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Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Hermitian Symmetric Spaces

HSSP: Hermitian Symmetric Space.

For HSSP of compact type with rank 1:
CPm, QPm, CHm, and QHm.

For HSSP of compact type with rank 2:
SU(2 + q)/S(U(2)×U(q)), Qm = G2(R2+p), SO(8)/U(4),
Sp(2)/U(2) and (e6(−78),SO(10) + R) and of noncompact type
SU(2,q)/S(U(2)×U(q)), Qm∗ = G∗2(R2+p), SO∗(8)/U(4),
Sp(2,R)/U(2) and (e6(−14),SO(10) + R) (See Helgason [6],
[7]).
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Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Hypersurfaces in Hermitian Symmetric Spaces

Let M be a hypersurfaces in a Hermitian Symmetric Space M̄
with Kaehler structure J.
SX = −∇̄X N : Weingarten formula
Here we say S the shape operator of M in M̄.

ξ = −JN : Reeb vector field.

JX = φX + η(X )N,∇X ξ = φSX

for any vector field X∈Γ(M).

Then (φ, ξ, η, g): almost contact structure on a hypersurface M
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Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Define)
A hypersurfcae M: Isometric Reeb Flow ⇐⇒ Lξg = 0 ⇐⇒
g(dφtX ,dφtY ) = g(X ,Y ) for any X ,Y∈Γ(M), where φt denotes
a one parameter group, which is said to be an isometric Reeb
flow of M, defined by

dφt

dt
= ξ(φt (p)), φ0(p) = p, φ̇0(p) = ξ(p).

Note)
Lξg = 0 ⇐⇒ ∇jξi +∇iξj = 0, ∇ξ: skew-symmetric ⇐⇒
g(∇X ξ,Y ) + g(∇Y ξ,X ) = 0 ⇐⇒ g((φS − Sφ)X ,Y ) = 0 for
any X ,Y∈Γ(M).
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Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Define)

A hypersurfcae M in Kaehler manifold M̄ is contact ⇐⇒ there
exists a nonvanishing smooth function ρ on M such that
dη = 2ρω. Then it is clear η∧(dη)m−1 6=0.

Note)

The equation dη = 2ρω means that dη(X ,Y ) = 2ρg(φX ,Y ) for
any vector fields X ,Y on M.

Note)

dη(X ,Y ) = d(η(Y ))(X )− d(η(X ))(Y )− η([X ,Y ]) ⇐⇒
g((Sφ+ φS)X ,Y ) = 2ρg(φX ,Y ).
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Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Problem 1
Classify all of homogeneous hypersurfaces in Hermitian
Symmetric Spaces.

In this talk, we consider the following problems:

Problem 2
If M is a connected hypersurface in Hermitian symmetric
spaces M̄ with isometric Reeb flow, then M becomes
homogeneous ?

Problem 3
If M is a connected contact hypersurface in Hermitian
symmetric spaces M̄, then M becomes homogeneous ?
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Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Isometric Reeb Flow

Note 1) For hypersurfaces in CPm, CHm and QPm with
isometric Reeb flow:
Okumura 1976, Montiel and Romero 1986, Perez and
Martinez 1986 respectively.

Note 2) For hypersurfaces in G2(Cm+2), G∗2(Cm+2) and
Qm = SO(m + 2)/SO(2)SO(m) with isometric Reeb flow:
Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and
Suh, 2013.

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Isometric Reeb Flow

Note 1) For hypersurfaces in CPm, CHm and QPm with
isometric Reeb flow:
Okumura 1976, Montiel and Romero 1986, Perez and
Martinez 1986 respectively.

Note 2) For hypersurfaces in G2(Cm+2), G∗2(Cm+2) and
Qm = SO(m + 2)/SO(2)SO(m) with isometric Reeb flow:
Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and
Suh, 2013.

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Contact Hypersurfaces

Note 1) For contact hypersurfaces in Cm, CPm and CHm:
Okumura 1966, and Vernon 1987.

Note 2) Recently, a contact hypersurface in G2(Cm+2),
G∗2(Cm+2), complex quadric
Qm = SO(m + 2)/SO(2)SO(m) and noncompact complex
quadric Qm∗ = SO0(2,m)/SO(2)SO(m):
Suh, 2006, 2014, 2015, 2016 and Berndt, Lee and Suh,
2013, Berndt and Suh, 2014, 2015.
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Introduction
Complex Quadrics and Its Dual Quadrics

Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

Three directions of our talk

In this talk, we introduce some recent results for hypersurface
M in Qm = SO(m + 2)/SO(2)·SO(m) and
Q∗m = SO0(2,m)/SO(2)·SO(m) as follows:

1) A classification problem for hypersurfaces with isometric
Reeb flow in complex quadric Qm.

2) A classification problem for contact hypersurfaces in
non-compact complex quadric Q∗m.

3) A classification problem for hypersurfaces with harmonic
curvature in complex quadric Qm.

4) Pseudo-Einstein, Pseudo-anti commuting and Ricci
soliton problems in complex quadric Qm.
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The homogeneous quadratic equation

Qm = {z∈Cm+2|z2
1 + . . .+ z2

m+2 = 0}⊂CPm+1

defines a complex hypersurface in complex projective space
CPm+1 = SUm+2/S(Um+1U1).

For a unit normal vector N of Qm at a point [z] ∈ Qm we denote
by AN the shape operator of Qm in CPm+1 with respect to N.

The shape operator is an involution on T[z]Qm and
T[z]Qm = V (AN)⊕ JV (AN), where V (AN) is the
(+1)-eigenspace and JV (AN) is the (−1)-eigenspace of AN .

Geometrically this means that AN defines a real structure on
the complex vector space T[z]Qm, or equivalently, is a complex
conjugation on T[z]Qm.
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Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

The Riemannian curvature tensor R of Qm can be expressed
as follows:

R(X ,Y )Z = g(Y ,Z )X − g(X ,Z )Y + g(JY ,Z )JX
−g(JX ,Z )JY − 2g(JX ,Y )JZ
+g(AY ,Z )AX − g(AX ,Z )AY
+g(JAY ,Z )JAX − g(JAX ,Z )JAY .

A nonzero tangent vector W ∈ T[z]Qm is called singular if it is
tangent to more than one maximal flat in Qm.

1. If a conjugation A ∈ A[z] such that W ∈ V (A), then W is
singular, that is A-principal.

2. If a conjugation A ∈ A[z] and orthonormal vectors
X ,Y ∈ V (A) such that W/||W || = (X + JY )/

√
2, then W is

said to be A-isotropic.
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Geometric Descriptions of the Tube

We assume that m is even, say m = 2k . The map

CPk → Q2k ⊂ CP2k+1 , [z1, . . . , zk+1] 7→ [z1, . . . , zk+1, iz1, . . . , izk+1]

gives an embedding of CPk into Q2k as a totally geodesic
complex submanifold.

Define a complex structure j on C2k+2 by

j(z1, . . . , zk+1, zk+2, . . . , z2k+2) = (−zk+2, . . . ,−z2k+2, z1, . . . , zk+1).

Then j2 = −I and note that ij = ji . We can then identify C2k+2

with Ck+1 ⊕ jCk+1 and get

T[z]CPk = {X + ijX |X∈V (Az̄)} (A− isotropic).
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The normal space becomes (A− isotropic) as follows:

ν[z]CPk = Az̄(T[z]CPk ) = {X − ijX |X∈V (Az̄)}.

Since N is A-isotropic, the four vectors {N, JN,AN, JAN}
become pairwise orthonormal and the normal Jacobi operator
RN is given by

RNZ = R(Z ,N)N
= Z − g(Z ,N)N + 3g(Z , JN)JN
−g(Z ,AN)AN − g(Z , JAN)JAN.

Both T[z]CPk and ν[z]CPk are invariant under RN , and RN has
three eigenvalues 0,1,4 according to RN⊕[AN],
T[z]Q2k	([N]⊕[AN]) and RJN.
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Principal Curvatures and Spaces of the Tube

To calculate the principal curvatures of the tube of radius
0 < r < π/2 around CPk we use the standard Jacobi field
method as described in Section 8.2 of Berndt, Console and
Olmos.

Let γ be the geodesic in Q2k with γ(0) = [z] and γ̇(0) = N and
denote by γ⊥ the parallel subbundle of TQ2k along γ defined by
γ⊥γ(t) = T[γ(t)]Q2k 	 Rγ̇(t). Moreover, define the γ⊥-valued
tensor field R⊥γ along γ by R⊥γ(t)X = R(X , γ̇(t))γ̇(t). Now
consider the End(γ⊥)-valued differential equation

Y ′′ + R⊥γ ◦ Y = 0.
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Let D be the unique solution of this differential equation with
initial values

D(0) =

(
I 0
0 0

)
, D′(0) =

(
0 0
0 I

)
,

where the decomposition of the matrices is with respect to

γ⊥[z] = T[z](M) = T[z]CPk ⊕ (ν[z]CPk 	 RN)

and I denotes the identity transformation on the corresponding
space. Then the shape operator S(r) of the tube of radius
0 < r < π/2 around CPk with respect to γ̇(r) is given by

S(r) = −D′(r) ◦ D−1(r).
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If we decompose γ⊥[z] further into

γ⊥[z] = [AN]⊕ (T[z]CPk 	 [AN])⊕ (ν[z]CPk 	 [N])⊕ RJN,

we get by explicit computation that

S(r) =


0 0 0 0
0 tan(r) 0 0
0 0 − cot(r) 0
0 0 0 −2 cot(2r)


with respect to that decomposition T[z]M = γ⊥[z], [z]∈M.
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Proposition 3.1. (Berndt and Suh, IJM., 2013)

Let M be the tube of radius 0 < r < π/2 around the totally
geodesic CPk in Q2k . Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of A-isotropic singular.
3. M has four distinct constant principal curvatures.

principal curvature eigenspace multiplicity
0 C 	 Q 2

tan(r) TCPk 	 (C 	 Q) 2k − 2
− cot(r) νCPk 	 CνM 2k − 2
−2 cot(2r) F 1

4. Sφ = φS.
5. The Reeb flow on M is an isometric flow.
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In this talk we present the classification for the complex quadric
Qm = SO(m + 2)/SO(2)SO(m). In view of the previous two
results a natural expectation would be that the corresponding
classification would lead to the totally geodesic Qm−1 ⊂ Qm.
Surprisingly, this is not the case. In fact, we prove

Theorem 3.1. (Berndt and Suh, IJM., 2013)

Let M be a real hypersurface of the complex quadric Qm,
m ≥ 3. The Reeb flow on M is isometric if and only if m is even,
say m = 2k , and M is an open part of a tube around a totally
geodesic CPk ⊂ Q2k .

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Outline of the Proof of Theorem 3.1

In the following we will investigate real hypersurfaces in Qm for
which the Reeb flow is isometric. From this, we get a complete
expression for the covariant derivative as follows:

(∇X S)Y = {dα(X )η(Y ) + g((αSφ− S2φ)X ,Y )

+δη(Y )ρ(X ) + δg(BX , φY ) + η(BX )ρ(Y )}ξ
+{η(Y )ρ(X ) + g(BX , φY )}Bξ + g(BX ,Y )φBξ
−ρ(Y )BX − η(Y )φX − η(BY )φBX .

Lemma 3.1.4
Let M be a real hypersurface in Qm, m ≥ 3, with isometric Reeb
flow. Then the normal vector field N is A-isotropic everywhere.
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From Proposition and Lemma the principal curvature function α
is constant. Then we get

(λ2 − αλ)Y + (λ2 − αλ)Z = (S2 − αS)X = Y .

By virtue of this equation, we can assert the following
propositions:

Proposition 3.2

Let M be a real hypersurface in Qm, m ≥ 3, with isometric Reeb
flow. Then the distributions Q and C 	 Q = [Bξ] are invariant.

Proposition 3.3

Let M be a real hypersurface in Qm, m ≥ 3, with isometric Reeb
flow. Then m is even, say m = 2k , and the real structure A
maps Tλ onto Tµ, and vice versa.
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Key Points of the Proof

For each point [z] ∈ M we denote by γ[z] the geodesic in Q2k

with γ[z](0) = [z] and γ̇[z](0) = N[z] and by F the smooth map

F : M −→ Qm, [z] −→ γ[z](r).

F is the displacement of M at distance r in the direction of N.
Thee differential d[z]F of F at [z] can be computed by

d[z]F (X ) = ZX (r),

where ZX is the Jacobi vector field along γ[z] with ZX (0) = X
and Z ′X (0) = −SX . The A-isotropic N gives that
RN = R(Z ,N)N has the three constant eigenvalues 0,1,4 with
corresponding eigenbundles

νM ⊕ (C 	 Q) = νM ⊕ Tν ,

Q = Tλ ⊕ Tµ and F = Tα.
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Rigidity of totally geodesic submanifolds now implies that the
entire submanifold M is an open part of a tube of radius r
around a k -dimensional connected, complete, totally geodesic
complex submanifold P of Q2k .

According to Klein’s classification the submanifold P is either
Qk ⊂ Q2k (A-invariant) or CPk ⊂ Q2k (A-isotropic). But we
have proved that the normal vector N is A-isotropic. Then it
follows that M is congruent to an open part of a tube around
CPk .

This concludes the proof of our Theorem 3.1 for real
hypersurfaces with isometric Reeb flow in complex quadric.

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

1 Introduction
Homogeneous Hypersurfaces
Isometric Reeb Flow and Contact hypersurfaces

2 Complex Quadrics and Its Dual Quadrics
Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci
soliton

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Some Key Propositions

A contact hypersurface in a Kaehler manifold is a real
hypersurface satisfying the condition:

Sφ+ φS = kφ, k = 2ρ6=0 : constant

Then we can apply its result to give a classification in Qm as
follows:

Proposition 3.2.1. (Berndt and Suh, Proc. AMS., 2015)

The following statements are equivalent:
(i) The function α is constant,
(ii) M has constant mean curvature,
(iii) JN is an eigenvector of the normal Jacobi R̄N .
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Some Key Propositions

Proposition 3.2.2

Let M be a contact hypersurfaces of the complex quadric Qm

(resp. Qm∗), m≥3. Then the following statements are
equivalent:

(i) JN is an eigenvector of the normal Jacobi operator
R̄N = R̄(·,N)N everywhere ,
(ii)N is A-principal or A-isotropic everywhere,
(iii)The normal vector N is singular in Qm (resp. in Qm∗).

Proposition 3.2.3

Let M be a contact hypersurface in Qm (resp. in Qm∗). Then the
normal vector N can not be A-isotropic.
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Contact hypersurfaces in complex quadrics

By viture of key Propositions and some remarks mentioned
above, we give a classification in Qm as follows:

Theorem 3.2. (Berndt and Suh, Proc. AMS., 2015)

Let M be a connected real hypersurface with constant mean
curvature in complex quadric Qm, m ≥ 3. Then M is contact if
and only if M is an open part of a tube of radius 0 < r < π

2
√

2
around the sphere Sm embedded in Qm.
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Contact hypersurfaces in noncompact quadrics

Moreover, we give a classification of contact hypersurfaces in
Qm∗ = SO0

m,2/SOmSO2 for m≥3 as follows:

Theorem 3.3. (Berndt and Suh, Proc. AMS., 2015)

Let M be a connected real hypersurface with cmc in Qm∗,
m ≥ 3. Then M is contact if and only if M is an open part of one
of the following

(i)the tube of radius r∈R+ around a totally geodesic
Q(m−1)∗ which is embedded in Qm∗,
(ii)the tube of radius r∈R+ around a totally real totally
geodesic RHm embedded in Qm∗ as a real form of Qm∗.
(iii) a horosphere in Qm∗ whose center at infinity is the
equivalence class of an A-principal geodesic in Qm∗.
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Horosphers in Complex Hyperbolic Grassmannians
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Codazzi type hypersurfaces

When the shape operator S of M in Qm satisfying
(∇X S)Y = (∇Y S)X for any X ,Y on M in Qm, we say that the
shape operator is of Codazzi type.

Theorem 3.4.1. (Suh, IJM., 2014)

There do not exist any real hypersurfaces in complex quadric
Qm, m≥3, with shape operator of Codazzi type.

Theorem 3.4.2. (Suh, IJM., 2014)

There do not exist any real hypersurfaces in complex quadric
Qm, m≥3, with parallel shape operator.
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Ricci Parallel Hypersurfaces

Now we consider the notion of Ricci parallelism for
hypersurfaces in Qm , that is, ∇Ric = 0.

In this section we consider only an A-principal normal vector
field N, that is, AN = N. Then

Ric(Y ) = (2m − 1)Y − 2η(Y )ξ − AY + hSY − S2Y ,

where h = trS denotes the mean curvature and is defined by
the trace of the shape operator S of M in Qm.
Then from this, by the parallel Ricci tensor, we have

0 = −2g(φSX ,Y )ξ − 2η(Y )φSX − (∇X A)Y + (Xh)SY
+h(∇X S)Y − (∇X S2)Y ,

where (∇X A)Y = ∇X (AY )− A∇X Y . Here, AY belongs to TzM,
z∈M.
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Theorem 3.5. (Suh, Adv. in Math., 2015)

There does not exist any Hopf hypersurfaces in the complex
quadric Qm with parallel Ricci tensor and A-principal normal
vector field.

We consider a maximal A-invariant subspace Qz of TzM, z∈M,
defined by

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}

Then the orthogonal complement of Q in C, becomes
Q⊥z = Span{Aξ,AN}.
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Ricci Parallel Hypersurfaces II

For real hypersurfaces with parallel Ricci tensor and A-isotropic
unit normal we have the following

(∇Y Ric)X = ∇Y (Ric(X ))− Ric(∇Y X )

= −3(∇Yη)(X )ξ − 3η(X )∇Y ξ

+g(X ,∇Y (AN))AN − g(AX ,N)∇Y (AN)

+g((∇Y (Aξ),X )Aξ + η(AX )∇Y (Aξ) + (Yh)SX
+h(∇Y S)X − (∇Y S2)X ,

where we have used the following for A-isotropic unit normal

g(ξ,Aξ) = 0,g(ξ,AN) = 0, and g(AN,N) = 0.
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Then motivated by the above result, we give another theorem in
the complex quadric Qm with parallel Ricci tensor and
A-isotropic unit normal as follows:

Theorem 3.6. (Suh, Adv. in Math., 2015)

Let M be a Hopf real hypersurface in the complex quadric Qm,
m≥4, with parallel Ricci tensor and A-isotropic unit normal N. If
the shape operator commutes with the structure tensor on the
distribution Q⊥, then M has 3 distinct constant principal
curvatures which are given by

α =

√
2m − 1

2
, γ(= α) =

√
2m − 1

2
, λ = 0, µ = − 2

√
2√

2m − 1
,

with corresponding principal curvature spaces
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Harmonic Curvature I

Tα = [ξ],Tγ = [Aξ,AN], φ(Tλ) = Tµ, dim Tλ = dim Tµ =
m− 2,respectively .

We consider the notion of harmonic curvature for hypersurfaces
M in Qm , that is, (∇X Ric)Y = (∇Y Ric)X for any vector fields X
and Y on M in Qm.
It is equivalent to δR = 0 and dR = 0(the second Bianchi
identity) for the curvature tensor R(X ,Y )Z of M in Qm.
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Then for hypersurfaces in Qm with A-principal normal we assert
the following

Theorem 3.7. (Suh, JMPA 2016)

Let M be a Hopf real hypersurface in the complex quadric Qm,
m≥4, with harmonic curvature. If the unit norml N is
A-principal, then M has at most 5 distinct constant principal
curvatures, five of which are given by

α, λ1, µ1, λ2, and µ2

with corresponding principal curvature spaces:
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Tα = [ξ], φTλ1 = Tµ1 , φTλ2 = Tµ2 ,dim Tλ1 + dimTλ2 =
m− 1, dim Tµ1 + dimTµ2 = m− 1.
Here four roots λi and µi , i = 1,2 satisfy the two kinds of
quadratic equation that

2x2 − 2βx + 2 + αβ = 0,

where the function β is denoted by β =
α2+1±

√
(α2+1)2+4αh
α .
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Harmonic Curvature II

Theorem 3.8. (Suh, JMPA 2016)

Let M be a Hopf real hypersurface in the complex quadric Qm,
m≥4, with harmonic curvature and A-isotropic unit normal N. If
the shape operator commutes with the structure tensor on the
distribution Q⊥, then M ≈ a tube around CPk⊂Qm, m = 2k , or
M has at most 6 distinct constant principal curvatures given by

α, γ = 0(α), λ1, µ1, λ2 and µ2
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with corresponding principal curvature spaces

Tα = [ξ],Tγ = [Aξ,AN], φ(Tλ1) = Tµ1 , φTλ2 = Tµ2 .

dim Tλ1 + dimTλ2 = m− 2, dim Tµ1 + dimTµ2 = m− 2.

Here four roots λi and µi , i = 1,2 satisfy the equation that

2x2 − 2βx + 2 + αβ = 0,

where the function β denotes β =
α2+2±

√
(α2+2)2+4αh
α . In

particular, α =
√

2m−1
2 , γ(= α) =

√
2m−1

2 , λ = 0, µ = − 2
√

2√
2m−1

,
with multiplicities 1,2,m − 2 and m − 2 respectively.
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Finally, we want to mention the following problems:

Problem 4
How can we derive the fact that the unit normal N of M in Qm

(or Qm∗) is A-principal or A-isotropic, if M is assumed with
parallel Ricci tensor or harmonic curvature ?

Problem 5
If M is a real hypersurface in the complex dual quadric Qm∗

with parallel Ricci tensor, what can we say about them ?

Problem 6
If M is a real hypersurface in the complex dual quadric Qm∗

with harmonic curvature, what can we say about them ?
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Pseudo Einstein in G2(Cm+2)

A real hypersurface M in G2(Cm+2) is said to be
pseudo-Einstein if the Ricci tensor Ric of M satisfies

Ric(X ) = aX + bη(X )ξ + c
∑3

i=1
ηi(X )ξi

for any constants a, b and c on M.

Theorem 4.1. (PSW, 2010 JGP)

Let M be a pseudo-Einstein Hopf in G2(Cm+2). Then M ≈
(a) a tube of r , cot2

√
2r = m−1

2 , over G2(Cm+1), where
a = 4m + 8, b + c = −2(m + 1), provided that c 6=− 4.
(b) a tube of r , cot r = 1+

√
4m−3

2(m−1) , over HPm, m = 2n, where
a = 8n + 6, b = −16n + 10, c = −2.
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Pseudo Einstein in SU2,m/S(U2Um)

A real hypersurface M in SU2,m/S(U2Um) is said to be
pseudo-Einstein if the Ricci tensor Ric of M satisfies

Ric(X ) = aX + bη(X )ξ + c
∑3

i=1
ηi(X )ξi

for any constants a, b and c on M.

Theorem 4.2. (Suh, 2016 AAM)

Let M be a pseudo-Einstein Hopf in SU2,m/S(U2Um), m ≥ 2.
Then M ≈ a hypersurface with four curvatures

√
2, 0, λ = 1√

2

and µ = q−4m+3
q
√

2
such that p + q = 4(m − 2), where p and q

denote the multiplicities of λ and µ. In this case M ≈ a proper
pseudo-Einstein with a = −1

2(4m + 5), b = c = 3
2 .

Y.J.Suh Recent Progress on Complex Quadric



Introduction
Complex Quadrics and Its Dual Quadrics

Isometric Reeb Flow in Complex Quadrics
Tubes around CPk ⊂ Q2k or Sm ⊂ Qm

Contact and Harmonic Curvature
Pseudo-Einstein, Pseudo-anti commuting and Ricci soliton

Pseudo Einstein in Qm

A real hypersurface M in Qm is said to be pseudo-Einstein if the
Ricci tensor Ric of M satisfies

Ric(X ) = aX + bη(X )ξ

for any constants a and b on M.

Theorem 4.3. (Suh, Submitted)

Let M be a pseudo-Einstein Hopf in Qm, m≥3. Then
(i) M ≈ a tube of r over a tot. real and tot. geodesic m-dim.
Sm in Qm, with a = 2m, and b = −2m.
(ii) m = 2k , M ≈ a tube of r , r = cot−1

√
k

k−1 over a tot.

geodesic k -dim. CPk in Q2k with a = 4k and b = −4 + 2
k .
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Now we consider an Einstein hypersurface in Qm. Then the
Ricci tensor of M becomes Ric = λg. In case (i) in above
Theorem 4.3, there do not exist any Einstein hypersurfaces in
Qm, because b = −2m is non-vanishing. In this case, the unit
normal N is A-principal.

Moreover, in (ii), if M is assumed to be Einstein, then the
constant should be b = 0. This gives 4 = 2

k , which implies a
contradiction. In this case M has an A-isotropic.

Corollary 4.4.

There do not exist any Einstein Hopf real hypersurfaces in
the complex quadric Qm, m≥3.
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Pseudo-anti commuting and Ricci soliton

We consider a new notion of pseudo-anti commuting Ricci
tensor which is defined by

Ric·φ+ φ·Ric = κφ, κ6=0 : constant,

where the structure tensor φ is induced from the Kähler
structure J of Hermitian symmetric space.

Theorem 4.5. (Suh, Submitted)

Let M be a pseudo-anti commuting Hopf in Qm, m≥3. Then
(i) M ≈ a tube of r , 0 < r < π

2
√

2
, around a tot. real and tot.

geodesic m-dim. Sm in Qm, with A-principal unit normal.
(ii) M ≈ a tube of r , 0 < r < π

2 , r 6=π
4 , around a tot. geodesic

k -dim. CPk in Q2k , m = 2k , with A-isotropic.
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A solution of the Ricci flow equation ∂
∂t g(t) = −2Ric(g(t)) is

given by

1
2

(LV g)(X ,Y ) + Ric(X,Y) = ρg(X,Y),

where ρ is a constant and LV denotes the Lie derivative along
the direction of the vector field V (see Hamilton, Morgan and
Tian, Perelmann ). Then the solution is said to be a Ricci
soliton with potential vector field V and Ricci soliton constant ρ,
and surprisingly, it satisfies the pseudo-anti commuting
condition Sφ+ φS = κφ, where κ = 2ρ is non-zero constant.
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Theorem 4.6. (Suh, Submitted)

Let (M,g, ξ, ρ) be a Ricci soliton on Hopf real hypersurfaces
in Qm, m≥3. Then
(i) M is an open part of a tube of radius r around a tot. real
and tot. geodesic m-dim. unit sphere Sm in Qm, with radii
r = 1√

2
cot−1 ( 1

2
√

2(m−1)

)
and r = 1√

2
cot−1 ( 1

2
√

2m

)
. Here the

unit normal N is A-principal.
(ii) M is an open part of a tube of radius r = tan−1

√
k

k−1

around a tot. geodesic k -dim. complex projective space CPk in
Q2k , m = 2k . Here the unit normal N is A-isotropic.
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