Recent Progress on Complex Quadric in Hermitian Symmetric Spaces

Young Jin Suh

Department of Mathematics Kyungpook National University Taegu 702-701, Korea

Departamento de Geometría y Toplogía, Univesidad de Granada 18071 Granada, Spain E-mail: yjsuh@knu.ac.kr

February 19, 2016

イロト イポト イヨト イヨト

Contents

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces
- 2 Complex Quadrics and Its Dual Quadrics
 - Isometric Reeb Flow in Complex Quadrics
 - Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^n$
 - Contact and Harmonic Curvature
 - Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Contents

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces
- 2 Complex Quadrics and Its Dual Quadrics
 - Isometric Reeb Flow in Complex Quadrics
 - Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
 - Contact and Harmonic Curvature
 - Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

イロト イポト イヨト イヨト

Introduction

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces
- 2 Complex Quadrics and Its Dual Quadrics
 - Isometric Reeb Flow in Complex Quadrics
 - Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
 - Contact and Harmonic Curvature
 - Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロト 人間 ト ヘヨト ヘヨト

Homogeneous Hypersurfaces Isometric Reeb Flow and Contact hypersurfaces

Hermitian Symmetric Spaces

HSSP: Hermitian Symmetric Space.

For HSSP of compact type with rank 1: CP^m , QP^m , CH^m , and QH^m .

For HSSP of compact type with rank 2: $SU(2+q)/S(U(2)\times U(q)), Q^m = G_2(\mathbb{R}^{2+p}), SO(8)/U(4),$ Sp(2)/U(2) and $(\mathfrak{e}_{6(-78)}, \mathfrak{SO}(10) + \mathfrak{R})$ and of noncompact type $SU(2,q)/S(U(2)\times U(q)), Q^{m*} = G_2^*(\mathbb{R}^{2+p}), SO^*(8)/U(4),$ $Sp(2,\mathbb{R})/U(2)$ and $(\mathfrak{e}_{6(-14)}, \mathfrak{SO}(10) + \mathfrak{R})$ (See Helgason [6], [7]).

ヘロン 人間 とくほ とくほ とう

1

Hypersurfaces in Hermitian Symmetric Spaces

Let *M* be a hypersurfaces in a Hermitian Symmetric Space \overline{M} with Kaehler structure *J*. $SX = -\overline{\nabla}_X N$: Weingarten formula Here we say *S* the shape operator of *M* in \overline{M} .

 $\xi = -JN$: Reeb vector field.

$$JX = \phi X + \eta(X)N, \nabla_X \xi = \phi SX$$

for any vector field $X \in \Gamma(M)$.

Then (ϕ, ξ, η, g) : almost contact structure on a hypersurface M

・ロト ・ 理 ト ・ ヨ ト ・

A hypersurfcae *M*: Isometric Reeb Flow $\iff \mathcal{L}_{\xi}g = 0 \iff g(d\phi_t X, d\phi_t Y) = g(X, Y)$ for any $X, Y \in \Gamma(M)$, where ϕ_t denotes a one parameter group, which is said to be an isometric Reeb flow of *M*, defined by

$$\frac{d\phi_t}{dt} = \xi(\phi_t(\boldsymbol{\rho})), \quad \phi_0(\boldsymbol{\rho}) = \boldsymbol{\rho}, \dot{\phi}_0(\boldsymbol{\rho}) = \xi(\boldsymbol{\rho}).$$

Note)

 $\begin{array}{l} \mathcal{L}_{\xi}g=0 \iff \nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=0, \ \nabla\xi: \ \text{skew-symmetric} \iff \\ g(\nabla_{X}\xi,Y)+g(\nabla_{Y}\xi,X)=0 \iff g((\phi S-S\phi)X,Y)=0 \ \text{for} \\ \text{any } X, Y\in \Gamma(M). \end{array}$

イロト イポト イヨト イヨト

э

A hypersurfcae *M*: Isometric Reeb Flow $\iff \mathcal{L}_{\xi}g = 0 \iff g(d\phi_t X, d\phi_t Y) = g(X, Y)$ for any $X, Y \in \Gamma(M)$, where ϕ_t denotes a one parameter group, which is said to be an isometric Reeb flow of *M*, defined by

$$\frac{d\phi_t}{dt} = \xi(\phi_t(\boldsymbol{\rho})), \quad \phi_0(\boldsymbol{\rho}) = \boldsymbol{\rho}, \dot{\phi}_0(\boldsymbol{\rho}) = \xi(\boldsymbol{\rho}).$$

Note)

 $\begin{array}{l} \mathcal{L}_{\xi}g=0 \iff \nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=0, \ \nabla\xi: \ \text{skew-symmetric} \iff \\ g(\nabla_{X}\xi,Y)+g(\nabla_{Y}\xi,X)=0 \iff g((\phi S-S\phi)X,Y)=0 \ \text{for} \\ \text{any } X, Y\in \Gamma(M). \end{array}$

ヘロン 人間 とくほ とくほ とう

э

A hypersurfcae *M* in Kaehler manifold \overline{M} is contact \iff there exists a nonvanishing smooth function ρ on *M* such that $d\eta = 2\rho\omega$. Then it is clear $\eta \wedge (d\eta)^{m-1} \neq 0$.

Note)

The equation $d\eta = 2\rho\omega$ means that $d\eta(X, Y) = 2\rho g(\phi X, Y)$ for any vector fields *X*, *Y* on *M*.

Note)

 $d\eta(X, Y) = d(\eta(Y))(X) - d(\eta(X))(Y) - \eta([X, Y]) \iff g((S\phi + \phi S)X, Y) = 2\rho g(\phi X, Y).$

イロト 不得 とくほと くほとう

ъ

A hypersurfcae *M* in Kaehler manifold \overline{M} is contact \iff there exists a nonvanishing smooth function ρ on *M* such that $d\eta = 2\rho\omega$. Then it is clear $\eta \wedge (d\eta)^{m-1} \neq 0$.

Note)

The equation $d\eta = 2\rho\omega$ means that $d\eta(X, Y) = 2\rho g(\phi X, Y)$ for any vector fields X, Y on M.

Note)

 $d\eta(X, Y) = d(\eta(Y))(X) - d(\eta(X))(Y) - \eta([X, Y]) \iff g((S\phi + \phi S)X, Y) = 2\rho g(\phi X, Y).$

イロト 不得 とくほ とくほ とう

э

A hypersurfcae *M* in Kaehler manifold \overline{M} is contact \iff there exists a nonvanishing smooth function ρ on *M* such that $d\eta = 2\rho\omega$. Then it is clear $\eta \wedge (d\eta)^{m-1} \neq 0$.

Note)

The equation $d\eta = 2\rho\omega$ means that $d\eta(X, Y) = 2\rho g(\phi X, Y)$ for any vector fields X, Y on M.

Note)

 $d\eta(X, Y) = d(\eta(Y))(X) - d(\eta(X))(Y) - \eta([X, Y]) \iff g((S\phi + \phi S)X, Y) = 2\rho g(\phi X, Y).$

ヘロア 人間 アメヨア 人口 ア

э

Problem 1

Classify all of homogeneous hypersurfaces in Hermitian Symmetric Spaces.

In this talk, we consider the following problems:

2 roblem

If M is a connected hypersurface in Hermitian symmetric spaces \overline{M} with isometric Reeb flow, then M becomes homogeneous ?

Problem 3

If M is a connected contact hypersurface in Hermitian symmetric spaces \overline{M} , then M becomes homogeneous ?

Problem 1

Classify all of homogeneous hypersurfaces in Hermitian Symmetric Spaces.

In this talk, we consider the following problems:

Problem 2

If *M* is a connected hypersurface in Hermitian symmetric spaces \overline{M} with isometric Reeb flow, then *M* becomes homogeneous ?

Problem 3

If M is a connected contact hypersurface in Hermitian symmetric spaces \overline{M} , then M becomes homogeneous ?

Problem 1

Classify all of homogeneous hypersurfaces in Hermitian Symmetric Spaces.

In this talk, we consider the following problems:

Problem 2

If *M* is a connected hypersurface in Hermitian symmetric spaces \overline{M} with isometric Reeb flow, then *M* becomes homogeneous ?

Problem 3

If M is a connected contact hypersurface in Hermitian symmetric spaces \overline{M} , then M becomes homogeneous ?

Introduction

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces
- Complex Quadrics and Its Dual Quadrics
 - Isometric Reeb Flow in Complex Quadrics
 - Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
 - Contact and Harmonic Curvature
 - Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロト ヘアト ヘビト ヘビト

Isometric Reeb Flow

- Note 1) For hypersurfaces in CP^m, CH^m and QP^m with isometric Reeb flow: Okumura 1976, Montiel and Romero 1986, Perez and Martinez 1986 respectively.
- Note 2) For hypersurfaces in $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$ and $Q^m = SO(m+2)/SO(2)SO(m)$ with isometric Reeb flow: Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and Suh, 2013.

・ロト ・ 理 ト ・ ヨ ト ・

Isometric Reeb Flow

- Note 1) For hypersurfaces in CP^m, CH^m and QP^m with isometric Reeb flow: Okumura 1976, Montiel and Romero 1986, Perez and Martinez 1986 respectively.
- Note 2) For hypersurfaces in $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$ and $Q^m = \frac{SO(m+2)}{SO(2)SO(m)}$ with isometric Reeb flow: Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and Suh, 2013.

ヘロン 人間 とくほ とくほ とう

Homogeneous Hypersurfaces Isometric Reeb Flow and Contact hypersurfaces

Contact Hypersurfaces

- Note 1) For contact hypersurfaces in C^m, CP^m and CH^m: Okumura 1966, and Vernon 1987.
- Note 2) Recently, a contact hypersurface in $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$, complex quadric $Q^m = SO(m+2)/SO(2)SO(m)$ and noncompact complex quadric $Q^{m*} = SO^0(2,m)/SO(2)SO(m)$: Suh, 2006, 2014, 2015, 2016 and Berndt, Lee and Suh, 2013, Berndt and Suh, 2014, 2015.

イロト 不得 とくほ とくほ とうほ

Homogeneous Hypersurfaces Isometric Reeb Flow and Contact hypersurfaces

Contact Hypersurfaces

- Note 1) For contact hypersurfaces in C^m, CP^m and CH^m: Okumura 1966, and Vernon 1987.
- Note 2) Recently, a contact hypersurface in $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$, complex quadric $Q^m = SO(m+2)/SO(2)SO(m)$ and noncompact complex quadric $Q^{m*} = SO^0(2, m)/SO(2)SO(m)$: Suh, 2006, 2014, 2015, 2016 and Berndt, Lee and Suh, 2013, Berndt and Suh, 2014, 2015.

イロト 不得 とくほ とくほ とうほ

In this talk, we introduce some recent results for hypersurface M in $Q^m = SO(m+2)/SO(2) \cdot SO(m)$ and $Q^{*m} = SO^0(2,m)/SO(2) \cdot SO(m)$ as follows:

- 1) A classification problem for hypersurfaces with isometric Reeb flow in *complex quadric* Q^m.
- 2) A classification problem for contact hypersurfaces in *non-compact complex quadric Q**^{*m*}.
- 3) A classification problem for hypersurfaces with harmonic curvature in *complex quadric Q^m*.
- 4) Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton problems in *complex quadric Q^m*.

ヘロン ヘアン ヘビン ヘビン

In this talk, we introduce some recent results for hypersurface M in $Q^m = SO(m+2)/SO(2) \cdot SO(m)$ and $Q^{*m} = SO^0(2,m)/SO(2) \cdot SO(m)$ as follows:

- 1) A classification problem for hypersurfaces with isometric Reeb flow in *complex quadric* Q^m.
- 2) A classification problem for contact hypersurfaces in non-compact complex quadric Q^{*m}.
- 3) A classification problem for hypersurfaces with harmonic curvature in *complex quadric Q^m*.
- 4) Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton problems in *complex quadric Q^m*.

ヘロン ヘアン ヘビン ヘビン

In this talk, we introduce some recent results for hypersurface M in $Q^m = SO(m+2)/SO(2) \cdot SO(m)$ and $Q^{*m} = SO^0(2,m)/SO(2) \cdot SO(m)$ as follows:

- 1) A classification problem for hypersurfaces with isometric Reeb flow in *complex quadric* Q^m.
- 2) A classification problem for contact hypersurfaces in non-compact complex quadric Q^{*m}.
- 3) A classification problem for hypersurfaces with harmonic curvature in *complex quadric Q^m*.
- 4) Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton problems in *complex quadric Q^m*.

・ロト ・ 理 ト ・ ヨ ト ・

In this talk, we introduce some recent results for hypersurface M in $Q^m = SO(m+2)/SO(2) \cdot SO(m)$ and $Q^{*m} = SO^0(2,m)/SO(2) \cdot SO(m)$ as follows:

- 1) A classification problem for hypersurfaces with isometric Reeb flow in *complex quadric* Q^m.
- 2) A classification problem for contact hypersurfaces in non-compact complex quadric Q^{*m}.
- 3) A classification problem for hypersurfaces with harmonic curvature in *complex quadric Q^m*.
- 4) Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton problems in *complex quadric Q^m*.

・ロト ・ 理 ト ・ ヨ ト ・

Isometric Reeb Flow in Complex Quadrics Tubes around OP¹, ⊂ Q²¹, ⊂ Q²¹, ⊂ Q²¹ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci solitor

ヘロン 人間 とくほ とくほ とう

Introduction

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces

2 Complex Quadrics and Its Dual Quadrics

- Isometric Reeb Flow in Complex Quadrics
- Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
- Contact and Harmonic Curvature
- Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The homogeneous quadratic equation

$$Q^m = \{z \in \mathbb{C}^{m+2} | z_1^2 + \ldots + z_{m+2}^2 = 0\} \subset \mathbb{C}P^{m+1}$$

defines a complex hypersurface in complex projective space $\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1).$

For a unit normal vector N of Q^m at a point $[z] \in Q^m$ we denote by A_N the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to N.

The shape operator is an involution on $T_{[z]}Q^m$ and $T_{[z]}Q^m = V(A_N) \oplus JV(A_N)$, where $V(A_N)$ is the (+1)-eigenspace and $JV(A_N)$ is the (-1)-eigenspace of A_N .

Geometrically this means that A_N defines a real structure on the complex vector space $T_{[z]}Q^m$, or equivalently, is a complex conjugation on $T_{[z]}Q^m$.

The Riemannian curvature tensor R of Q^m can be expressed as follows:

R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX-g(JX, Z)JY - 2g(JX, Y)JZ +g(AY, Z)AX - g(AX, Z)AY +g(JAY, Z)JAX - g(JAX, Z)JAY.

A nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m .

- 1. If a conjugation $A \in \mathfrak{A}_{[z]}$ such that $W \in V(A)$, then W is singular, that is \mathfrak{A} -principal.
- If a conjugation A ∈ 𝔅_[z] and orthonormal vectors
 X, Y ∈ V(A) such that W/||W|| = (X + JY)/√2, then W is said to be 𝔅-isotropic.

The Riemannian curvature tensor R of Q^m can be expressed as follows:

R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX-g(JX, Z)JY - 2g(JX, Y)JZ +g(AY, Z)AX - g(AX, Z)AY +g(JAY, Z)JAX - g(JAX, Z)JAY.

A nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m .

- 1. If a conjugation $A \in \mathfrak{A}_{[z]}$ such that $W \in V(A)$, then W is singular, that is \mathfrak{A} -principal.
- If a conjugation A ∈ 𝔅_[z] and orthonormal vectors
 X, Y ∈ V(A) such that W/||W|| = (X + JY)/√2, then W is said to be 𝔅-isotropic.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロト ヘアト ヘビト ヘビト

Introduction

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces

2 Complex Quadrics and Its Dual Quadrics

- Isometric Reeb Flow in Complex Quadrics
- Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
- Contact and Harmonic Curvature
- Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Geometric Descriptions of the Tube

We assume that *m* is even, say m = 2k. The map

 $\mathbb{C}P^k \to Q^{2k} \subset \mathbb{C}P^{2k+1} , \ [z_1, \ldots, z_{k+1}] \mapsto [z_1, \ldots, z_{k+1}, iz_1, \ldots, iz_{k+1}]$

gives an embedding of $\mathbb{C}P^k$ into Q^{2k} as a totally geodesic complex submanifold.

Define a complex structure j on \mathbb{C}^{2k+2} by

$$j(z_1,\ldots,z_{k+1},z_{k+2},\ldots,z_{2k+2}) = (-z_{k+2},\ldots,-z_{2k+2},z_1,\ldots,z_{k+1}).$$

Then $j^2 = -l$ and note that ij = ji. We can then identify \mathbb{C}^{2k+2} with $\mathbb{C}^{k+1} \oplus j\mathbb{C}^{k+1}$ and get

$$T_{[z]}\mathbb{C}P^{k} = \{X + ijX | X \in V(A_{\bar{z}})\} \quad (\mathfrak{A} - isotropic).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The normal space becomes $(\mathfrak{A} - isotropic)$ as follows:

$$\nu_{[z]}\mathbb{C}P^k = A_{\bar{z}}(T_{[z]}\mathbb{C}P^k) = \{X - ijX|X \in V(A_{\bar{z}})\}.$$

Since *N* is \mathfrak{A} -isotropic, the four vectors $\{N, JN, AN, JAN\}$ become pairwise orthonormal and the normal Jacobi operator R_N is given by

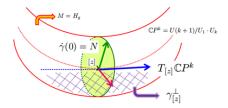
 $R_N Z = R(Z, N)N$ = Z - g(Z, N)N + 3g(Z, JN)JN -g(Z, AN)AN - g(Z, JAN)JAN.

Both $T_{[z]} \mathbb{C}P^k$ and $\nu_{[z]} \mathbb{C}P^k$ are invariant under R_N , and R_N has three eigenvalues 0, 1, 4 according to $\mathbb{R}N \oplus [AN]$, $T_{[z]}Q^{2k} \oplus ([N] \oplus [AN])$ and $\mathbb{R}JN$.

イロト 不得 とくほ とくほ とうほ

Normal geodesic in complex quadrics

M: an open part of a tube over $\mathbb{C}P^k$ in Q^{2k} Let γ be a geodesic in Q^{2k} with $\gamma(0) = [z]$ and $\dot{\gamma}(0) = N$. Denote $\gamma_{[z]}^{\perp} = T_{[z]}\mathbb{C}P^k \oplus (\nu_{[z]}\mathbb{C}P^k \oplus \mathbb{R}N)$



Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

イロト 不得 とくほ とくほ とうほ

Principal Curvatures and Spaces of the Tube

To calculate the principal curvatures of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ we use the standard Jacobi field method as described in Section 8.2 of Berndt, Console and Olmos.

Let γ be the geodesic in Q^{2k} with $\gamma(0) = [z]$ and $\dot{\gamma}(0) = N$ and denote by γ^{\perp} the parallel subbundle of TQ^{2k} along γ defined by $\gamma_{\gamma(t)}^{\perp} = T_{[\gamma(t)]}Q^{2k} \ominus \mathbb{R}\dot{\gamma}(t)$. Moreover, define the γ^{\perp} -valued tensor field R_{γ}^{\perp} along γ by $R_{\gamma(t)}^{\perp}X = R(X, \dot{\gamma}(t))\dot{\gamma}(t)$. Now consider the End (γ^{\perp}) -valued differential equation

 $Y'' + R_{\gamma}^{\perp} \circ Y = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let *D* be the unique solution of this differential equation with initial values

$$D(0) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
, $D'(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,

where the decomposition of the matrices is with respect to

$\gamma_{[z]}^{\perp} = T_{[z]}(M) = T_{[z]} \mathbb{C} P^k \oplus (\nu_{[z]} \mathbb{C} P^k \ominus \mathbb{R} N)$

and *I* denotes the identity transformation on the corresponding space. Then the shape operator S(r) of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ with respect to $\dot{\gamma}(r)$ is given by

$S(r) = -D'(r) \circ D^{-1}(r).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let *D* be the unique solution of this differential equation with initial values

$$D(0) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
, $D'(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,

where the decomposition of the matrices is with respect to

 $\gamma_{[z]}^{\perp} = \mathit{T}_{[z]}(\mathit{M}) = \mathit{T}_{[z]}\mathbb{C}\mathit{P}^{k} \oplus (\nu_{[z]}\mathbb{C}\mathit{P}^{k} \ominus \mathbb{R}\mathit{N})$

and *I* denotes the identity transformation on the corresponding space. Then the shape operator S(r) of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ with respect to $\dot{\gamma}(r)$ is given by

 $S(r) = -D'(r) \circ D^{-1}(r).$

・ロト ・ 理 ト ・ ヨ ト ・

Let *D* be the unique solution of this differential equation with initial values

$$D(0) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
, $D'(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,

where the decomposition of the matrices is with respect to

$$\gamma_{[z]}^{\perp} = \mathcal{T}_{[z]}(\mathcal{M}) = \mathcal{T}_{[z]}\mathbb{C}\mathcal{P}^k \oplus (\nu_{[z]}\mathbb{C}\mathcal{P}^k \ominus \mathbb{R}\mathcal{N})$$

and *I* denotes the identity transformation on the corresponding space. Then the shape operator S(r) of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ with respect to $\dot{\gamma}(r)$ is given by

$$S(r)=-D'(r)\circ D^{-1}(r).$$

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

If we decompose $\gamma_{[z]}^{\perp}$ further into

 $\gamma_{[z]}^{\perp} = [AN] \oplus (T_{[z]} \mathbb{C} P^k \ominus [AN]) \oplus (\nu_{[z]} \mathbb{C} P^k \ominus [N]) \oplus \mathbb{R} JN,$

we get by explicit computation that

$$S(r) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \tan(r) & 0 & 0 \\ 0 & 0 & -\cot(r) & 0 \\ 0 & 0 & 0 & -2\cot(2r) \end{pmatrix}$$

with respect to that decomposition $T_{[z]}M = \gamma_{[z]}^{\perp}$, $[z] \in M$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

If we decompose $\gamma_{[z]}^{\perp}$ further into

 $\gamma_{[z]}^{\perp} = [AN] \oplus (T_{[z]} \mathbb{C} P^k \ominus [AN]) \oplus (\nu_{[z]} \mathbb{C} P^k \ominus [N]) \oplus \mathbb{R} JN,$

we get by explicit computation that

$$S(r) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \tan(r) & 0 & 0 \\ 0 & 0 & -\cot(r) & 0 \\ 0 & 0 & 0 & -2\cot(2r) \end{pmatrix}$$

with respect to that decomposition $T_{[z]}M = \gamma_{[z]}^{\perp}$, $[z] \in M$.

ヘロア 人間 アメヨア・ヨア

Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following hold:

- 1. *M* is a Hopf hypersurface.
- 2. The normal bundle of M consists of \mathfrak{A} -isotropic singular.
- 3. *M* has four distinct constant principal curvatures.

4. $S\phi = \phi S$.

ヘロア 人間 アメヨア・ヨア

Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following hold:

- 1. *M* is a Hopf hypersurface.
- 2. The normal bundle of M consists of \mathfrak{A} -isotropic singular.
- 3. *M* has four distinct constant principal curvatures.

4. $S\phi = \phi S$.

ヘロア 人間 アメヨア・ヨア

Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following hold:

- 1. *M* is a Hopf hypersurface.
- 2. The normal bundle of M consists of \mathfrak{A} -isotropic singular.
- 3. *M* has four distinct constant principal curvatures.

4. $S\phi = \phi S$.

ヘロト ヘアト ヘヨト ヘヨト

Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following hold:

- 1. *M* is a Hopf hypersurface.
- 2. The normal bundle of M consists of \mathfrak{A} -isotropic singular.
- 3. *M* has four distinct constant principal curvatures.

principal curvature	eigenspace	multiplicity
0	$\mathcal{C}\ominus\mathcal{Q}$	2
tan(r)	$T\mathbb{C}P^k\ominus(\mathcal{C}\ominus\mathcal{Q})$	2 <i>k</i> – 2
$-\cot(r)$	$ u \mathbb{C} P^k \ominus \mathbb{C} u M$	2k – 2
$-2\cot(2r)$	${\cal F}$	1

4. $S\phi = \phi S$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following hold:

- 1. *M* is a Hopf hypersurface.
- 2. The normal bundle of M consists of \mathfrak{A} -isotropic singular.
- 3. *M* has four distinct constant principal curvatures.

principal curvature	eigenspace	multiplicity
0	$\mathcal{C}\ominus\mathcal{Q}$	2
tan(r)	$T\mathbb{C}P^k\ominus(\mathcal{C}\ominus\mathcal{Q})$	2 <i>k</i> – 2
$-\cot(r)$	$ u \mathbb{C} P^k \ominus \mathbb{C} \nu M$	2k – 2
$-2\cot(2r)$	${\cal F}$	1

4. $S \phi = \phi S.$

ヘロト ヘ戸ト ヘヨト ヘヨト

Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k} . Then the following hold:

- 1. *M* is a Hopf hypersurface.
- 2. The normal bundle of M consists of \mathfrak{A} -isotropic singular.
- 3. *M* has four distinct constant principal curvatures.

principal curvature	eigenspace	multiplicity
0	$\mathcal{C}\ominus\mathcal{Q}$	2
tan(r)	$T\mathbb{C}P^k\ominus(\mathcal{C}\ominus\mathcal{Q})$	2 <i>k</i> – 2
$-\cot(r)$	$ u \mathbb{C} P^k \ominus \mathbb{C} u M$	2 <i>k</i> – 2
$-2\cot(2r)$	${\cal F}$	1

4. $S \phi = \phi S.$

Isometric Reeb Flow in Complex Quadrics **Tubes around \mathbb{C}^{ph} \subset \mathbb{Q}^{2k} or S^m \subset \mathbb{Q}^m** Contact and Harmonic Curvature Seudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロト ・ 理 ト ・ ヨ ト ・

In this talk we present the classification for the complex quadric $Q^m = SO(m+2)/SO(2)SO(m)$. In view of the previous two results a natural expectation would be that the corresponding classification would lead to the totally geodesic $Q^{m-1} \subset Q^m$. Surprisingly, this is not the case. In fact, we prove

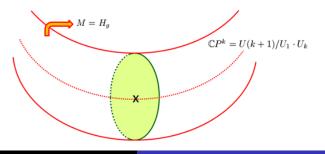
Theorem 3.1. (Berndt and Suh, IJM., 2013)

Let *M* be a real hypersurface of the complex quadric Q^m , $m \ge 3$. The Reeb flow on *M* is isometric if and only if *m* is even, say m = 2k, and *M* is an open part of a tube around a totally geodesic $\mathbb{C}P^k \subset Q^{2k}$.

ъ

Complex Quadrics

- **3** In Q^{2k} : Berndt and Suh
 - M : an open part of a tube over $\mathbb{C}P^k$ in Q^{2k}
 - $H: H = U(k+1) \hookrightarrow SO(2k+2)$
 - : Isometry group acting cohomogeneity one



Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{C}P^k \subset \mathbb{Q}^2 k$ or $S^m \subset \mathbb{Q}^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロン 人間 とくほ とくほ とう

ъ

Outline of the Proof of Theorem 3.1

In the following we will investigate real hypersurfaces in Q^m for which the Reeb flow is isometric. From this, we get a complete expression for the covariant derivative as follows:

 $\begin{aligned} (\nabla_X S)Y &= \{ d\alpha(X)\eta(Y) + g((\alpha S\phi - S^2\phi)X, Y) \\ +\delta\eta(Y)\rho(X) + \delta g(BX, \phi Y) + \eta(BX)\rho(Y) \} \\ +\{\eta(Y)\rho(X) + g(BX, \phi Y) \} \\ B\xi + g(BX, Y)\phi \\ B\xi \\ -\rho(Y)BX - \eta(Y)\phi \\ X - \eta(BY)\phi \\ BX. \end{aligned}$

Lemma 3.1.4

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then the normal vector field *N* is \mathfrak{A} -isotropic everywhere.

From Proposition and Lemma the principal curvature function α is constant. Then we get

$$(\lambda^2 - \alpha \lambda)Y + (\lambda^2 - \alpha \lambda)Z = (S^2 - \alpha S)X = Y.$$

By virtue of this equation, we can assert the following propositions:

Proposition 3.2

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then the distributions Q and $C \ominus Q = [B\xi]$ are invariant.

Proposition 3.3

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then *m* is even, say m = 2k, and the real structure *A* maps T_{λ} onto T_{μ} , and vice versa. From Proposition and Lemma the principal curvature function α is constant. Then we get

$$(\lambda^2 - \alpha\lambda)Y + (\lambda^2 - \alpha\lambda)Z = (S^2 - \alpha S)X = Y.$$

By virtue of this equation, we can assert the following propositions:

Proposition 3.2

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then the distributions Q and $C \ominus Q = [B\xi]$ are invariant.

Proposition 3.3

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then *m* is even, say m = 2k, and the real structure *A* maps T_{λ} onto T_{μ} , and vice versa. From Proposition and Lemma the principal curvature function α is constant. Then we get

$$(\lambda^2 - \alpha\lambda)Y + (\lambda^2 - \alpha\lambda)Z = (S^2 - \alpha S)X = Y.$$

By virtue of this equation, we can assert the following propositions:

Proposition 3.2

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then the distributions Q and $C \ominus Q = [B\xi]$ are invariant.

Proposition 3.3

Let *M* be a real hypersurface in Q^m , $m \ge 3$, with isometric Reeb flow. Then *m* is even, say m = 2k, and the real structure *A* maps T_{λ} onto T_{μ} , and vice versa.

Isometric Reeb Flow in Complex Quadrics Tubes around $CP^{k} \subset Q^{2k}$ or $S^{m} \subset Q^{m}$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

< ≣ →

Key Points of the Proof

For each point $[z] \in M$ we denote by $\gamma_{[z]}$ the geodesic in Q^{2k} with $\gamma_{[z]}(0) = [z]$ and $\dot{\gamma}_{[z]}(0) = N_{[z]}$ and by F the smooth map $F : M \longrightarrow Q^m, [z] \longrightarrow \gamma_{[z]}(r).$

F is the displacement of *M* at distance *r* in the direction of *N*. Thee differential $d_{[z]}F$ of *F* at [z] can be computed by

$$d_{[z]}F(X)=Z_X(r),$$

where Z_X is the Jacobi vector field along $\gamma_{[z]}$ with $Z_X(0) = X$ and $Z'_X(0) = -SX$. The \mathfrak{A} -isotropic N gives that $R_N = R(Z, N)N$ has the three constant eigenvalues 0, 1, 4 with corresponding eigenbundles

$$\nu M \oplus (\mathcal{C} \ominus \mathcal{Q}) = \nu M \oplus T_{\nu},$$

$$\mathcal{Q} = T_{\lambda} \oplus T_{\mu} \text{ and } \mathcal{F} = \operatorname{T}_{\alpha},$$

・ロット (雪) () () () ()

Rigidity of totally geodesic submanifolds now implies that the entire submanifold *M* is an open part of a tube of radius *r* around a *k*-dimensional connected, complete, totally geodesic complex submanifold *P* of Q^{2k} .

According to Klein's classification the submanifold P is either $Q^k \subset Q^{2k}$ (\mathfrak{A} -invariant) or $\mathbb{C}P^k \subset Q^{2k}$ (\mathfrak{A} -isotropic). But we have proved that the normal vector N is \mathfrak{A} -isotropic. Then it follows that M is congruent to an open part of a tube around $\mathbb{C}P^k$.

This concludes the proof of our Theorem 3.1 for real hypersurfaces with isometric Reeb flow in complex quadric.

ヘロン 人間 とくほ とくほ とう

Introduction

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces

2 Complex Quadrics and Its Dual Quadrics

- Isometric Reeb Flow in Complex Quadrics
- Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
- Contact and Harmonic Curvature
- Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Some Key Propositions

A contact hypersurface in a Kaehler manifold is a real hypersurface satisfying the condition:

 $S\phi + \phi S = k\phi$, $k = 2\rho \neq 0$: constant

Then we can apply its result to give a classification in Q^m as follows:

Proposition 3.2.1. (Berndt and Suh, Proc. AMS., 2015)

The following statements are equivalent:

- (i) The function α is constant,
- (ii) *M* has constant mean curvature,
- (iii) JN is an eigenvector of the normal Jacobi \overline{R}_N .

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Some Key Propositions

A contact hypersurface in a Kaehler manifold is a real hypersurface satisfying the condition:

 $S\phi + \phi S = k\phi$, $k = 2\rho \neq 0$: constant

Then we can apply its result to give a classification in Q^m as follows:

Proposition 3.2.1. (Berndt and Suh, Proc. AMS., 2015)

The following statements are equivalent:

- (i) The function α is constant,
- (ii) *M* has constant mean curvature,
- (iii) JN is an eigenvector of the normal Jacobi \overline{R}_N .

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Some Key Propositions

A contact hypersurface in a Kaehler manifold is a real hypersurface satisfying the condition:

 $S\phi + \phi S = k\phi$, $k = 2\rho \neq 0$: constant

Then we can apply its result to give a classification in Q^m as follows:

Proposition 3.2.1. (Berndt and Suh, Proc. AMS., 2015)

The following statements are equivalent:

- (i) The function α is constant,
- (ii) *M* has constant mean curvature,

• (iii) JN is an eigenvector of the normal Jacobi \overline{R}_N .

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Some Key Propositions

A contact hypersurface in a Kaehler manifold is a real hypersurface satisfying the condition:

 $S\phi + \phi S = k\phi$, $k = 2\rho \neq 0$: constant

Then we can apply its result to give a classification in Q^m as follows:

Proposition 3.2.1. (Berndt and Suh, Proc. AMS., 2015)

The following statements are equivalent:

- (i) The function α is constant,
- (ii) *M* has constant mean curvature,
- (iii) JN is an eigenvector of the normal Jacobi \overline{R}_N .

Some Key Propositions

Proposition 3.2.2

Let *M* be a contact hypersurfaces of the complex quadric Q^m (resp. Q^{m^*}), $m \ge 3$. Then the following statements are equivalent:

- (i) JN is an eigenvector of the normal Jacobi operator $\bar{R}_N = \bar{R}(\cdot, N)N$ everywhere ,
- (ii) N is a-principal or a-isotropic everywhere,
- (iii)The normal vector **N** is singular in Q^m (resp. in Q^{m*}).

Proposition 3.2.3

Some Key Propositions

Proposition 3.2.2

Let *M* be a contact hypersurfaces of the complex quadric Q^m (resp. Q^{m^*}), $m \ge 3$. Then the following statements are equivalent:

- (i) JN is an eigenvector of the normal Jacobi operator $\bar{R}_N = \bar{R}(\cdot, N)N$ everywhere ,
- (ii) N is a-principal or a-isotropic everywhere,
- (iii)The normal vector **N** is singular in Q^m (resp. in Q^{m*}).

Proposition 3.2.3

Some Key Propositions

Proposition 3.2.2

Let *M* be a contact hypersurfaces of the complex quadric Q^m (resp. Q^{m^*}), $m \ge 3$. Then the following statements are equivalent:

- (i) JN is an eigenvector of the normal Jacobi operator $\bar{R}_N = \bar{R}(\cdot, N)N$ everywhere ,
- (ii) N is α-principal or α-isotropic everywhere,
- (iii)The normal vector **N** is singular in Q^m (resp. in Q^{m*}).

Proposition 3.2.3

Some Key Propositions

Proposition 3.2.2

Let *M* be a contact hypersurfaces of the complex quadric Q^m (resp. Q^{m^*}), $m \ge 3$. Then the following statements are equivalent:

- (i) JN is an eigenvector of the normal Jacobi operator $\bar{R}_N = \bar{R}(\cdot, N)N$ everywhere ,
- (ii) N is α-principal or α-isotropic everywhere,
- (iii)The normal vector N is singular in Q^m (resp. in Q^{m^*}).

Proposition 3.2.3

Some Key Propositions

Proposition 3.2.2

Let *M* be a contact hypersurfaces of the complex quadric Q^m (resp. Q^{m^*}), $m \ge 3$. Then the following statements are equivalent:

- (i) JN is an eigenvector of the normal Jacobi operator $\bar{R}_N = \bar{R}(\cdot, N)N$ everywhere ,
- (ii) N is α-principal or α-isotropic everywhere,
- (iii)The normal vector N is singular in Q^m (resp. in Q^{m^*}).

Proposition 3.2.3

Isometric Reeb Flow in Complex Quadrics Tubes around *CP^k* ⊂ *Q[®]* or *S[®]* ⊂ *Q[®]* Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロン ヘアン ヘビン ヘビン

Contact hypersurfaces in complex quadrics

By viture of key Propositions and some remarks mentioned above, we give a classification in Q^m as follows:

Theorem 3.2. (Berndt and Suh, Proc. AMS., 2015)

Let *M* be a connected real hypersurface with constant mean curvature in complex quadric Q^m , $m \ge 3$. Then *M* is contact if and only if *M* is an open part of a tube of radius $0 < r < \frac{\pi}{2\sqrt{2}}$ around the sphere *S^m* embedded in Q^m .

Isometric Reeb Flow in Complex Quadrics Tubes around CP⁴. ⊂ Q²⁸ or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Contact hypersurfaces in noncompact quadrics

Moreover, we give a classification of contact hypersurfaces in $Q^{m*} = SO_{m2}^0/SO_mSO_2$ for $m \ge 3$ as follows:

Theorem 3.3. (Berndt and Suh, Proc. AMS., 2015)

Let *M* be a connected real hypersurface with cmc in Q^{m^*} , $m \ge 3$. Then *M* is contact if and only if *M* is an open part of one of the following

- (i)the tube of radius *r*∈**R**₊ around a totally geodesic *Q*^{(m-1)*} which is embedded in *Q*^{m*},
- (ii) the tube of radius *r*∈**R**₊ around a totally real totally geodesic **R***H^m* embedded in *Q^{m*}* as a real form of *Q^{m*}*.
- (iii) a horosphere in Q^{m*} whose center at infinity is the equivalence class of an A-principal geodesic in Q^{m*}.

Contact hypersurfaces in noncompact quadrics

Moreover, we give a classification of contact hypersurfaces in $Q^{m*} = SO_{m2}^0/SO_mSO_2$ for $m \ge 3$ as follows:

Theorem 3.3. (Berndt and Suh, Proc. AMS., 2015)

Let *M* be a connected real hypersurface with cmc in Q^{m^*} , $m \ge 3$. Then *M* is contact if and only if *M* is an open part of one of the following

- (i)the tube of radius *r*∈R₊ around a totally geodesic Q^{(m-1)*} which is embedded in Q^{m*},
- (ii) the tube of radius r∈R₊ around a totally real totally geodesic RH^m embedded in Q^{m*} as a real form of Q^{m*}.
- (iii) a horosphere in Q^{m*} whose center at infinity is the equivalence class of an *α*-principal geodesic in Q^{m*}.

Contact hypersurfaces in noncompact quadrics

Moreover, we give a classification of contact hypersurfaces in $Q^{m*} = SO_{m2}^0/SO_mSO_2$ for $m \ge 3$ as follows:

Theorem 3.3. (Berndt and Suh, Proc. AMS., 2015)

Let *M* be a connected real hypersurface with cmc in Q^{m^*} , $m \ge 3$. Then *M* is contact if and only if *M* is an open part of one of the following

- (i)the tube of radius *r*∈**R**₊ around a totally geodesic Q^{(m-1)*} which is embedded in Q^{m*},
- (ii) the tube of radius r∈R₊ around a totally real totally geodesic RH^m embedded in Q^{m*} as a real form of Q^{m*}.
- (iii) a horosphere in Q^{m*} whose center at infinity is the equivalence class of an A-principal geodesic in Q^{m*}.

Contact hypersurfaces in noncompact quadrics

Moreover, we give a classification of contact hypersurfaces in $Q^{m*} = SO_{m2}^0/SO_mSO_2$ for $m \ge 3$ as follows:

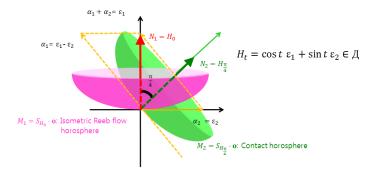
Theorem 3.3. (Berndt and Suh, Proc. AMS., 2015)

Let *M* be a connected real hypersurface with cmc in Q^{m^*} , $m \ge 3$. Then *M* is contact if and only if *M* is an open part of one of the following

- (i)the tube of radius r∈R₊ around a totally geodesic Q^{(m-1)*} which is embedded in Q^{m*},
- (ii) the tube of radius *r*∈**R**₊ around a totally real totally geodesic **R***H^m* embedded in *Q^{m*}* as a real form of *Q^{m*}*.
- (iii) a horosphere in Q^{m*} whose center at infinity is the equivalence class of an α-principal geodesic in Q^{m*}.

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathcal{P}^{\mu} \subset \mathcal{Q}^{\mu}$ or $\mathcal{S}^{m} \subset \mathcal{Q}^{m}$ Contact and Harmonic Curvature Resultd-Einstein, Resultd-anti commuting and Ricci solit

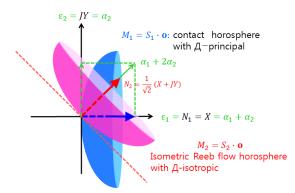
Horosphers in Complex Hyperbolic Grassmannians



ヨー つへで

Isometric Reeb Flow in Complex Quadrics Tubes around (CP^k ⊂ Q^{2k} or S^{en} ⊂ Q^{en} Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci solito

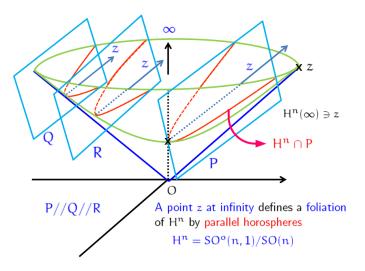
Horosphers in Complex Hyperbolic Quadrics



Y.J.Suh Recent Progress on Complex Quadric

ъ

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or Sⁿ ⊂ Qⁿ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci solitor



ъ

Isometric Reeb Flow in Complex Quadrics Tubes around *CP^k* ⊂ *Q[®]* or *S[®]* ⊂ *Q[®]* Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロア ヘビア ヘビア・

Codazzi type hypersurfaces

When the shape operator *S* of *M* in Q^m satisfying $(\nabla_X S)Y = (\nabla_Y S)X$ for any *X*, *Y* on *M* in Q^m , we say that the shape operator is of *Codazzi type*.

Theorem 3.4.1. (Suh, IJM., 2014)

There do not exist any real hypersurfaces in complex quadric Q^m , $m \ge 3$, with shape operator of Codazzi type.

heorem 3.4.2. (Suh, IJM., 2014)

There do not exist any real hypersurfaces in complex quadric Q^m , $m \ge 3$, with parallel shape operator.

Isometric Reeb Flow in Complex Quadrics Tubes around *CP^k* ⊂ *Q[®]* or *S[®]* ⊂ *Q[®]* Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロア ヘビア ヘビア・

Codazzi type hypersurfaces

When the shape operator *S* of *M* in Q^m satisfying $(\nabla_X S)Y = (\nabla_Y S)X$ for any *X*, *Y* on *M* in Q^m , we say that the shape operator is of *Codazzi type*.

Theorem 3.4.1. (Suh, IJM., 2014)

There do not exist any real hypersurfaces in complex quadric Q^m , $m \ge 3$, with shape operator of Codazzi type.

Theorem 3.4.2. (Suh, IJM., 2014)

There do not exist any real hypersurfaces in complex quadric Q^m , $m \ge 3$, with parallel shape operator.

Ricci Parallel Hypersurfaces

Now we consider the notion of *Ricci parallelism* for hypersurfaces in Q^m , that is, $\nabla Ric = 0$.

In this section we consider only an \mathfrak{A} -principal normal vector field *N*, that is, AN = N. Then

$$\operatorname{Ric}(Y) = (2m-1)Y - 2\eta(Y)\xi - AY + hSY - S^2Y,$$

where h = trS denotes the mean curvature and is defined by the trace of the shape operator *S* of *M* in Q^m . Then from this, by the parallel Ricci tensor, we have

$$0 = -2g(\phi SX, Y)\xi - 2\eta(Y)\phi SX - (\nabla_X A)Y + (Xh)SY +h(\nabla_X S)Y - (\nabla_X S^2)Y,$$

where $(\nabla_X A)Y = \nabla_X (AY) - A\nabla_X Y$. Here, *AY* belongs to $T_z M$, $z \in M$.

イロト 不得 とくほ とくほ とう

1

Theorem 3.5. (Suh, Adv. in Math., 2015)

There does not exist any Hopf hypersurfaces in the complex quadric Q^m with parallel Ricci tensor and \mathfrak{A} -principal normal vector field.

We consider a maximal \mathfrak{A} -invariant subspace \mathcal{Q}_z of $T_z M$, $z \in M$, defined by

$$Q_z = \{ X \in T_z M \mid AX \in T_z M \text{ for all } A \in \mathfrak{A}_z \}$$

Then the orthogonal complement of Q in C, becomes $Q_z^{\perp} = \text{Span}\{A\xi, AN\}.$

Isometric Reeb Flow in Complex Quadrics Tubes around CP^A ⊂ Q^{2A} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

イロン 不良 とくほう 不良 とうほ

Ricci Parallel Hypersurfaces II

For real hypersurfaces with parallel Ricci tensor and \mathfrak{A} -isotropic unit normal we have the following

$$\begin{aligned} (\nabla_Y Ric)X &= \nabla_Y (Ric(X)) - Ric(\nabla_Y X) \\ &= -3(\nabla_Y \eta)(X)\xi - 3\eta(X)\nabla_Y \xi \\ &+ g(X, \nabla_Y (AN))AN - g(AX, N)\nabla_Y (AN) \\ &+ g((\nabla_Y (A\xi), X)A\xi + \eta(AX)\nabla_Y (A\xi) + (Yh)SX \\ &+ h(\nabla_Y S)X - (\nabla_Y S^2)X, \end{aligned}$$

where we have used the following for \mathfrak{A} -isotropic unit normal

$$g(\xi, A\xi) = 0, g(\xi, AN) = 0$$
, and $g(AN, N) = 0$.

イロン イ理 とくほう くほう

Then motivated by the above result, we give another theorem in the complex quadric Q^m with parallel Ricci tensor and \mathfrak{A} -isotropic unit normal as follows:

Theorem 3.6. (Suh, Adv. in Math., 2015)

Let *M* be a Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with parallel Ricci tensor and \mathfrak{A} -isotropic unit normal *N*. If the shape operator commutes with the structure tensor on the distribution Q^{\perp} , then *M* has 3 distinct constant principal curvatures which are given by

$$lpha=\sqrt{rac{2m-1}{2}},\gamma(=lpha)=\sqrt{rac{2m-1}{2}},\lambda=0,\mu=-rac{2\sqrt{2}}{\sqrt{2m-1}},$$

with corresponding principal curvature spaces

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci solitor

ヘロト 人間 ト ヘヨト ヘヨト

Harmonic Curvature I

$$T_{\alpha} = [\xi], T_{\gamma} = [A\xi, AN], \phi(T_{\lambda}) = T_{\mu}, \dim T_{\lambda} = \dim T_{\mu} = m - 2$$
, respectively.

We consider the notion of *harmonic curvature* for hypersurfaces M in Q^m , that is, $(\nabla_X Ric)Y = (\nabla_Y Ric)X$ for any vector fields X and Y on M in Q^m . It is equivalent to $\delta R = 0$ and dR = 0(*the second Bianchi*)

identity) for the curvature tensor R(X, Y)Z of M in Q^m .

ヘロト ヘアト ヘビト ヘビト

Then for hypersurfaces in Q^m with \mathfrak{A} -principal normal we assert the following

Theorem 3.7. (Suh, JMPA 2016)

Let *M* be a Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with harmonic curvature. If the unit norml *N* is \mathfrak{A} -principal, then *M* has at most 5 distinct constant principal curvatures, five of which are given by

$$\alpha$$
, λ_1 , μ_1 , λ_2 , and μ_2

with corresponding principal curvature spaces:

Isometric Reeb Flow in Complex Quadrics Tubes around *CP^k* ⊂ *Q[®]* or *S[®]* ⊂ *Q[®]* Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

 $T_{\alpha} = [\xi], \phi T_{\lambda_1} = T_{\mu_1}, \phi T_{\lambda_2} = T_{\mu_2}, \dim T_{\lambda_1} + \dim T_{\lambda_2} = m - 1, \dim T_{\mu_1} + \dim T_{\mu_2} = m - 1.$ Here four roots λ_i and μ_i , i = 1, 2 satisfy the two kinds of quadratic equation that

$$2x^2 - 2\beta x + 2 + \alpha\beta = 0,$$

where the function β is denoted by $\beta = \frac{\alpha^2 + 1 \pm \sqrt{(\alpha^2 + 1)^2 + 4\alpha h}}{\alpha}$.

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{C}P^k \subset \mathcal{Q}^{2k}$ or $\mathcal{S}^m \subset \mathcal{Q}^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci solitor

・ロト ・ 理 ト ・ ヨ ト ・

Harmonic Curvature II

Theorem 3.8. (Suh, JMPA 2016)

Let *M* be a Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with harmonic curvature and \mathfrak{A} -isotropic unit normal *N*. If the shape operator commutes with the structure tensor on the distribution Q^{\perp} , then $M \approx$ a tube around $\mathbb{C}P^k \subset Q^m$, m = 2k, or *M* has at most 6 distinct constant principal curvatures given by

$$\alpha$$
, $\gamma = \mathbf{0}(\alpha)$, λ_1 , μ_1 , λ_2 and μ_2

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

イロト 不得 とくほと くほとう

with corresponding principal curvature spaces

$$T_{\alpha} = [\xi], T_{\gamma} = [A\xi, AN], \phi(T_{\lambda_1}) = T_{\mu_1}, \ \phi T_{\lambda_2} = T_{\mu_2}.$$

 $dim \ T_{\lambda_1}+dim T_{\lambda_2}=m-2, dim \ T_{\mu_1}+dim T_{\mu_2}=m-2.$

Here four roots λ_i and μ_i , i = 1, 2 satisfy the equation that

$$2x^2 - 2\beta x + 2 + \alpha\beta = 0$$

where the function β denotes $\beta = \frac{\alpha^2 + 2 \pm \sqrt{(\alpha^2 + 2)^2 + 4\alpha h}}{\alpha}$. In particular, $\alpha = \sqrt{\frac{2m-1}{2}}$, $\gamma(=\alpha) = \sqrt{\frac{2m-1}{2}}$, $\lambda = 0$, $\mu = -\frac{2\sqrt{2}}{\sqrt{2m-1}}$, with multiplicities 1,2,*m* - 2 and *m* - 2 respectively.

Finally, we want to mention the following problems:

Problem 4

How can we derive the fact that the unit normal *N* of *M* in Q^m (or Q^{m^*}) is \mathfrak{A} -principal or \mathfrak{A} -isotropic, if *M* is assumed with parallel Ricci tensor or harmonic curvature ?

Problem 5

If M is a real hypersurface in the complex dual quadric Q^{m*} with parallel Ricci tensor, what can we say about them ?

Problem 6

If M is a real hypersurface in the complex dual quadric Q^{m*} with harmonic curvature, what can we say about them ?

Finally, we want to mention the following problems:

Problem 4

How can we derive the fact that the unit normal *N* of *M* in Q^m (or Q^{m^*}) is \mathfrak{A} -principal or \mathfrak{A} -isotropic, if *M* is assumed with parallel Ricci tensor or harmonic curvature ?

Problem 5

If *M* is a real hypersurface in the complex dual quadric Q^{m*} with parallel Ricci tensor, what can we say about them ?

Problem 6

If M is a real hypersurface in the complex dual quadric Q^{m*} with harmonic curvature, what can we say about them ?

Finally, we want to mention the following problems:

Problem 4

How can we derive the fact that the unit normal *N* of *M* in Q^m (or Q^{m^*}) is \mathfrak{A} -principal or \mathfrak{A} -isotropic, if *M* is assumed with parallel Ricci tensor or harmonic curvature ?

Problem 5

If *M* is a real hypersurface in the complex dual quadric Q^{m*} with parallel Ricci tensor, what can we say about them ?

Problem 6

If *M* is a real hypersurface in the complex dual quadric Q^{m*} with harmonic curvature, what can we say about them ?

ヘロン 人間 とくほ とくほ とう

Introduction

- Homogeneous Hypersurfaces
- Isometric Reeb Flow and Contact hypersurfaces

2 Complex Quadrics and Its Dual Quadrics

- Isometric Reeb Flow in Complex Quadrics
- Tubes around $\mathbb{C}P^k \subset Q^{2k}$ or $S^m \subset Q^m$
- Contact and Harmonic Curvature
- Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{CP}^k \subset \mathbb{Q}^{2k}$ or $\mathcal{S}^m \subset \mathbb{Q}^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Pseudo Einstein in $G_2(\mathbb{C}^{m+2})$

A real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is said to be *pseudo-Einstein* if the Ricci tensor *Ric* of *M* satisfies

$$Ric(X) = aX + b\eta(X)\xi + c\sum_{i=1}^{3}\eta_i(X)\xi_i$$

for any constants *a*, *b* and *c* on *M*.

Theorem 4.1. (PSW, 2010 JGP)

Let *M* be a pseudo-Einstein Hopf in $G_2(\mathbb{C}^{m+2})$. Then $M \approx$ (a) a tube of r, $\cot^2 \sqrt{2}r = \frac{m-1}{2}$, over $G_2(\mathbb{C}^{m+1})$, where a = 4m + 8, b + c = -2(m+1), provided that $c \neq -4$. (b) a tube of r, $\cot r = \frac{1+\sqrt{4m-3}}{2(m-1)}$, over $\mathbb{H}P^m$, m = 2n, where a = 8n + 6, b = -16n + 10, c = -2.

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{CP}^k \subset \mathbb{Q}^{2k}$ or $\mathcal{S}^m \subset \mathbb{Q}^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Pseudo Einstein in $SU_{2,m}/S(U_2U_m)$

A real hypersurface *M* in $SU_{2,m}/S(U_2U_m)$ is said to be *pseudo-Einstein* if the Ricci tensor *Ric* of *M* satisfies

$$Ric(X) = aX + b\eta(X)\xi + c\sum_{i=1}^{3}\eta_i(X)\xi_i$$

for any constants *a*, *b* and *c* on *M*.

Theorem 4.2. (Suh, 2016 AAM)

Let *M* be a pseudo-Einstein Hopf in $SU_{2,m}/S(U_2U_m)$, $m \ge 2$. Then $M \approx$ a hypersurface with four curvatures $\sqrt{2}$, 0, $\lambda = \frac{1}{\sqrt{2}}$ and $\mu = \frac{q-4m+3}{q\sqrt{2}}$ such that p + q = 4(m - 2), where *p* and *q* denote the multiplicities of λ and μ . In this case $M \approx$ a proper pseudo-Einstein with $a = -\frac{1}{2}(4m + 5)$, $b = c = \frac{3}{2}$.

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{C}P^k \subset \mathbb{Q}^{2k}$ or $S^m \subset \mathbb{Q}^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Pseudo Einstein in Q^m

A real hypersurface M in Q^m is said to be *pseudo-Einstein* if the Ricci tensor *Ric* of M satisfies

$$\operatorname{Ric}(X) = aX + b\eta(X)\xi$$

for any constants *a* and *b* on *M*.

Theorem 4.3. (Suh, Submitted)

Let *M* be a pseudo-Einstein Hopf in Q^m , $m \ge 3$. Then (i) $M \approx$ a tube of *r* over a tot. real and tot. geodesic *m*-dim. *S^m* in Q^m , with a = 2m, and b = -2m. (ii) m = 2k, $M \approx$ a tube of *r*, $r = \cot^{-1} \sqrt{\frac{k}{k-1}}$ over a tot. geodesic *k*-dim. $\mathbb{C}P^k$ in Q^{2k} with a = 4k and $b = -4 + \frac{2}{k}$.

ヘロア 人間 アメヨア 人口 ア

Now we consider an Einstein hypersurface in Q^m . Then the Ricci tensor of *M* becomes $Ric = \lambda g$. In case (i) in above Theorem 4.3, there do not exist any Einstein hypersurfaces in Q^m , because b = -2m is non-vanishing. In this case, the unit normal *N* is \mathfrak{A} -principal.

Moreover, in (ii), if *M* is assumed to be Einstein, then the constant should be b = 0. This gives $4 = \frac{2}{k}$, which implies a contradiction. In this case *M* has an \mathfrak{A} -isotropic.

Corollary 4.4.

There do not exist any Einstein Hopf real hypersurfaces in the complex quadric Q^m , $m \ge 3$.

Pseudo-anti commuting and Ricci soliton

We consider a new notion of *pseudo-anti commuting* Ricci tensor which is defined by

 $Ric \cdot \phi + \phi \cdot Ric = \kappa \phi, \quad \kappa \neq 0$: constant,

where the structure tensor ϕ is induced from the Kähler structure J of Hermitian symmetric space.

Theorem 4.5. (Suh, Submitted)

Let *M* be a pseudo-anti commuting Hopf in Q^m , $m \ge 3$. Then (i) $M \approx$ a tube of r, $0 < r < \frac{\pi}{2\sqrt{2}}$, around a tot. real and tot. geodesic *m*-dim. S^m in Q^m , with \mathfrak{A} -principal unit normal. (ii) $M \approx$ a tube of r, $0 < r < \frac{\pi}{2}$, $r \neq \frac{\pi}{4}$, around a tot. geodesic *k*-dim. $\mathbb{C}P^k$ in Q^{2k} , m = 2k, with \mathfrak{A} -isotropic.

イロン 不良 とくほう 不良 とうしょう

A solution of the Ricci flow equation $\frac{\partial}{\partial t}g(t) = -2Ric(g(t))$ is given by

$$\frac{1}{2}(\mathfrak{L}_V g)(X, Y) + \operatorname{Ric}(X, Y) = \rho g(X, Y),$$

where ρ is a constant and \mathfrak{L}_V denotes the Lie derivative along the direction of the vector field V (see Hamilton, Morgan and Tian, Perelmann). Then the solution is said to be a *Ricci soliton* with potential vector field V and Ricci soliton constant ρ , and surprisingly, it satisfies the pseudo-anti commuting condition $S\phi + \phi S = \kappa \phi$, where $\kappa = 2\rho$ is non-zero constant.

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Theorem 4.6. (Suh, Submitted)

Let (M, g, ξ, ρ) be a Ricci soliton on Hopf real hypersurfaces in Q^m , $m \ge 3$. Then (i) *M* is an open part of a tube of radius *r* around a tot. real and tot. geodesic *m*-dim. unit sphere S^m in Q^m , with radii $r = \frac{1}{\sqrt{2}} \cot^{-1} \left(\frac{1}{2\sqrt{2}(m-1)}\right)$ and $r = \frac{1}{\sqrt{2}} \cot^{-1} \left(\frac{1}{2\sqrt{2}m}\right)$. Here the unit normal *N* is \mathfrak{A} -principal. (ii) *M* is an open part of a tube of radius $r = \tan^{-1} \sqrt{\frac{k}{k-1}}$ around a tot. geodesic *k*-dim. complex projective space $\mathbb{C}P^k$ in Q^{2k} , m = 2k. Here the unit normal *N* is \mathfrak{A} -isotropic.

Isometric Reeb Flow in Complex Quadrics Tubes around $CP^k \subset Q^{2k}$ or $S^m \subset Q^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロン ・雪 と ・ ヨ と

- J. Berndt and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians*, Monatshefte für Math. 127(1999), 1-14.
- J. Berndt and Y.J. Suh, *Isometric flows on real* hypersurfaces in complex two-plane Grassmannians, Monatshefte für Math. 137(2002), 87-98.
- S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
- M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(2006), 355-364.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- J. Berndt and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians*, Monatshefte für Math. 127(1999), 1-14.
- J. Berndt and Y.J. Suh, *Isometric flows on real* hypersurfaces in complex two-plane Grassmannians, Monatshefte für Math. **137**(2002), 87-98.
- S. Montiel and A. Romero, *On some real hypersurfaces of* a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
- M. Okumura, *On some real hypersurfaces of a complex projective space*, Trans. Amer. Math. Soc. **212**(2006), 355-364.

・ロット (雪) () () () ()

- J. Berndt and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians*, Monatshefte für Math. 127(1999), 1-14.
- J. Berndt and Y.J. Suh, *Isometric flows on real* hypersurfaces in complex two-plane Grassmannians, Monatshefte für Math. **137**(2002), 87-98.
- S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
- M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(2006), 355-364.

・ロット (雪) () () () ()

- J. Berndt and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians*, Monatshefte für Math. 127(1999), 1-14.
- J. Berndt and Y.J. Suh, *Isometric flows on real* hypersurfaces in complex two-plane Grassmannians, Monatshefte für Math. **137**(2002), 87-98.
- S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
- M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(2006), 355-364.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロン ヘアン ヘビン ヘビン

- J.D. Perez and Y.J. Suh, *Real hypersurfaces of quaternionic projective space satisfying* ∇_{Ui}R = 0, Diff. Geom. Appl. 7(1997), 211-217.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor*, J. of Geom. and Physics, **60**(2010), 1792-1805.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor*, Proc. Royal Soc. Edinburgh **142(A)**(2012), 1309-1324.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロト ・ 理 ト ・ ヨ ト ・

- J.D. Perez and Y.J. Suh, *Real hypersurfaces of quaternionic projective space satisfying* ∇_{Ui}R = 0, Diff. Geom. Appl. 7(1997), 211-217.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor*, J. of Geom. and Physics, **60**(2010), 1792-1805.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor*, Proc. Royal Soc. Edinburgh **142(A)**(2012), 1309-1324.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロン 人間 とくほ とくほ とう

- J.D. Perez and Y.J. Suh, *Real hypersurfaces of quaternionic projective space satisfying* ∇_{Ui}R = 0, Diff. Geom. Appl. 7(1997), 211-217.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor*, J. of Geom. and Physics, **60**(2010), 1792-1805.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor*, Proc. Royal Soc. Edinburgh **142(A)**(2012), 1309-1324.

・ロト ・ 理 ト ・ ヨ ト ・

- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor*, J. of Geom. and Physics, **64**(2013), 1-11.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature*, Journal de Math. Pures Appl., **100**(2013), 16-33.
- Y.J. Suh, *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Advances in Applied Mathematics, **50**(2013), 645-659.
- Y.J. Suh and C. Woo, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor*, Math. Nachr., **287**(2014), 1524-1529.

ヘロン ヘアン ヘビン ヘビン

- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor*, J. of Geom. and Physics, **64**(2013), 1-11.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature*, Journal de Math. Pures Appl., **100**(2013), 16-33.
- Y.J. Suh, *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Advances in Applied Mathematics, **50**(2013), 645-659.
- Y.J. Suh and C. Woo, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor*, Math. Nachr., **287**(2014), 1524-1529.

・ロト ・ 理 ト ・ ヨ ト ・

- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor*, J. of Geom. and Physics, **64**(2013), 1-11.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature*, Journal de Math. Pures Appl., **100**(2013), 16-33.
- Y.J. Suh, *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Advances in Applied Mathematics, **50**(2013), 645-659.
- Y.J. Suh and C. Woo, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor*, Math. Nachr., **287**(2014), 1524-1529.

ヘロン ヘアン ヘビン ヘビン

- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor*, J. of Geom. and Physics, **64**(2013), 1-11.
- Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature*, Journal de Math. Pures Appl., **100**(2013), 16-33.
- Y.J. Suh, *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Advances in Applied Mathematics, **50**(2013), 645-659.
- Y.J. Suh and C. Woo, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor*, Math. Nachr., **287**(2014), 1524-1529.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロト ・ 理 ト ・ ヨ ト ・

- Y.J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, International J. Math., 25(2014), 1450059(17 pp).
- Y.J. Suh, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor*, Int. J. Math., **26**(2015), 1550008 (26 pages).
- Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel Ricci tensor*, Advances in Mathematics, **281**(2015), 886-905.

Isometric Reeb Flow in Complex Quadrics Tubes around $\mathbb{CP}^{h} \subset \mathbb{Q}^{2h}$ or $\mathcal{S}^{n} \subset \mathbb{Q}^{m}$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Y.J. Suh, *Real hypersurfaces in the complex quadric with Reeb parallel shape operator*, International J. Math., **25**(2014), 1450059(17 pp).
- Y.J. Suh, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor*, Int. J. Math., **26**(2015), 1550008 (26 pages).
- Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel Ricci tensor*, Advances in Mathematics, **281**(2015), 886-905.

Isometric Reeb Flow in Complex Quadrics Tubes around $CP^k \subset Q^{2k}$ or $S^m \subset Q^m$ Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

イロン 不良 とくほう 不良 とうほ

- Y.J. Suh, *Real hypersurfaces in the complex quadric with Reeb parallel shape operator*, International J. Math., **25**(2014), 1450059(17 pp).
- Y.J. Suh, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor*, Int. J. Math., **26**(2015), 1550008 (26 pages).
- Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel Ricci tensor*, Advances in Mathematics, **281**(2015), 886-905.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2k} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

ヘロン ヘアン ヘビン ヘビン

- Y.J. Suh, *Real hypersurfaces in the complex quadric with harmonic curvature*, Journal de Math. Pures Appl., **103**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in complex hyperbolic two-plane Grassmannians*, Advances in Appl. Math., **57**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in the complex quadric*, submitted.
- Y.J. Suh, *Pseudo-anti commuting and Ricci soliton real hypersurfaces in the complex quadric*, submitted.

・ロト ・ 理 ト ・ ヨ ト ・

- Y.J. Suh, *Real hypersurfaces in the complex quadric with harmonic curvature*, Journal de Math. Pures Appl., **103**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in complex hyperbolic two-plane Grassmannians*, Advances in Appl. Math., **57**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in the complex quadric*, submitted.
- Y.J. Suh, *Pseudo-anti commuting and Ricci soliton real hypersurfaces in the complex quadric*, submitted.

・ロト ・ 理 ト ・ ヨ ト ・

- Y.J. Suh, *Real hypersurfaces in the complex quadric with harmonic curvature*, Journal de Math. Pures Appl., **103**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in complex hyperbolic two-plane Grassmannians*, Advances in Appl. Math., **57**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in the complex quadric*, submitted.
- Y.J. Suh, *Pseudo-anti commuting and Ricci soliton real hypersurfaces in the complex quadric*, submitted.

・ロト ・ 理 ト ・ ヨ ト ・

- Y.J. Suh, *Real hypersurfaces in the complex quadric with harmonic curvature*, Journal de Math. Pures Appl., **103**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in complex hyperbolic two-plane Grassmannians*, Advances in Appl. Math., **57**(2016), in press.
- Y.J. Suh, *Pseudo-Einstein real hypersurfaces in the complex quadric*, submitted.
- Y.J. Suh, *Pseudo-anti commuting and Ricci soliton real hypersurfaces in the complex quadric*, submitted.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians*, Monatschefte fur Math. **137**(2002), 87-98.
- J. Berndt and Y.J. Suh, *Real hypersurfaces in the noncompact Grassmannians SU*_{2,m}/S(U₂·U_m), International J. of Math., 23(2012), 1250103(35 pages).
- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex quadrics*, International J. Math., 24(2013), 1350050(18 pages).
- J. Berndt and Y.J. Suh, *Contact Real hypersurfaces in complex quadrics*, Proc. Amer. Math. Soc. 23(2015), 2637-2649.

ヘロア 人間 アメヨア 人口 ア

- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians*, Monatschefte fur Math. **137**(2002), 87-98.
- J. Berndt and Y.J. Suh, *Real hypersurfaces in the noncompact Grassmannians* SU_{2,m}/S(U₂·U_m), International J. of Math., 23(2012), 1250103(35 pages).
- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex quadrics*, International J. Math., 24(2013), 1350050(18 pages).
- J. Berndt and Y.J. Suh, *Contact Real hypersurfaces in complex quadrics*, Proc. Amer. Math. Soc. 23(2015), 2637-2649.

ヘロア 人間 アメヨア 人口 ア

- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians*, Monatschefte fur Math. **137**(2002), 87-98.
- J. Berndt and Y.J. Suh, *Real hypersurfaces in the noncompact Grassmannians* SU_{2,m}/S(U₂·U_m), International J. of Math., 23(2012), 1250103(35 pages).
- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex quadrics*, International J. Math., 24(2013), 1350050(18 pages).
- J. Berndt and Y.J. Suh, *Contact Real hypersurfaces in complex quadrics*, Proc. Amer. Math. Soc. 23(2015), 2637-2649.

ヘロン ヘアン ヘビン ヘビン

- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians*, Monatschefte fur Math. **137**(2002), 87-98.
- J. Berndt and Y.J. Suh, *Real hypersurfaces in the noncompact Grassmannians* SU_{2,m}/S(U₂·U_m), International J. of Math., 23(2012), 1250103(35 pages).
- J. Berndt and Y.J. Suh, *Real hypersurfaces with isometric Reeb flow in complex quadrics*, International J. Math., 24(2013), 1350050(18 pages).
- J. Berndt and Y.J. Suh, *Contact Real hypersurfaces in complex quadrics*, Proc. Amer. Math. Soc. 23(2015), 2637-2649.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^I ⊂ Q²⁰ or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

イロン 不良 とくほう 不良 とうほ

- P.B. Eberlein, *Geometry of Non positively Curved Manifolds*, Chicago Lectures in Math., The Univ. of Chicago Press, **1996**,
- A.W. Knapp, *Lie Groups beyond an Introduction*, Progress in Math., Birkhäuser, **2002**,
- S. Helgason, *Differential Geometry, Lie Group and Symmetric Spaces*, Graduate Studies in Mathematics 34, Amer. Math. Soc. 2001,
- S. Helgason, *Geometric Analysis on Symmetric Spaces*, The 2nd Edition, Math. Survey and Monographs **39**, Amer. Math. Soc. **2008**.

イロン 不良 とくほう 不良 とうほ

- P.B. Eberlein, *Geometry of Non positively Curved Manifolds*, Chicago Lectures in Math., The Univ. of Chicago Press, **1996**,
- A.W. Knapp, *Lie Groups beyond an Introduction*, Progress in Math., Birkhäuser, **2002**,
- S. Helgason, *Differential Geometry, Lie Group and* Symmetric Spaces, Graduate Studies in Mathematics 34, Amer. Math. Soc. 2001,
- S. Helgason, *Geometric Analysis on Symmetric Spaces*, The 2nd Edition, Math. Survey and Monographs **39**, Amer. Math. Soc. **2008**.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- P.B. Eberlein, *Geometry of Non positively Curved Manifolds*, Chicago Lectures in Math., The Univ. of Chicago Press, **1996**,
- A.W. Knapp, *Lie Groups beyond an Introduction*, Progress in Math., Birkhäuser, 2002,
- S. Helgason, *Differential Geometry, Lie Group and* Symmetric Spaces, Graduate Studies in Mathematics 34, Amer. Math. Soc. 2001,
- S. Helgason, *Geometric Analysis on Symmetric Spaces*, The 2nd Edition, Math. Survey and Monographs **39**, Amer. Math. Soc. **2008**.

イロン 不良 とくほう 不良 とうほ

- P.B. Eberlein, *Geometry of Non positively Curved Manifolds*, Chicago Lectures in Math., The Univ. of Chicago Press, **1996**,
- A.W. Knapp, *Lie Groups beyond an Introduction*, Progress in Math., Birkhäuser, **2002**,
- S. Helgason, *Differential Geometry, Lie Group and* Symmetric Spaces, Graduate Studies in Mathematics 34, Amer. Math. Soc. 2001,
- S. Helgason, *Geometric Analysis on Symmetric Spaces*, The 2nd Edition, Math. Survey and Monographs **39**, Amer. Math. Soc. **2008**.

Isometric Reeb Flow in Complex Quadrics Tubes around CP^k ⊂ Q^{2K} or S^m ⊂ Q^m Contact and Harmonic Curvature Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

THANKS FOR YOUR ATTENTION!

Y.J.Suh Recent Progress on Complex Quadric