function: u(x) = x · a + b.

Here H(u) stands for the mean curvature operator and

∆pu := |Du|2∆u+
p− 2

2
Du ·D|Du|2

is the p-Laplace operator.
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Entire solutions

The “Bernstein property” (= B.P.) for n ≥ 3

I W.H. Fleming (1962) and E. De Giorgi (1965): to prove the B.P. for solutions in
Rn is sufficed to check that no non-trivial minimal cones existed in Rn.

I There are no minimal cones in Rn for n ≤ 7: Fleming n = 3 (1962), F.J. Almgren
n = 4 (1966), and J. Simons n ≤ 7 (1968).

I In 1969, E. Bombieri, E. De Giorgi and E. Giusti found the first non-affine entire
solution of the minimal surface equation

(1 + |Du|2)∆u−
1

2
Du · (D|Du|2) = 0, x ∈ R8

.

The construction heavily depends on certain properties of the quadratic minimal
(Clifford–Simons) cones over S3 × S3, namely

{(x, y) ∈ R4 × R4
: |x|2 − |y|2 = 0}.

I More examples in Rn, n ≥ 8, were found by L. Simon (1989).

I There is no explicit representation available for the constructed examples.

Seminario de Geometŕıa October 26, 2012
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Some important questions

I Why 8?

I Is it possible to provide any explicit entire (non-affine) solution of
MSE?

I Are there any polynomial solutions of MSE?
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Some more motivations
Doubly and triply periodic examples in the Minkowski space-times R1,2 and R1,3 due to
V. Sergienko and V.Tk. (2001), and J. Hoppe (1995), resp.

A fourfold periodic minimal hypersurface in R4, V.Tk. (2008)

Let s(x) : R → [−1, 1] be the Jacobi sinus of modulus
√
−1, i.e. s′2(t) = 1− s4(t),

s(t+ ω) = −s(t), where ω =
Γ( 1

4
)2

2
√

2π
. Then

M = {x = (x1, x2, x3, x4) ∈ R4
: s(x1)s(x2)− s(x3)s(x4) = 0},

is an embedded minimal 4-periodic minimal hypersurface in R4 with isolated Clifford
cone type singularities at the vertices of a periodic lattice Λ:

x1x2 − x3x4 = 0 or x
2
1 + x

2
2 = x

2
3 + x

2
4.

Let Γ ⊂ O(4) be the stabilizer of Λ. Then M is Γ-invariant.

Remark. The proof uses the following Jacobi sinus function identity:

S(Ax) = Q(x)S(x+ hω), h = 1
2 (1, 1, 1, 1) ∈ R4

where Q(x) 6= 0 is bounded in R4 and

S(x) = s(x1)s(x2)− s(x3)s(x4).
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... and a few more motivations

I embedded minimal hypersurfaces in Rn with conic singularities;

I minimal hypersurfaces in the spheres;

I searching for explicit entire solutions of MSE;

. . .
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Eigencubics

Suppose u is a homogeneous polynomial, deg u = k ≥ 2 then the cone u−1(0) is
minimal if and only if u divides ∆1u, i.e.

∆1u = |Du|2∆u−
1

2
Du · (D|Du|2) ≡ 0 mod u (1)

W. Hsiang, J. Diff. Geom., 1(1967)

Problem 1. How does one classify irreducible minimal cubic forms in n variables,
n ≥ 4, with respect to the natural action of O(n))? Or we may ask a weaker question,
namely, whether there are always irreducible minimal cubic forms in n variables for all
n ≥ 4.

[...] For example, it is very difficult to classify irreducible cubic forms in n variables
such that

∆1u = |Du|2∆u−
1

2
Du · (D|Du|2) = λ|x|2u(x).

Problem 2. For a given dimension n, n ≥ 4, are there irreducible homogeneous
polynomials in n real variables of arbitrary high degree, which give minimal cones of
codimension one in Rn? Or, if the degree is bounded, how does one express the bound
in terms of n?

Problem 3. Are there any closed minimal submanifolds of codimension one in Sm
which are not algebraic? Or, if possible, show that every closed minimal submanifold of
codimension one in Sm is algebraic.
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Definition

A polynomial solution of ∆1u ≡ 0 mod u is called an eigenfunction.

An eigenfunction of deg u = 3 is called an eigencubic.

A solution of ∆1u(x) = λ|x|2 · u is called a radial eigencubic.

I any linear function is an eigenfunction of ∆1;

I the only quadratic eigenfunctions are

u(x) = (q − 1)(x21 + . . .+ x2p)− (p− 1)(x2p+1 + . . .+ x2n), p+ q = n.

I in degree k ≥ 3 the main difficulty is the absence of any normal form;

I some eigenfunctions of deg u = 3, 4, 6 sporadically distributed in Rn
were found in 1960s-1970s.

In what follows, we always suppose that deg u = 3.

Remark. Observe that two cubic forms u1 and u2 produces two congruent
cones in Rn if and only if they are congruent, i.e.

u2(x) = C · u1(Ox), O ∈ O(n).
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Hsiang’s trick

Let G′(k,R) be the real vector space of quadratic forms of k real variables with
trace zero:

G′(k,R) ∼= Herm′k(R) ∼= RN , where N :=
(k−1)(k+2)

2
↑ ↑

O(k) ↪→ O(N)

I G′(k,R) is invariant under action of O(k) as substitutions

I det(x+ λ1) = λk + b2(x)λk−2 + . . .+ bk(x) is a basic O(k)-invariant:

R[x1, . . . , xN ]O(k) = R[b2, . . . , bk]

I it is well-known that ∆1 is O(N)-invariant; in particular, if u is an invariant
polynomial with respect to O(k) ↪→ O(N), then so also is ∆1u, therefore

∆1 : R[b2, . . . , bk]→ R[b2, . . . , bk];

I in view of deg ∆1b3 = 5 one has

∆1b3 = c1 · b2b3 + c2 · b5,

and it follows that for k ≤ 4

∆1b3 = c1b2 · b3,

i.e. b3 is an eigenfunction!
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Hsiang’s trick: k = 3

For k = 3 one also has deg ∆b3 = 1 and deg |Db3|2 = 4, hence

|D b3|2 = c3b
2
2 = c3|x|4 and ∆b3 = 0.

É. Cartan (1938)

The only cubic polynomial solutions of

|Du(x)|2 = 9|x|4, ∆u(x) = 0 (2)

are

ud(x) :=
3
√

3

2
det

 x2 − 1√
3
x1 z̄1 z̄2

z1 −x2 − 1√
3
x1 z̄3

z2 z3
2√
3
x1

 , x ∈ R3d+2, (3)

where zk ∈ Rd ∼= Fd is the real division algebra of dimension d ∈ {1, 2, 4, 8}.

It follows that b3 is proportional to u1.

Remark. Alternatively, the homogeneity of ud and (2) implies

∆1ud = −
1

2
Dud ·D|Dud|2 = −54|x|2ud.

Thus, all ud are eigencubics in R5,R8,R14,R26.
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Hsiang’s trick: k = 4

For k = 4 one obtains the Hsiang eigencubic in R9 given by

h1(x) = b3(X) ∼ trX3,

where

X =


x1 − x2√

3
− x3√

6
z̄4 z̄5 z̄6

z4 −x1 − x2√
3
− x3√

6
z̄7 z̄8

z5 z7
2x2√

3
− x3√

6
z̄9

z6 z8 z9
√

2x3√
3

 , zi ∈ R

Remarks.

1 In fact, one still has a similar result for hd for zi ∈ Fd and d = 1, 2, 4, but not
for d = 8.

2 By the Allison-Faulkner (1980) ‘extracting Jordan algebras theorem’:

h1(x) ∼= det

 x′1 x′2 x′3
x′4 x′5 x′6
x′7 x′8 x′9
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Clifford eigencubics

Start with the Lawson cubic (1970)

u = Im v2w = 2x1x2x3 + x4(x21 − x22),

where v = x1 + x2i, w = x3 + x4i

= x3 · v>
(

0 1
1 0

)
v + x4 · v>

(
1 0
0 −1

)
v

In general, given a Clifford system, i.e. a family A = {Ai}0≤i≤q of self-adjoint
endomorphisms of R2m s.t.

AiAj +AjAi = 2δij · 1R2m ,

we define

uA = v>Awv := v>(

q∑
i=0

Aiwi)v, x = (v, w) ∈ R2m × Rq+1.

Remark. An obstruction to the existence of a Clifford system is δ(q)|m, where

q 1 2 3 4 5 6 7 8 . . . q
δ(q) 1 2 4 4 8 8 8 8 . . . 16δ(q − 8)
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Clifford eigencubics

Classification of Clifford eigencubics, [Tka10b]

I uA is an eigencubic: ∆1uA = −8|x|2u;

I uA and uB are congruent iff the Clifford systems A and B are geometrically
equivalent;

I the pair (q,m) (called the index) is an inner invariant of uA;

I the number of congruence classes of Clifford eigencubics of index (q,m) is 1 if
q 6≡ 0 (mod 4), and bm/2δ(q)c+ 1 if q ≡ 0 (mod 4);

I the following trace formula holds:

tr(D2u)3 = −24(q − 1)u.

Practically, the index is restored from u by

q = 1 +
|x|2 · tr(D2u)3

∆1u
, m = n− q − 1.
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Radial eigencubics

In summary: all known irreducible eigencubics are radial eigencubics, i.e.

∆1u(x) = λ|x|2 · u (4)

Remark. There exist, however, non-radial reducible eigencubics, e.g.,

u = x5(2x21 + 2x22 − x23 − x24 − x25),

which satisfies
∆1u = Q · u,

with
Q(x) = −12(2x21 + 2x22 + x23 + x24 + 3x25) 6= λ|x|2.

Problem. Do there exist irreducible eigencubics?
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Radial eigencubics

Definition

A radial eigencubic u is called Clifford eigencubic if it is congruent to some uA.
Otherwise, u is called exceptional.

Propostion

The Cartan eigencubic ud is exceptional.

Proof. Indeed, suppose in some orthogonal coordinates,

ud(x) = C · v>Awv, C ∈ R, x = (v, w) ∈ Rn.

Then |Dud|2 is at most quadratic in w-variables. On the other hand, we know
that |Dud|2 = 9|x|4. A contradiction follows because both the squared norm of
the gradient and |x|4 are orthogonal invariants.
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Classification of radial eigencubics, I

Theorem A [Tka10c]

(a) Any radial eigencubic u is harmonic.

(b) There exists Rn = Vξ ⊕ Vη ⊕ Vζ ⊕ Ren such that

u ∼= x3n +
3

2
xn(−2ξ2 − η2 + ζ2) + Ψ030 + Ψ111 + Ψ102 + Ψ012,

where Ψijk ∈ ξi ⊗ ηj ⊗ ζk.

(c) n = 3n1 + 2n2 − 1, where dimVξ = n1 and dimVη = n2;

(d) The trace formula: tr(D2u)3 = 3(n1 − 1)λ · u.

(e) A hidden Jordan algebra structure: |DΨ030|2 = 9|η|4.

(f) A hidden Clifford algebra structure: (n2 + n1 − 1) | δ(n1 − 1).
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Classification of radial eigencubics, I

Definition

It follows from (c) and (d) that the pair (n1, n2) ∈ Z+ × Z+ is an inner invariant
of u, and is called the type of u.

Remark 1. The type of u is recovered by invariant formulae

n1 =
|x|2 · tr(D2u)3

3∆1u
+ 1, n2 =

n+ 1− 3n1

2
.

Remark 2. A Clifford eigencubic uA has type

(n1, n2) = (q,m+ 1− q).

Remark 3. The only type is insufficient for determining whether a given radial
eigencubic is exceptional or Clifford. For instance, there are radial eigencubics of
both kinds having the same type (n1, n2) = (1, 5).
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A short excursion into Jordan algebras

P. Jordan (1932): a program to discover a new algebraic setting for quantum mechanics
by capture intrinsic algebraic properties of Hermitian matrices.

A Jordan (J.) algebra

J is vector space with a bilinear commutative product • : J × J → J satisfying the
the Jordan identity

x
2 • (x • y) = x • (x

2 • y)

The algebra J is formally real if additionally x2 + y2 = 0 implies x = y = 0.

For any x ∈ J, the subalgebra J(x) generated by x is associative. The rank of J is
max{dim J(x) : x ∈ J} and the minimum polynomial of x is

mx(λ) = λ
r − σ1(x)λ

r−1
+ . . .+ (−1)

r
σr(x) such that mx(x) = 0.

σ1(x) = Tr x = the generic trace of x,
σn(x) = N(x) = the generic norm (or generic determinant) of x.

Example 1. An associative algebra becomes a J. algebra with x • y = 1
2 (xy + yx).

Example 2. The Jordan algebra of n× n matrices over R: rank x = n, Tr x = tr x,

N(x) = det x.
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Formally real Jordan algebras

Classification of formally real Jordan algebras

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the
quantum mechanical formalism, Annals of Math., 1934

Any (finite-dimensional) formally real J. algebra is a direct sum of the simple ones:

I the algebra hn(F1) of symmetric matrices over the reals;

I the algebra hn(F2) of Hermitian matrices over the complexes;

I the algebra hn(F4) of Hermitian matrices over the quaternions;

I the spin factors J(Rn+1) with (x0, x) • (y0, y) = (x0y0 + 〈x, y〉; x0y + y0x);

I h3(F8), the Albert exceptional algebra.

In particular, the only possible formally real J. algebras J with rank(J) = 3 are:
a Jordan algebra the norm of a trace free element

J = h3(Fd), d = 1, 2, 4, 8
√

2N(x) = ud(x)

J = R ⊕ J(Rn+1)
√

2N(x) = 4x3
n − 3xn|x|2

J = F3
1 = R ⊕ R ⊕ R

√
2N(x) = x3

2 − 3x2x
2
1

According [Tka10a], the second column is exactly the only cubic solutions to

|Du(x)|2 = 9|x|4.

Does there exist any explicit correspondence between cubic solutions of the latter
equation and formally real cubic Jordan algebras?
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Cubic eiconals and cubic Jordan algebras

Theorem , N. Nadirashvili, S. Vlǎduţ and V.T. [NTV12b]

Let u be a cubic solution of
Q(Du) = 9Q(x)2

on a quadratic space (V,Q). Then the multiplication

(x0, x) • (y0, y) = (x0y0 +Q(x, y), x0y + y0x+
1

3
√

2
hessu(x, y)

turn Ju := R ⊕ Rn into a cubic Jordan algebra with the generic norm

Nu(x0, x) = x30 −
3x0Q(x)

2
+
u(x)
√

2
.

Conversely, if (J,N) is a cubic Jordan algebra then

u(x) =
√

2N(x), x ∈ {x ∈ Ju : Trx = 0}.

Two solutions u1 and u2 are orthogonally equivalent if and only if the associated
Jordan algebras Ju1 and Ju2 are isomorphic.
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Classification of radial eigencubics, II

Theorem B, [Tka10c], [Tka12]

Let u be a radial eigencubic and let Rn = Vξ ⊕ Vη ⊕ Vζ ⊕ Ren be the associated
orthogonal decomposition. Then there exists a natural Jordan algebra structure on
J := Ren ⊕ Vη such that

u(x)|J = Tr(x
3
), x ∈ J

where Tr is the generic trace on J. Moreover, the following conditions are equivalent:

I u is an exceptional radial eigencubic;

I Ψ030 ≡ u|Vη is reducible;

I Ψ030 is harmonic and n2 6= 2;

I J is a simple Jordan algebra;

I tr(D2u)2 = const · |x|2 and n2 ∈ {0, 5, 8, 14, 26}.

In particular, a radial eigencubic is exceptional iff tr(D2u)2 = c|x|2 and
n2 ∈ {0, 5, 8, 14, 26}.
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Radial eigencubics vs isoparametric hypersurfaces

Theorem C, [Tka10c]

Let u be a radial eigencubic in Rn of type (n1, n2) and n2 6= 0. Then u is
congruent to the cubic form

u = (|ξ|2 − |η|2)xn + a(ξ, ζ) + b(η, ζ) + c(ξ, η, ζ), (5)

where
x = (ξ, η, ζ, xn) ∈ Rm × Rm × Rn−2m−1 × R1

and a ∈ ξ ⊗ ζ2, b ∈ η ⊗ ζ2, c ∈ ξ ⊗ η ⊗ ζ. Moreover, the quartic polynomials

h0(ξ, η):= (|ξ|2 + |η|2)2 − 2|Dζc|2 ∈ Isop(n1 − 1,m− n1),

h1(ξ, η):= −|ξ|4 + 6|ξ|2|η|2 − |η|4 − 2|Dζc|2 ∈ Isop(n1,m− n1 − 1).

If f , in addition, is an exceptional eigencubic then m is uniquely defined by
m = d+ n1 + 1, where n2 = 3d+ 2, d ∈ {1, 2, 4, 8}.

Remark. Combining the latter correspondence with the recent characterization
of isoparametric hypersurfaces with 4 principal curvatures (by T. Cecil, Q.S.Chi,
G. Jensen, S. Immerwoll), one obtains an obstruction to the existence of some
exceptional families of radial eigencubics.
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Radial eigencubics revisited

A unified construction [Tka12]

Let W be a simple rank 3 Jordan algebra over F = R or F = C, and let J ⊂W be
a simple (Jordan) subalgebra of W . Let Rn = W 	 J be the Euclidean vector
space equipped with the inner product 〈x, y〉 = Trxȳ. Then

u(x) := Re Trx3, x ∈ Rn,

is an exceptional radial eigencubic.

Example 5. Consider J = h3(F1) ⊂ h3(F8) = W . Then W 	 J ∼= R21 is the
vector space of matrices

x :=

 0 z3 z2
−z3 0 z1
−z2 −z1 0

 , z̄i = −zi ∈ Fd = O,

hence u := Re Trx3 is an exceptional eigencubic in R21.
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Singular solutions of fully-nonlinear PDE’s

I Evans, Crandall, Lions, Jensen, Ishii: If Ω ⊂ Rn is bounded with
C1-boundary, φ continuous on ∂Ω, F uniformly elliptic operator then the
Dirichlet problem

F (D2u)= 0, in Ω

u= φ on ∂Ω

has a unique viscosity solution u ∈ C(Ω);

I Krylov, Safonov, Trudinger, Caffarelli, early 80’s: the solution is always C1,ε

I Nirenberg, 50’s: if n = 2 then u is classical (C2) solution

I Nadirashvili, Vlǎduţ, 2007: if n = 12 then there are solutions which are not
C2
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In 2005–2011, N. Nadirashvili and S. Vlǎduţ constructed (uniformly elliptic)
Hessian equations with F (S) being smooth, homogeneous, depending only on the
eigenvalues of S, and such that they have singular C1,δ-solutions.

I

u(x) =
Re z1z2z3

|x|
, x = (z1, z2, z3),

where zi ∈ Fd, d = 4, 8 (quaternions, octonions), is a viscosity solution of a
fully nonlinear uniformly elliptic equation. In fact,

u(x) =
N(x)

|x|
, x ∈ h3(Fd)	 R3

is an exceptional eigencubic.

I N.N., S.V., V.T. [NTV12a]:

u(x) =
N(x)

|x|
, x ∈ h3(R)	 R1

is a non-classical solution in R5.

Seminario de Geometŕıa October 26, 2012



Introduction Cubic minimal cones Cubic Jordan algebras Non-calssical solutions

Thank you!
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, preprint.

V. G. Tkachev, A generalization of Cartan’s theorem on isoparametric
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, Minimal cubic cones via Clifford algebras, Complex Anal. Oper.
Theory 4 (2010), no. 3, 685–700.

, On a classification of minimal cubic cones, i, preprint (2010).

, On a classification of minimal cubic cones, ii, preprint (2012).
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