Cubic minimal cones and Jordan algebras

Vladimir Tkachev

Linköping University

(2) Cubic minimal cones
(3) Cubic Jordan algebras
(4) Non-calssical solutions

Entire solutions

Bernstein's theorem, 1916

Any solution $u\left(x_{1}, x_{2}\right)$ of the minimal surface equation ($=\mathrm{MSE}$)

$$
\begin{aligned}
H[u] & :=\Delta u+\Delta_{1} u \\
& =\left(1+|D u|^{2}\right) \Delta u-\frac{1}{2} D u \cdot\left(D|D u|^{2}\right)=0 .
\end{aligned}
$$

defined in the whole \mathbb{R}^{2} is an affine function: $u(x)=\mathbf{x} \cdot \mathbf{a}+b$.

Here $H(u)$ stands for the mean curvature operator and

$$
\Delta_{p} u:=|D u|^{2} \Delta u+\frac{p-2}{2} D u \cdot D|D u|^{2}
$$

is the p-Laplace operator.

Entire solutions

The "Bernstein property" (=B.P.) for $n \geq 3$

- W.H. Fleming (1962) and E. De Giorgi (1965): to prove the B.P. for solutions in \mathbb{R}^{n} is sufficed to check that no non-trivial minimal cones existed in \mathbb{R}^{n}.
\checkmark There are no minimal cones in \mathbb{R}^{n} for $n \leq 7$: Fleming $n=3$ (1962), F.J. Almgren $n=4$ (1966), and J. Simons $n \leq 7$ (1968).
- In 1969, E. Bombieri, E. De Giorgi and E. Giusti found the first non-affine entire solution of the minimal surface equation

$$
\left(1+|D u|^{2}\right) \Delta u-\frac{1}{2} D u \cdot\left(D|D u|^{2}\right)=0, \quad x \in \mathbb{R}^{8}
$$

The construction heavily depends on certain properties of the quadratic minimal (Clifford-Simons) cones over $\mathbb{S}^{3} \times \mathbb{S}^{3}$, namely

$$
\left\{(x, y) \in \mathbb{R}^{4} \times \mathbb{R}^{4}:|x|^{2}-|y|^{2}=0\right\}
$$

- More examples in $\mathbb{R}^{n}, n \geq 8$, were found by L. Simon (1989).
- There is no explicit representation available for the constructed examples.

Some important questions

- Why 8 ?
- Is it possible to provide any explicit entire (non-affine) solution of MSE?
- Are there any polynomial solutions of MSE?

Some more motivations

Doubly and triply periodic examples in the Minkowski space-times $\mathbb{R}^{1,2}$ and $\mathbb{R}^{1,3}$ due to V. Sergienko and V.Tk. (2001), and J. Hoppe (1995), resp.

A fourfold periodic minimal hypersurface in \mathbb{R}^{4}, V.Tk. (2008)

Let $s(x): \mathbb{R} \rightarrow[-1,1]$ be the Jacobi sinus of modulus $\sqrt{-1}$, i.e. $s^{\prime 2}(t)=1-s^{4}(t)$, $s(t+\omega)=-s(t)$, where $\omega=\frac{\Gamma\left(\frac{1}{4}\right)^{2}}{2 \sqrt{2 \pi}}$. Then

$$
M=\left\{x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: s\left(x_{1}\right) s\left(x_{2}\right)-s\left(x_{3}\right) s\left(x_{4}\right)=0\right\}
$$

is an embedded minimal 4-periodic minimal hypersurface in \mathbb{R}^{4} with isolated Clifford cone type singularities at the vertices of a periodic lattice Λ :

$$
x_{1} x_{2}-x_{3} x_{4}=0 \quad \text { or } \quad x_{1}^{2}+x_{2}^{2}=x_{3}^{2}+x_{4}^{2}
$$

Let $\Gamma \subset O(4)$ be the stabilizer of Λ. Then M is Γ-invariant.
Remark. The proof uses the following Jacobi sinus function identity:
$S(A x)=Q(x) S(x+h \omega), \quad h=\frac{1}{2}(1,1,1,1) \in \mathbb{R}^{4}$
where $Q(x) \neq 0$ is bounded in \mathbb{R}^{4} and

$$
S(x)=s\left(x_{1}\right) s\left(x_{2}\right)-s\left(x_{3}\right) s\left(x_{4}\right) .
$$

- embedded minimal hypersurfaces in \mathbb{R}^{n} with conic singularities;
- minimal hypersurfaces in the spheres;
- searching for explicit entire solutions of MSE;

Eigencubics

Suppose u is a homogeneous polynomial, $\operatorname{deg} u=k \geq 2$ then the cone $u^{-1}(0)$ is minimal if and only if u divides $\Delta_{1} u$, i.e.

$$
\begin{equation*}
\Delta_{1} u=|D u|^{2} \Delta u-\frac{1}{2} D u \cdot\left(D|D u|^{2}\right) \equiv 0 \quad \bmod u \tag{1}
\end{equation*}
$$

W. Hsiang, J. Diff. Geom., 1(1967)

Problem 1. How does one classify irreducible minimal cubic forms in n variables, $n \geq 4$, with respect to the natural action of $O(n))$? Or we may ask a weaker question, namely, whether there are always irreducible minimal cubic forms in n variables for all $n \geq 4$.
[...] For example, it is very difficult to classify irreducible cubic forms in n variables such that

$$
\Delta_{1} u=|D u|^{2} \Delta u-\frac{1}{2} D u \cdot\left(D|D u|^{2}\right)=\lambda|x|^{2} u(x) .
$$

Problem 2. For a given dimension $n, n \geq 4$, are there irreducible homogeneous polynomials in n real variables of arbitrary high degree, which give minimal cones of codimension one in \mathbb{R}^{n} ? Or, if the degree is bounded, how does one express the bound in terms of n ?

Problem 3. Are there any closed minimal submanifolds of codimension one in \mathbb{S}^{m} which are not algebraic? Or, if possible, show that every closed minimal submanifold of codimension one in \mathbb{S}^{m} is algebraic.

Definition

A polynomial solution of $\Delta_{1} u \equiv 0 \bmod u$ is called an eigenfunction. An eigenfunction of $\operatorname{deg} u=3$ is called an eigencubic.
A solution of $\Delta_{1} u(x)=\lambda|x|^{2} \cdot u$ is called a radial eigencubic.

Definition

A polynomial solution of $\Delta_{1} u \equiv 0 \bmod u$ is called an eigenfunction. An eigenfunction of $\operatorname{deg} u=3$ is called an eigencubic.
A solution of $\Delta_{1} u(x)=\lambda|x|^{2} \cdot u$ is called a radial eigencubic.

- any linear function is an eigenfunction of Δ_{1};
- the only quadratic eigenfunctions are

$$
u(x)=(q-1)\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)-(p-1)\left(x_{p+1}^{2}+\ldots+x_{n}^{2}\right), \quad p+q=n
$$

- in degree $k \geq 3$ the main difficulty is the absence of any normal form;
- some eigenfunctions of $\operatorname{deg} u=3,4,6$ sporadically distributed in \mathbb{R}^{n} were found in 1960s-1970s.

In what follows, we always suppose that $\operatorname{deg} u=3$.

Remark. Observe that two cubic forms u_{1} and u_{2} produces two congruent cones in \mathbb{R}^{n} if and only if they are congruent, i.e.

$$
u_{2}(x)=C \cdot u_{1}(O x), \quad O \in O(n)
$$

Hsiang's trick

Let $\mathfrak{G}^{\prime}(k, \mathbb{R})$ be the real vector space of quadratic forms of k real variables with trace zero:

$$
\mathfrak{G}^{\prime}(k, \mathbb{R}) \cong \operatorname{Herm}_{k}^{\prime}(\mathbb{R}) \cong \quad \mathbb{R}^{N}, \quad \text { where } N:=\frac{(k-1)(k+2)}{2}
$$

- $\mathfrak{G}^{\prime}(k, \mathbb{R})$ is invariant under action of $O(k)$ as substitutions
- $\operatorname{det}(x+\lambda \mathbf{1})=\lambda^{k}+b_{2}(x) \lambda^{k-2}+\ldots+b_{k}(x)$ is a basic $O(k)$-invariant:

$$
\mathbb{R}\left[x_{1}, \ldots, x_{N}\right]^{O(k)}=\mathbb{R}\left[b_{2}, \ldots, b_{k}\right]
$$

- it is well-known that Δ_{1} is $O(N)$-invariant; in particular, if u is an invariant polynomial with respect to $O(k) \hookrightarrow O(N)$, then so also is $\Delta_{1} u$, therefore

$$
\Delta_{1}: \mathbb{R}\left[b_{2}, \ldots, b_{k}\right] \rightarrow \mathbb{R}\left[b_{2}, \ldots, b_{k}\right]
$$

- in view of $\operatorname{deg} \Delta_{1} b_{3}=5$ one has

$$
\Delta_{1} b_{3}=c_{1} \cdot b_{2} b_{3}+c_{2} \cdot b_{5}
$$

and it follows that for $k \leq 4$

$$
\Delta_{1} b_{3}=c_{1} b_{2} \cdot b_{3},
$$

i.e. b_{3} is an eigenfunction!

Hsiang's trick: $k=3$

For $k=3$ one also has $\operatorname{deg} \Delta b_{3}=1$ and $\operatorname{deg}\left|D b_{3}\right|^{2}=4$, hence

$$
\left|D b_{3}\right|^{2}=c_{3} b_{2}^{2}=c_{3}|x|^{4} \quad \text { and } \quad \Delta b_{3}=0
$$

É. Cartan (1938)

The only cubic polynomial solutions of

$$
\begin{equation*}
|D u(x)|^{2}=9|x|^{4}, \quad \Delta u(x)=0 \tag{2}
\end{equation*}
$$

are

$$
u_{d}(x):=\frac{3 \sqrt{3}}{2} \operatorname{det}\left(\begin{array}{ccc}
x_{2}-\frac{1}{\sqrt{3}} x_{1} & \bar{z}_{1} & \bar{z}_{2} \tag{3}\\
z_{1} & -x_{2}-\frac{1}{\sqrt{3}} x_{1} & \bar{z}_{3} \\
z_{2} & z_{3} & \frac{2}{\sqrt{3}} x_{1}
\end{array}\right), \quad x \in \mathbb{R}^{3 d+2}
$$

where $z_{k} \in \mathbb{R}^{d} \cong \mathbb{F}_{d}$ is the real division algebra of dimension $d \in\{1,2,4,8\}$.
It follows that b_{3} is proportional to u_{1}.
Remark. Alternatively, the homogeneity of u_{d} and (2) implies

$$
\Delta_{1} u_{d}=-\frac{1}{2} D u_{d} \cdot D\left|D u_{d}\right|^{2}=-54|x|^{2} u_{d}
$$

Thus, all u_{d} are eigencubics in $\mathbb{R}^{5}, \mathbb{R}^{8}, \mathbb{R}^{14}, \mathbb{R}^{26}$.

Hsiang's trick: $k=4$

Hsiang's trick: $k=4$

For $k=4$ one obtains the Hsiang eigencubic in \mathbb{R}^{9} given by

$$
h_{1}(x)=b_{3}(X) \sim \operatorname{tr} X^{3},
$$

where

$$
X=\left(\begin{array}{cccc}
x_{1}-\frac{x_{2}}{\sqrt{3}}-\frac{x_{3}}{\sqrt{6}} & \bar{z}_{4} & \bar{z}_{5} & \bar{z}_{6} \\
z_{4} & -x_{1}-\frac{x_{2}}{\sqrt{3}}-\frac{x_{3}}{\sqrt{6}} & \bar{z}_{7} & \bar{z}_{8} \\
z_{5} & z_{7} & \frac{2 x_{2}}{\sqrt{3}}-\frac{x_{3}}{\sqrt{6}} & \bar{z}_{9} \\
z_{6} & z_{8} & z_{9} & \frac{\sqrt{2} x_{3}}{\sqrt{3}}
\end{array}\right), \quad z_{i} \in \mathbb{R}
$$

Remarks.
(1) In fact, one still has a similar result for h_{d} for $z_{i} \in \mathbb{F}_{d}$ and $d=1,2,4$, but not for $d=8$.
(2) By the Allison-Faulkner (1980) 'extracting Jordan algebras theorem':

$$
h_{1}(x) \cong \operatorname{det}\left(\begin{array}{ccc}
x_{1}^{\prime} & x_{2}^{\prime} & x_{3}^{\prime} \\
x_{4}^{\prime} & x_{5}^{\prime} & x_{6}^{\prime} \\
x_{7}^{\prime} & x_{8}^{\prime} & x_{9}^{\prime}
\end{array}\right)
$$

Clifford eigencubics

Clifford eigencubics

Start with the Lawson cubic (1970)

$$
\begin{aligned}
& u=\operatorname{Im} v^{2} w=2 x_{1} x_{2} x_{3}+x_{4}\left(x_{1}^{2}-x_{2}^{2}\right) \\
& \quad \text { where } \quad v=x_{1}+x_{2} i, w=x_{3}+x_{4} i \\
& =x_{3} \cdot v^{\top}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) v+x_{4} \cdot v^{\top}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) v
\end{aligned}
$$

In general, given a Clifford system, i.e. a family $\mathcal{A}=\left\{A_{i}\right\}_{0 \leq i \leq q}$ of self-adjoint endomorphisms of $\mathbb{R}^{2 m}$ s.t.

$$
A_{i} A_{j}+A_{j} A_{i}=2 \delta_{i j} \cdot \mathbf{1}_{\mathbb{R}^{2 m}}
$$

we define

$$
u_{\mathcal{A}}=v^{\top} A_{w} v:=v^{\top}\left(\sum_{i=0}^{q} A_{i} w_{i}\right) v, \quad x=(v, w) \in \mathbb{R}^{2 m} \times \mathbb{R}^{q+1}
$$

Remark. An obstruction to the existence of a Clifford system is $\delta(q) \mid m$, where

q	1	2	3	4	5	6	7	8	\ldots	q
$\delta(q)$	1	2	4	4	8	8	8	8	\ldots	$16 \delta(q-8)$

Clifford eigencubics

Classification of Clifford eigencubics, [Tka10b]

$\Rightarrow u_{\mathcal{A}}$ is an eigencubic: $\Delta_{1} u_{\mathcal{A}}=-8|x|^{2} u$;
$\checkmark u_{\mathcal{A}}$ and $u_{\mathcal{B}}$ are congruent iff the Clifford systems \mathcal{A} and \mathcal{B} are geometrically equivalent;

- the pair (q, m) (called the index) is an inner invariant of $u_{\mathcal{A}}$;
- the number of congruence classes of Clifford eigencubics of index (q, m) is 1 if $q \not \equiv 0(\bmod 4)$, and $\lfloor m / 2 \delta(q)\rfloor+1$ if $q \equiv 0(\bmod 4)$;
- the following trace formula holds:

$$
\operatorname{tr}\left(D^{2} u\right)^{3}=-24(q-1) u
$$

Practically, the index is restored from u by

$$
q=1+\frac{|x|^{2} \cdot \operatorname{tr}\left(D^{2} u\right)^{3}}{\Delta_{1} u}, \quad m=n-q-1
$$

Radial eigencubics

In summary: all known irreducible eigencubics are radial eigencubics, i.e.

$$
\begin{equation*}
\Delta_{1} u(x)=\lambda|x|^{2} \cdot u \tag{4}
\end{equation*}
$$

Remark. There exist, however, non-radial reducible eigencubics, e.g.,

$$
u=x_{5}\left(2 x_{1}^{2}+2 x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{5}^{2}\right),
$$

which satisfies

$$
\Delta_{1} u=Q \cdot u
$$

with

$$
Q(x)=-12\left(2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+3 x_{5}^{2}\right) \neq \lambda|x|^{2} .
$$

Problem. Do there exist irreducible eigencubics?

Radial eigencubics

Definition

A radial eigencubic u is called Clifford eigencubic if it is congruent to some $u_{\mathcal{A}}$. Otherwise, u is called exceptional.

Radial eigencubics

Definition

A radial eigencubic u is called Clifford eigencubic if it is congruent to some $u_{\mathcal{A}}$. Otherwise, u is called exceptional.

Propostion

The Cartan eigencubic u_{d} is exceptional.

Proof. Indeed, suppose in some orthogonal coordinates,

$$
u_{d}(x)=C \cdot v^{\top} A_{w} v, \quad C \in \mathbb{R}, x=(v, w) \in \mathbb{R}^{n}
$$

Then $\left|D u_{d}\right|^{2}$ is at most quadratic in w-variables. On the other hand, we know that $\left|D u_{d}\right|^{2}=9|x|^{4}$. A contradiction follows because both the squared norm of the gradient and $|x|^{4}$ are orthogonal invariants.

Classification of radial eigencubics, I

Theorem A [Tka10c]

(a) Any radial eigencubic u is harmonic.
(b) There exists $\mathbb{R}^{n}=V_{\xi} \oplus V_{\eta} \oplus V_{\zeta} \oplus \mathbb{R} e_{n}$ such that

$$
u \cong x_{n}^{3}+\frac{3}{2} x_{n}\left(-2 \xi^{2}-\eta^{2}+\zeta^{2}\right)+\Psi_{030}+\Psi_{111}+\Psi_{102}+\Psi_{012}
$$

where $\Psi_{i j k} \in \xi^{i} \otimes \eta^{j} \otimes \zeta^{k}$.
(c) $n=3 n_{1}+2 n_{2}-1$, where $\operatorname{dim} V_{\xi}=n_{1}$ and $\operatorname{dim} V_{\eta}=n_{2}$;
(d) The trace formula: $\operatorname{tr}\left(D^{2} u\right)^{3}=3\left(n_{1}-1\right) \lambda \cdot u$.
(e) A hidden Jordan algebra structure: $\left|D \Psi_{030}\right|^{2}=9|\eta|^{4}$.
(f) A hidden Clifford algebra structure: $\left(n_{2}+n_{1}-1\right) \mid \delta\left(n_{1}-1\right)$.

Classification of radial eigencubics, I

Definition

It follows from (c) and (d) that the pair $\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+}$is an inner invariant of u, and is called the type of u.

Remark 1. The type of u is recovered by invariant formulae

$$
n_{1}=\frac{|x|^{2} \cdot \operatorname{tr}\left(D^{2} u\right)^{3}}{3 \Delta_{1} u}+1, \quad n_{2}=\frac{n+1-3 n_{1}}{2} .
$$

Remark 2. A Clifford eigencubic $u_{\mathcal{A}}$ has type

$$
\left(n_{1}, n_{2}\right)=(q, m+1-q) .
$$

Remark 3. The only type is insufficient for determining whether a given radial eigencubic is exceptional or Clifford. For instance, there are radial eigencubics of both kinds having the same type $\left(n_{1}, n_{2}\right)=(1,5)$.

A short excursion into Jordan algebras

0000000

A short excursion into Jordan algebras

P. Jordan (1932): a program to discover a new algebraic setting for quantum mechanics by capture intrinsic algebraic properties of Hermitian matrices.

A Jordan (J.) algebra

J is vector space with a bilinear commutative product $\bullet: J \times J \rightarrow J$ satisfying the the Jordan identity

$$
x^{2} \bullet(x \bullet y)=x \bullet\left(x^{2} \bullet y\right)
$$

The algebra J is formally real if additionally $x^{2}+y^{2}=0$ implies $x=y=0$.

For any $x \in J$, the subalgebra $J(x)$ generated by x is associative. The rank of J is $\max \{\operatorname{dim} J(x): x \in J\}$ and the minimum polynomial of x is

$$
m_{x}(\lambda)=\lambda^{r}-\sigma_{1}(x) \lambda^{r-1}+\ldots+(-1)^{r} \sigma_{r}(x) \quad \text { such that } m_{x}(x)=0
$$

$\sigma_{1}(x)=\operatorname{Tr} x=$ the generic trace of x, $\sigma_{n}(x)=N(x)=$ the generic norm (or generic determinant) of x.

Example 1. An associative algebra becomes a J. algebra with $x \bullet y=\frac{1}{2}(x y+y x)$.
Example 2. The Jordan algebra of $n \times n$ matrices over \mathbb{R} : $\operatorname{rank} x=n, \operatorname{Tr} x=\operatorname{tr} x$, $N(x)=\operatorname{det} x$.

Formally real Jordan algebras

Classification of formally real Jordan algebras

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Math., 1934

Any (finite-dimensional) formally real J. algebra is a direct sum of the simple ones:

- the algebra $\mathfrak{h}_{n}\left(\mathbb{F}_{1}\right)$ of symmetric matrices over the reals;
- the algebra $\mathfrak{h}_{n}\left(\mathbb{F}_{2}\right)$ of Hermitian matrices over the complexes;
- the algebra $\mathfrak{h}_{n}\left(\mathbb{F}_{4}\right)$ of Hermitian matrices over the quaternions;
\checkmark the spin factors $\mathfrak{J}\left(\mathbb{R}^{n+1}\right)$ with $\left(x_{0}, x\right) \bullet\left(y_{0}, y\right)=\left(x_{0} y_{0}+\langle x, y\rangle ; x_{0} y+y_{0} x\right)$;
$-\mathfrak{h}_{3}\left(\mathbb{F}_{8}\right)$, the Albert exceptional algebra.
In particular, the only possible formally real J . algebras J with $\operatorname{rank}(J)=3$ are:

a Jordan algebra	the norm of a trace free element
$J=\mathfrak{h}_{3}\left(\mathbb{F}_{d}\right), d=1,2,4,8$	$\sqrt{2} N(x)=u_{d}(x)$
$J=\mathbb{R} \oplus \mathfrak{J}\left(\mathbb{R}^{n+1}\right)$	$\sqrt{2} N(x)=4 x_{n}^{3}-3 x_{n}\|x\|^{2}$
$J=\mathbb{F}_{1}^{3}=\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$	$\sqrt{2} N(x)=x_{2}^{3}-3 x_{2} x_{1}^{2}$

According [Tka10a], the second column is exactly the only cubic solutions to

$$
|D u(x)|^{2}=9|x|^{4} .
$$

Does there exist any explicit correspondence between cubic solutions of the latter equation and formally real cubic Jordan algebras?

Cubic eiconals and cubic Jordan algebras

Theorem , N. Nadirashvili, S. Vlăduţ and V.T. [NTV12b]

Let u be a cubic solution of

$$
Q(D u)=9 Q(x)^{2}
$$

on a quadratic space (V, Q). Then the multiplication

$$
\left(x_{0}, x\right) \bullet\left(y_{0}, y\right)=\left(x_{0} y_{0}+Q(x, y), x_{0} y+y_{0} x+\frac{1}{3 \sqrt{2}} \operatorname{hess} u(x, y)\right.
$$

turn $J_{u}:=\mathbb{R} \oplus \mathbb{R}^{n}$ into a cubic Jordan algebra with the generic norm

$$
N_{u}\left(x_{0}, x\right)=x_{0}^{3}-\frac{3 x_{0} Q(x)}{2}+\frac{u(x)}{\sqrt{2}} .
$$

Conversely, if (J, N) is a cubic Jordan algebra then

$$
u(x)=\sqrt{2} N(x), \quad x \in\left\{x \in J_{u}: \operatorname{Tr} x=0\right\}
$$

Two solutions u_{1} and u_{2} are orthogonally equivalent if and only if the associated Jordan algebras $J_{u_{1}}$ and $J_{u_{2}}$ are isomorphic.

Classification of radial eigencubics, II

Theorem B, [Tka10c], [Tka12]

Let u be a radial eigencubic and let $\mathbb{R}^{n}=V_{\xi} \oplus V_{\eta} \oplus V_{\zeta} \oplus \mathbb{R} e_{n}$ be the associated orthogonal decomposition. Then there exists a natural Jordan algebra structure on $J:=\mathbb{R} e_{n} \oplus V_{\eta}$ such that

$$
\left.u(x)\right|_{J}=\operatorname{Tr}\left(x^{3}\right), \quad x \in J
$$

where Tr is the generic trace on J. Moreover, the following conditions are equivalent:

- u is an exceptional radial eigencubic;
- $\left.\Psi_{030} \equiv u\right|_{V_{\eta}}$ is reducible;
- Ψ_{030} is harmonic and $n_{2} \neq 2$;
- J is a simple Jordan algebra;
- $\operatorname{tr}\left(D^{2} u\right)^{2}=$ const $\cdot|x|^{2}$ and $n_{2} \in\{0,5,8,14,26\}$.

In particular, a radial eigencubic is exceptional iff $\operatorname{tr}\left(D^{2} u\right)^{2}=c|x|^{2}$ and $n_{2} \in\{0,5,8,14,26\}$.

n_{1}	1	2	3	5	9	0	1	2	4	0	1	2	5	9	0	1	3	1	3	7
n_{2}	0	0	0	0	0	5	5	5	5	8	8	8	8	8	14	14	14	26	26	26
n	2	5	8	14	26	9	12	15	21	15	18	21	30	42	27	30	36	54	60	72
								$?$				$?$	$?$	$?$			$?$	$?$	$?$	$?$

Radial eigencubics vs isoparametric hypersurfaces

Theorem C, [Tka10c]

Let u be a radial eigencubic in \mathbb{R}^{n} of type $\left(n_{1}, n_{2}\right)$ and $n_{2} \neq 0$. Then u is congruent to the cubic form

$$
\begin{equation*}
u=\left(|\xi|^{2}-|\eta|^{2}\right) x_{n}+a(\xi, \zeta)+b(\eta, \zeta)+c(\xi, \eta, \zeta), \tag{5}
\end{equation*}
$$

where

$$
x=\left(\xi, \eta, \zeta, x_{n}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{m} \times \mathbb{R}^{n-2 m-1} \times \mathbb{R}^{1}
$$

and $a \in \xi \otimes \zeta^{2}, b \in \eta \otimes \zeta^{2}, c \in \xi \otimes \eta \otimes \zeta$. Moreover, the quartic polynomials

$$
\begin{aligned}
& h_{0}(\xi, \eta):=\left(|\xi|^{2}+|\eta|^{2}\right)^{2}-2\left|D_{\zeta} c\right|^{2} \in \operatorname{Isop}\left(n_{1}-1, m-n_{1}\right) \\
& h_{1}(\xi, \eta):=-|\xi|^{4}+6|\xi|^{2}|\eta|^{2}-|\eta|^{4}-2\left|D_{\zeta} c\right|^{2} \in \operatorname{Isop}\left(n_{1}, m-n_{1}-1\right) .
\end{aligned}
$$

If f, in addition, is an exceptional eigencubic then m is uniquely defined by $m=d+n_{1}+1$, where $n_{2}=3 d+2, d \in\{1,2,4,8\}$.

Remark. Combining the latter correspondence with the recent characterization of isoparametric hypersurfaces with 4 principal curvatures (by T. Cecil, Q.S.Chi, G. Jensen, S. Immerwoll), one obtains an obstruction to the existence of some exceptional families of radial eigencubics.

Radial eigencubics revisited

A unified construction [Tka12]

Let W be a simple rank 3 Jordan algebra over $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$, and let $J \subset W$ be a simple (Jordan) subalgebra of W. Let $\mathbb{R}^{n}=W \ominus J$ be the Euclidean vector space equipped with the inner product $\langle x, y\rangle=\operatorname{Tr} x \bar{y}$. Then

$$
u(x):=\operatorname{Re} \operatorname{Tr} x^{3}, \quad x \in \mathbb{R}^{n},
$$

is an exceptional radial eigencubic.

Example 5. Consider $J=\mathfrak{h}_{3}\left(\mathbb{F}_{1}\right) \subset \mathfrak{h}_{3}\left(\mathbb{F}_{8}\right)=W$. Then $W \ominus J \cong \mathbb{R}^{21}$ is the vector space of matrices

$$
x:=\left(\begin{array}{ccc}
0 & z_{3} & z_{2} \\
-z_{3} & 0 & z_{1} \\
-z_{2} & -z_{1} & 0
\end{array}\right), \quad \bar{z}_{i}=-z_{i} \in \mathbb{F}_{d}=\mathbb{O},
$$

hence $u:=\operatorname{Re} \operatorname{Tr} x^{3}$ is an exceptional eigencubic in \mathbb{R}^{21}.

Singular solutions of fully-nonlinear PDE's

Singular solutions of fully-nonlinear PDE's

- Evans, Crandall, Lions, Jensen, Ishii: If $\Omega \subset \mathbb{R}^{n}$ is bounded with C^{1}-boundary, ϕ continuous on $\partial \Omega, F$ uniformly elliptic operator then the Dirichlet problem

$$
\begin{array}{rlrl}
F\left(D^{2} u\right) & =0, & \text { in } & \Omega \\
u & =\phi & \text { on } & \\
\partial \Omega
\end{array}
$$

has a unique viscosity solution $u \in C(\Omega)$;

- Krylov, Safonov, Trudinger, Caffarelli, early 80 's: the solution is always $C^{1, \varepsilon}$
- Nirenberg, 50 's: if $n=2$ then u is classical $\left(C^{2}\right)$ solution
- Nadirashvili, Vlăduţ, 2007: if $n=12$ then there are solutions which are not C^{2}

In 2005-2011, N. Nadirashvili and S. Vlǎduţ constructed (uniformly elliptic) Hessian equations with $F(S)$ being smooth, homogeneous, depending only on the eigenvalues of S, and such that they have singular $C^{1, \delta}$-solutions.

$$
u(x)=\frac{\operatorname{Re} z_{1} z_{2} z_{3}}{|x|}, \quad x=\left(z_{1}, z_{2}, z_{3}\right)
$$

where $z_{i} \in \mathbb{F}_{d}, d=4,8$ (quaternions, octonions), is a viscosity solution of a fully nonlinear uniformly elliptic equation. In fact,

$$
u(x)=\frac{N(x)}{|x|}, \quad x \in \mathfrak{h}_{3}\left(\mathbb{F}_{d}\right) \ominus \mathbb{R}^{3}
$$

is an exceptional eigencubic.

- N.N., S.V., V.T. [NTV12a]:

$$
u(x)=\frac{N(x)}{|x|}, \quad x \in \mathfrak{h}_{3}(\mathbb{R}) \ominus \mathbb{R}^{1}
$$

is a non-classical solution in \mathbb{R}^{5}.

Thank you!

N. Nadirashvili, V.G. Tkachev, and S. Vlăduţ, A non-classical solution to a Hessian equation from Cartan isoparametric cubic, Adv. Math. 231 (2012), no. 3-4, 1589-1597.
\qquad , preprint.
V. G. Tkachev, A generalization of Cartan's theorem on isoparametric cubics, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2889-2895.
, Minimal cubic cones via Clifford algebras, Complex Anal. Oper.
Theory 4 (2010), no. 3, 685-700.

\qquad , On a classification of minimal cubic cones, i, preprint (2010).
\qquad , On a classification of minimal cubic cones, ii, preprint (2012).

