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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Why explicit examples?

I Consider a homogeneous cubic form in R5

u1(x) = x
3
5 +
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2
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1 + x

2
2 − 2x

2
3 − 2x

2
4) +

3
√
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2
2 − x

2
1) + 2x1x2x3).

The set u−1
1 (0) ∩ S4 ⊂ R5 is an (isoparametric) minimal submanifold.

I É. Cartan (1938) proved that u1 and its generalizations in R8, R14 and R26

ud(x) :=
3
√

3

2
det

 x2 − 1√
3
x1 z̄1 z̄2

z1 −x2 − 1√
3
x1 z̄3

z2 z3
2√
3
x1

 , x ∈ R3d+2
, (1)

are the only isoparametric polynomials corresponding to hypersurfaces in the
Euclidean spheres having exactly 3 distinct constant principal curvatures. Here

zk ∈ Rd ∼= Fd is the real division algebra of dimension d ∈ {1, 2, 4, 8}.
I Equivalently, ud are the only cubic polynomial solutions of

|Du(x)|2 = 9|x|4, ∆u(x) = 0, x ∈ Rn.

I It can be shown that
ud(x) =

√
2N(x), x ∈ J0,

where J0 is the trace free subspace of the formally real Jordan algebra
J = h3(Fd), d = 1, 2, 4, 8.

I N. Nadirashvili, S. Vlăduţ, V.T. (2011): u1(x)|x|−1 is a viscosity solution to a

uniformly elliptic Hessian equation F (D2u) = 0 in the unit ball in R5.
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I N. Nadirashvili, S. Vlăduţ, V.T. (2011): u1(x)|x|−1 is a viscosity solution to a

uniformly elliptic Hessian equation F (D2u) = 0 in the unit ball in R5.

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Why explicit examples?

I Consider a homogeneous cubic form in R5

u1(x) = x
3
5 +

3

2
x5(x

2
1 + x

2
2 − 2x

2
3 − 2x

2
4) +

3
√

3

2
(x4(x

2
2 − x

2
1) + 2x1x2x3).

The set u−1
1 (0) ∩ S4 ⊂ R5 is an (isoparametric) minimal submanifold.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some general remarks

Searching of explicit examples: they are also ‘minimal’ in the sense that they are
very distinguished in many respects.

I Classical (2D) minimal surface theory relies heavily on the Weierstrass-Enneper
representation and complex analysis tools (uniqueness theorem, reflection
principle etc)

I The codimension two case is also very distinguished: any complex hypersurface in
Cn = R2n is always minimal.

I The only known explicit examples of complete minimal hypersurfaces in Rn,
n ≥ 3, are the catenoids, and minimal hypercones (in particular, the
isoparametric ones). There are also known to exist some minimal graphs in Rn,
n ≥ 9 (E. Bombieri, de Giorgi, E. Giusti, L. Simon), the (immersed) analogues of
Enneper’s surface by J. Choe in Rn for 4 ≤ n ≤ 7; the embedded analogues of
Riemann one-periodic examples due to S. Kaabachi, F. Pacard in Rn, n ≥ 3.
None of the latter examples are known explicitly.

I W.Y. Hsiang (1967): find an appropriate classification of minimal hypercones in
Rn, at least of cubic minimal cones.

I V.T. (2012): It turns out that the most natural framework for studying cubic
minimal cones is Jordan algebras (non-associative structures frequently appeared
in connection with elliptic type PDE’s); will be discussed later.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Minimal surfaces with ‘harmonic level sets’

Let h(z) : Cm → C be holomorphic and F : Rk → R be C2-smooth real valued.
Define a hypersurface by the implicit equation

M = {x ∈ R2m+k = Cm × Rk : F (t) = Reh(z)}

Then M is minimal at its regular points if and only if

Re
m∑

α,β=1

h′′αβ h̄
′
αh̄′β + |∇h(z)|2∆F (t)−∆1(F ) ≡ 0 mod (F (t)− Reh(z))

where

∆1F = |∇F |2∆F −
k∑

i,j=1

F ′′ijF
′
iF
′
j

is the mean curvature operator.

Remark. Some important particular cases: F ≡ 0, h ≡ 0. For instance, the
Lawson minimal cones in R2n produced by h(z1, . . . , zn) = zm1

1 . . . zmnn , F ≡ 0. In
fact, there are many other examples.
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Minimal surfaces with ‘harmonic level sets’

Consider the case k = m = 1. Then

M = {x ∈ R3 : F (x1) = Reh(x1 + x2

√
−1)},

can be thought of as a hypersurface R3 with ‘harmonic level sets’.

V.V. Sergienko, V.T. (1998)

The surface M above is minimal if and only if h′(z) = 1/g(z) (z = x1 + x2
√
−1)

with g(z) satisfying
g′′(z)g(z)− g′2(z) = c ∈ R.

Then the function F is found by F ′′(t) + Y (F (t)) = 0, where Y (t) is well-defined
by virtue of

Re g′

|g|2
= −Y (Reh(z)).

Remark. Notice that the resulting surface M , if non-empty, is automatically
embedded because

|∇u(x)|2 = F ′2(x1) +
1

|g(z)|2
> 0,

where u(x) = F (x1)− Reh(x1 + x2
√
−1).
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Minimal surfaces with ‘harmonic level sets’

The only possible solutions of g′′(z)g(z)− g′2(z) = c ∈ R are

(a) g(z) = az + b,

(b) g(z) = aebz , and

(c) g(z) = a sin(bz + c), a2, b2 ∈ R and c ∈ C
which, in particular, yields:

the catenoid the helicoid a Scherk type surface a doubly periodic

surface

g(z) = z g(z) = iz g(z) = ez g(z) = sin z

h(z) = ln z h(z) = −i ln z h(z) = −e−z h(w) = − ln tanh z
2

The defining equations

x21 + x22 = cosh2 x3
x2
x1

= tan x3 exp x3 =
cos x2
cos x1

cn(
kx3
k′ , k) =

sin x2
sinh x1
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Triply-periodic minimal surfaces in R3

Observe that all the above solutions have the following multiplicative form:

φ1(x1)φ2(x2)φ3(x3) = 1. (2)

V. Sergienko and V.T. (1998)

Let (2) define a minimal surface in R3. Suppose also that two of the functions φi
assume a zero value and satisfy φ′2k = Pk(φ2

k) for all k = 1, 2, 3. Then

φ
′
1
2

= a11 + a12φ
2
1 + a13φ

4
1

φ
′
2
2

= a21 + a22φ
2
2 + a23φ

4
2

φ
′
3
2

= a31 + a32φ
2
3 + a33φ

4
3

where the matrix

A
′

:=

 a11
1
2 (a22 + a23) a13

a21
1
2 (a21 + a23) a23

a31
1
2 (a21 + a22) a33


is generating, i.e. a′iαa

′
iβ = a′jγa

′
kγ .

Remark. The corresponding results hold also true for maximal surfaces in the 3D
Minkowski space-time (Sergienko V.V., V.T.; see some related results due to J. Hoppe).
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Triply-periodic minimal surfaces in R3

Example.

A
′

=


1

1+k2
− (1+k2)m2

(1+m2)(1−k2m2)
− k2

1+k2

1
1+m2 − (1+m2)k2

(1+k2)(1−k2m2)
− m2

1+m2

k2m2

1−k2m2
1−k2m2

(1+k2)(1+m2)
1

1−k2m2

 , k
2
m

2 ≤ 1,

the corresponding triply periodic minimal surface

km sn(
x3√

1− k2m2
; km) = cn(x1;

1√
1 + k2

) cn(x2;
1√

1 +m2
)

A triply periodic minimal surface with k = m = 1√
2

A porous gasket (k = 8 and m = 1
9

)
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Some further motivations and observations

Some known examples of minimal hypersurfaces in R4 in the additive form

φ1(x1) + φ2(x2) + φ3(x3) + φ4(x4) = 0

I a hyperplane, a1y1 + a2y2 + a3y3 + a4y4 = 0

I the Clifford cone, eq. I: ln x1 + ln x2 − ln x3 − ln x4 = 0 (actually, x1x2 = x3x4)

I the Clifford cone, eq. II: x2
1 + x2

2 − x
2
3 − x

2
4 = 0;

I the 3D-catenoid: x2
1 + x2

2 + x2
3 − 1

sn2(x4,
√
−1)

= 0

Remarks.

(i) The 3D-catenoid can be thought as a one-periodic minimal hypersurface in R4 (cf.

the Riemann minimal surface in R4).

(ii) The same elliptic function sn(x,
√
−1) also appears in the four-fold periodic

example considered below.
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Some further motivations and observations

A basic regularity property of n-dimensional area minimizing (or stable minimal)
hypersurfaces is that the Hausdorff dimension of the singular set is less than or equal to
n− 7 (F. Almgren, E. Giusti, J. Simons, L. Simon, R. Schoen).

Important questions:

I What kinds of singular sets actually occur?

I In particular, it would be interesting to characterize embedded minimal
submanifolds of Rn which have isolated singularities.

Remark. On the other hand, isolated singularities for solutions of the maximal
surface equation in Rn, n ≥ 2, is a very common phenomenon (E. Calabi, L. Simon,
R. Bartnik, K. Ecker, V. Miklyukov, A.A. Klyachin, V.A. Klyachin, I. Fernández,
F.J. López, R. Souam). Here, the most natural problem is to characterize the singular
data (the singular set with a prescribed asymptotic behaviour) which guarantee the
existence of the corresponding maximal surfaces.
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Some other motivations and observations

Minimal hypersurfaces in Rn with singularities:

I L. Caffarelli, R. Hardt, L. Simon (1984) showed that there exist
(bordered) embedded minimal hypersurfaces in Rn, n ≥ 4, with an
isolated singularity but which is not a cone.

I N. Smale (1989) proved the existence of examples of stable embedded
minimal hypersurfaces with boundary, in Rn, n ≥ 8, with an arbitrary
number of isolated singularities.
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A four-fold periodic minimal hypersurface
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Three remarkable lattices in R4 ∼= H
We identify a vector x ∈ R4 with the quaternion x11 + ix2 + jx3 + kx4 ∈ H.

I the checkerboard lattice: D4 = {m ∈ Z4 :
∑4
i=1mi ≡ 0 mod 2}

I the Lipschitz integers: Z4 = {m ∈ H : mi ∈ Z} = D4 t (1 +D4)

I the F4 lattice of the Hurwitz integers H = Z4 t (h + Z4), where

h =
1

2
(1 + i + j + k),

is an abelian ring (the densest possible lattice packing of balls in R4).

±1,±i,±j,±k 1
2 (±1± i± j± k) . . . taken together

the 16-cell the 8-cell (the hypercube) the 24-cell

(after John C. Baez, Bull. Amer. Math. Soc., 2002)
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Lemniscatic functions

Define the lemniscatic sine by

sl′2 t = 1− sl4 t, sl 0 = 0, (3)

or by Jacobi’s elliptic sine function: sl t = sn(x,
√
−1), and denote by

s(t) := sl($t),

and the associate lemniscatic cosine function

c(t) = s(t+
1

2
),

where

$ = 2ω =

∫ 1

−1

dt
√

1− t4
=

Γ( 1
4

)2

2
√

2π
.

Some important properties:

I the double periodicity: s(z + 2n1 + 2in2) = s(z), n1, n2 ∈ Z;

I the multiplicative identity: s(
√
−1z) =

√
−1s(z).

I The Euler-Fangano identity:

(1 + s2(t))(1 + c2(t)) = 2.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

The construction
Define S(x) = s(x1)s(x2)− s(x3)s(x4) : R4 → R and

M := S
−1

(0)

and define the skeleton of M by M0 := {x ∈ R4 : s(x1)s(x2) = s(x3)s(x4) = 0}.

Proposition 1

(i) M \ Sing(M) is a smooth embedded minimal hypersurface in R4, where

Sing(M) = Z4 t (h +D4),

(ii) x ∈M \M0 ⇒ x ∈ (0, 1)4 mod D4.

Proof. It is straightforward to verify that

∆1S(x) = S(x) · a polynomial of si

where ∆1 is the mean curvature operator. Furthermore,

1

$2
|∇S|2 ≡ (s

2
1 + s

2
2 + s

2
3 + s

2
4)(1− s21s

2
2) mod S.

Thus, |∇S| vanishes at x ∈M if either of the following holds:

I s(x1) = s(x2) = s(x3) = s(x4) = 0 ⇔ x ∈ Z4 (singularities of Z4-type)

I s(x1)2s(x2)2 = 1 ⇔ x ∈ h +D4 (singularities of D4-type)
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

The singular set of M

I Singularities of Z4-type: if a ∈ Z4 then

S(a+ x) = ±x1x2 ± x3x4 +O(|x|4), as x→ 0.

I Singularities of D4-type: if a =∈ h +D4 then

S(a+ x) = ±(x
2
3 + x

2
4 − x

2
1 − x

2
2) +O(|x|4), as x→ 0,

Question: If there exists a symmetry of R4 which interchanges the two types?
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some cross-section chips of M
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

A stratification of M

The function σ(x) = 2
π arcsin(s(x1)s(x2)) : M → R is well-defined smooth function on

M \ Z4 with

K · |∇Mσ|2 =
(s21 + s22) · (s23 + s24)

s21 + s22 + s23 + s24
, si = s(xi), K ∈ R.

The level sets σ−1(λ), −1 ≤ λ ≤ 1, foliate M as follows:

Figure. A singular foliation of M by the level sets of σ

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

A stratification of M

The function σ(x) = 2
π arcsin(s(x1)s(x2)) : M → R is well-defined smooth function on

M \ Z4 with

K · |∇Mσ|2 =
(s21 + s22) · (s23 + s24)

s21 + s22 + s23 + s24
, si = s(xi), K ∈ R.

The level sets σ−1(λ), −1 ≤ λ ≤ 1, foliate M as follows:

Figure. A singular foliation of M by the level sets of σ

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

The connectedness of M

Proposition 2

M is path-connected.

Proof. We will show that any point x ∈M can be connected wit the origin in R4.
Notice that σ(A) = σ(B) =: λ, where σ(y) = s(y1)s(y2) : R2 → R and A = (x1, x2),
A′ = (x3, x4), and observe that x = (y, y′) ∈M if and only if σ(y) = σ(y′).

Figure: The λ-level set of σ in the (x1, x2)- and (x3, x4)-planes respectively.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Symmetries of M

Proposition 3

Let T (M) be the group the translations of R4 leaving M invariant. Then

T (M) = D4.

Proof. The inclusion D4 ⊂ T (M) is by the anti-periodicity s(x+ 1) = −s(x).

In the converse direction, suppose x→ m+ x is in T (M).

I Then S(x1, 0, x3, 0) = 0 implies (x1, 0, x3, 0) ⊂M , and, thus, also
(x1 +m1,m2, x3 +m3,m4) ⊂M , i.e.

s(x1 +m1)s(m2) = s(x3 +m2)s(m4) for any x1, x3 ∈ R.

This implies m1,m3 ∈ Z. Similarly, m2,m4 ∈ Z.

Thus m ∈ Z4.

I On the other hand, h ∈M and s(mi + 1
2

) = (−1)mi imply

(−1)m1+m2 = (−1)m3+m4 .

Thus, m ∈ D4, as required.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Symmetries of M

Proposition 4

The group of the orthogonal transformations of R4 leaving M invariant is isomorphic to
D4 × Z4

2, where D4 is the dihedral group (the symmetry group of the square).

Proof. Let O(M) be the group of orthogonal automorphisms of M
and define

Σ0 = {±1,±i,±j,±k}

Σ1 = {(±
1

2
,±

1

2
,±

1

2
,±

1

2
) : an even number minus signs}

Σ2 = {(±
1

2
,±

1

2
,±

1

2
,±

1

2
) : an odd number minus signs}

Each set consists of 8 unit vectors (the so-called Hurwitz units).

Suppose U ∈ O(M). Then one can show that:

I O(M) stabilizes Σ := Sing(M) ∩ S3 = Σ0 t Σ1;

I thus U : Σ→ Σ acts as a permutation;

I one has for the scalar product: 〈Σi,Σj〉 = 0 or ±1 if i = j, and ± 1
2

if i 6= j.

I hence, it readily follows from 〈Ux, Uy〉 = 〈x, y〉 that U maps Σ0 onto either itself or Σ1;

I since U stabilizes Σ one can show that it also stabilizes Σ0 ∪ Σ1 ∪ Σ2;

I It follows that U acts also as a permutation on the set {Σi : i = 1..3} stabilizing Σ2.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Symmetries of M

Next, since U : M →M , one easily finds that the quadratic form

q(x) = x1x2 − x3x4

(corresponding to the Clifford cone singularity at the origin) is invariant up to a sign
under the action of O(M).

On the other hand, using the fact that U : Σ2 → Σ2 and choosing an orthonormal basis
in Σ2, denoted by vi, i = 1, 2, 3, 4, as the column-vectors of the matrix

B :=
1

2

 −1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,

we find for any x =
∑4
i=1 yivi

q(x) = y
2
3 + y

2
4 − y

2
1 − y

2
2

and we also have
Uvi = εivα(i), 1 ≤ i ≤ 4, ε

2
i = 1,

where α is a permutation which is actually is an element of the symmetry group of the
square (the dihedral group) D4.

It follows that O(M) is a subgroup of the group of orthogonal transformations leaving

Σ2 invariant, i.e. ⊂ D4 × Z4
2.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Proposition 5

Let

Φ(x) :=
s(x1)s(x2)− s(x3)s(x4)

(1 + s2(x1+x2
2

)s2(x3+x4
2

)) · (1 + s2(x1−x2
2

)s2(x3−x4
2

))

and

A =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

Then

I Φ−1(0) = M

I Φ(Ax) = Φ(x),

I A is a reflection in R4 leaving invariant the ’holes’ D4 + h2 and A : Σ2 → Σ2.
More precisely, A is an orthogonal involution Σ0 onto Σ1;

It follows, in particular, that M is invariant under the A-action.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some remarks and open questions

I The only regular polytopes in Rn other than the n-simplex, n-cube, and
n-orthoplex are the dodecahedron and icosahedron in R3 and three special
polytopes in R4: the 24-cell, 120-cell, and 600-cell. The 24-cell is self-dual while
the 120-cell and the 600-cell are dual to each other.

I In each Rn there is a generalisation of the cube tiling. The only regular tilings
other than cube tilings are two regular tilings of R2 – the dual tilings by triangles
and hexagons – and two dual tilings of R4, by 24-cells and 4-orthoplexes.
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some remarks and open questions

I It would be desirable to find a quaternionic representation of the
function Φ(x).

I One can show that there is no regularly embedded minimal
hypersurfaces in R4 with exactly the same symmetry group as M .
Does there exist a D4-periodic embedded non-singular minimal
hypersurface in R4?

I What about E8 in R8 (some connection to the Clifford-Simons cones
and entire minimal graphs) or the Leech lattice in R24?

I Is it possible to glue minimal cones along periodic lattices in Rn as
skeletons to obtain complete embedded (periodic) minimal
hypersurfaces?

I What kind of isolated singularities can occur for higher-dimensional
periodic minimal hypersurfaces? Are they necessarily algebraic?
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I What about E8 in R8 (some connection to the Clifford-Simons cones
and entire minimal graphs) or the Leech lattice in R24?

I Is it possible to glue minimal cones along periodic lattices in Rn as
skeletons to obtain complete embedded (periodic) minimal
hypersurfaces?

I What kind of isolated singularities can occur for higher-dimensional
periodic minimal hypersurfaces? Are they necessarily algebraic?

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some remarks and open questions

I It would be desirable to find a quaternionic representation of the
function Φ(x).

I One can show that there is no regularly embedded minimal
hypersurfaces in R4 with exactly the same symmetry group as M .
Does there exist a D4-periodic embedded non-singular minimal
hypersurface in R4?

I What about E8 in R8 (some connection to the Clifford-Simons cones
and entire minimal graphs) or the Leech lattice in R24?

I Is it possible to glue minimal cones along periodic lattices in Rn as
skeletons to obtain complete embedded (periodic) minimal
hypersurfaces?

I What kind of isolated singularities can occur for higher-dimensional
periodic minimal hypersurfaces? Are they necessarily algebraic?

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some remarks and open questions

I It would be desirable to find a quaternionic representation of the
function Φ(x).

I One can show that there is no regularly embedded minimal
hypersurfaces in R4 with exactly the same symmetry group as M .
Does there exist a D4-periodic embedded non-singular minimal
hypersurface in R4?

I What about E8 in R8 (some connection to the Clifford-Simons cones
and entire minimal graphs) or the Leech lattice in R24?

I Is it possible to glue minimal cones along periodic lattices in Rn as
skeletons to obtain complete embedded (periodic) minimal
hypersurfaces?

I What kind of isolated singularities can occur for higher-dimensional
periodic minimal hypersurfaces? Are they necessarily algebraic?

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Some remarks and open questions

I It would be desirable to find a quaternionic representation of the
function Φ(x).

I One can show that there is no regularly embedded minimal
hypersurfaces in R4 with exactly the same symmetry group as M .
Does there exist a D4-periodic embedded non-singular minimal
hypersurface in R4?

I What about E8 in R8 (some connection to the Clifford-Simons cones
and entire minimal graphs) or the Leech lattice in R24?

I Is it possible to glue minimal cones along periodic lattices in Rn as
skeletons to obtain complete embedded (periodic) minimal
hypersurfaces?

I What kind of isolated singularities can occur for higher-dimensional
periodic minimal hypersurfaces? Are they necessarily algebraic?

Variational problems and Geometric PDE’s June 21, 2013

http://gigda.ugr.es/granada2013/Welcome.html


Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

Radial eigencubics
Recall that ∆1u = |∇u|2∆u−

∑n
i,j=1 u

′′
iju
′
iu
′
j , u : Rn → R.

Definition

A polynomial solution of ∆1u ≡ 0 mod u is called an eigenfunction.

An eigenfunction of deg u = 3 is called an eigencubic.

A solution of ∆1u(x) = λ|x|2 · u is called a radial eigencubic.

V.T. (2010)

I Any radial eigencubic if harmonic;

I The cubic trace identity holds: tr(D2u)3 = −3(n1 − 1)λu(x), where n1 ∈ Z≥0;

I Any radial eigencubic belongs to either of the following families:

a Clifford type eigencubic (an infinite family associated with Clifford
symmetric systems);
exceptional eigencubics (for example, the Cartan isoparametric cubics in
Rn, n = 5, 8, 14, 26); only finitely many members exist:
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Introduction A four-fold periodic minimal hypersurface Jordan algebra approach to cubic minimal cones

A short introduction into Jordan algebras

P. Jordan (1932): a program to discover a new algebraic setting for quantum mechanics
by capture intrinsic algebraic properties of Hermitian matrices.

A Jordan (J.) algebra

J is vector space with a bilinear commutative product • : J × J → J satisfying the
the Jordan identity

x
2 • (x • y) = x • (x

2 • y)

The algebra J is formally real if additionally x2 + y2 = 0 implies x = y = 0.

For any x ∈ J, the subalgebra J(x) generated by x is associative. The rank of J is
max{dim J(x) : x ∈ J} and the minimum polynomial of x is

mx(λ) = λ
r − σ1(x)λ

r−1
+ . . .+ (−1)

r
σr(x) such that mx(x) = 0.

σ1(x) = Tr x = the generic trace of x,
σn(x) = N(x) = the generic norm (or generic determinant) of x.

Example 1. An associative algebra becomes a J. algebra with x • y = 1
2 (xy + yx).

Example 2. The Jordan algebra of n× n matrices over R: rank x = n, Tr x = tr x,

N(x) = det x.
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Formally real Jordan algebras

Classification of formally real Jordan algebras

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the
quantum mechanical formalism, Annals of Math., 1934

Any (finite-dimensional) formally real J. algebra is a direct sum of the simple ones:

I the algebra hn(F1) of symmetric matrices over the reals;

I the algebra hn(F2) of Hermitian matrices over the complexes;

I the algebra hn(F4) of Hermitian matrices over the quaternions;

I the spin factors J(Rn+1) with (x0, x) • (y0, y) = (x0y0 + 〈x, y〉; x0y + y0x);

I h3(F8), the Albert exceptional algebra.

In particular, the only possible formally real J. algebras J with rank(J) = 3 are:
a Jordan algebra the norm of a trace free element

J = h3(Fd), d = 1, 2, 4, 8
√

2N(x) = ud(x)

J = R ⊕ J(Rn+1)
√

2N(x) = 4x3
n − 3xn|x|2

J = F3
1 = R ⊕ R ⊕ R

√
2N(x) = x3

2 − 3x2x
2
1

Remark. V.T. (2012): the second column is exactly the only cubic solutions to

|Du(x)|2 = 9|x|4.

and provided an explicit correspondence between cubic solutions of the latter equation
and formally real cubic Jordan algebras.
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Hessian algebras

Definition

A Hessian (non-associative in general) algebra is a vector space V over F with a
non-degenerate scalar product 〈·, ·〉, a cubic form N : V → F (F is R or C), and a
multiplication on V defined by

〈x#y, z〉 = N(x; y; z) = ∂x∂y∂zN.

Notice that the multiplication is necessarily is associative:

〈xy, z〉 = 〈x, yz〉.

Theorem (V.T., 2012)

A cubic form u is a radial eigencubic on V = Rn if and only if the Hessian algebra on V
associated with u possesses the following relation:

x
2 · x2

+ 4x · x3 − 4|x|2x2 − 16N(x)x = 0, u(x) :=
1

6
〈x2

, x〉,

for any element x ∈ V .
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Cubic cones via Jordan algebras

Theorem (V.T., 2012])

Let V be the Hessian algebra associated with a minimal radial cubic u.

Then it contains a naturally embedded non-trivial Jordan algebra J.

The radial eigencubic u is Clifford if and only if the associated Jordan algebra J is
reduced.

Theorem (V.T., 2012])

Let V be a cubic Jordan algebra and W be a subspace of V . Assume that there exists a
basis {ei}1≤i≤n of W such that

(a)
∑n
i=1 e

#
i ∈ W

⊥;

(b) the linear mapping α(v)
.
=

∑n
i=1 T (v; ei)ei : V → W⊥ commute with the adjoint

map: α(v#) = (α(v))# mod W⊥.

Then the generic norm N(x) = N(
∑
i xiei) is a radial eigencubic in Rn satisfying

∆1N(x) = −2T (α(x); x) ·N(x). (4)
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Thank you!
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