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Abstract

Given a non-variational system of differential equations, the simplest
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1 Introduction

For a given non–variational system of differential equations, there are multiple
ways of transforming it into a variational one - among these, variational multi-
pliers (or variational integrating factors), [1], are maybe the most well known.
Another possibility is to simply add a correction term.

In the paper, we consider systems of ordinary or partial differential equa-
tions - represented by source forms, or source tensors, similar to Euler-Lagrange
systems for extremals of integral variational functionals in the calculus of vari-
ations. We propose a way of obtaining such a correction term - which we call
a variational completion, as follows. Any ordinary or partial differential system
can be expressed as the vanishing of some source form ε on sections of an ap-
propriate jet bundle. Further, to this source form, one can naturally attach a
Lagrangian λε, called the Vainberg-Tonti Lagrangian of ε, [7]; this Lagrangian
has the property that the difference

τ := E(λε)− ε (1)

between its Euler-Lagrange form E(λε) and ε offers a measure of the non-
variationality of ε. Using τ in (1) as the correction term, the system ε+ τ = 0
becomes variational.
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The method appears to have several interesting applications. We present
here three of them.

1) Einstein tensor obtained from variational completion of the Ricci ten-
sor. Historically, the first variant of gravitational field equations proposed by
Einstein was:

Rij =
8πκ

c4
Tij , (2)

where: Rij is the Ricci tensor of a 4-dimensional Lorentzian manifold (X, g), Tij
is the energy-momentum tensor, while κ and c are constants, [8]. This variant
correctly predicted some physical facts, but failed to fulfil another request: local
energy-momentum conservation. This led Einstein to adding in the left hand

side the ”correction term” −
1

2
Rgij (by a reasoning based on Bianchi identities),

thus leading to the nowadays famous:

Rij −
1

2
Rgij =

8πκ

c4
Tij . (3)

The variational deduction of (3), due to Hilbert, relies on a heuristic argument
- simplicity. Hilbert chose to construct the action for the left hand side using the
”simplest scalar” (i.e., simplest differential invariant) which can be constructed
from the metric tensor and its derivatives alone. Happily, the Euler-Lagrange
expression ensuing from this simplest scalar - which is the scalar curvature R -
coincides with the left hand side of (3).

There is, still, another way of finding this correction term. Equation (2)
is not variational. Actually, the term which fails to be variational is Rij ; in
the paper, we prove that the Hilbert Lagrangian is (up to multiplication by a
non-essential constant), nothing else than the Vainberg-Tonti Lagrangian cor-

responding to Rij . Accordingly, the correction term −
1

2
Rgij can be obtained

from Rij as a canonical variational completion.

2) Energy-momentum tensors. In special relativity, energy-momentum ten-
sors are obtained by adding to the Noether current corresponding to the in-
variance of the matter Lagrangian to space-time translations a symmetrization
term. The way of obtaining the symmetrization term is subject to an old de-
bate, [2], [3]. The canonical variational completion method offers the possibility
of recovering the expression of a full, symmetric energy-momentum tensor from
just one of its terms - e.g., from a non-symmetrized Noether current. In partic-
ular, the energy-momentum tensor of the electromagnetic field can be obtained
this way.

3) In classical mechanics, equations of damped small oscillations are known
to be non-variational. Without aiming to give a general physical interpreta-
tion of the obtained correction term, we determine the canonical variational
completion of these equations.

In Sections 2 and 3, we briefly present some known notions and results to
be used in the following.

2



2 Differential forms on jet bundles

The mathematical background for a modern formulation of both field theory
and mechanics are fibered manifolds and their jet bundles.

Consider a fibered manifold Y of dimension m+n, with n-dimensional base
X and projection π : Y → X. Fibered charts (V, ψ), ψ = (xi, yσ) on Y induce the
fibered charts (V r, ψr), ψr = (xi, yσ, yσj1 , ..., y

σ
j1j2...jr

) on the r-jet prolongation

JrY of Y and (U, φ), φ = (xi) on X. The manifold JrY can be regarded as a
fibered manifold in multiple ways, by means of the projections:

πr,s : JrY → JsY, (xi, yσ, yσj1 , ..., y
σ
j1j2...jr

) 7→ (xi, yσ, yσj1 , ..., y
σ
j1j2...js

),

where r > s, J0Y := Y and:

πr : JrY → X.

The set of C∞-smooth sections γ : X → Y , locally expressed by some
functions (xi) 7→ γ(xi) = (xi, yσ(xi)) is denoted by Γ(Y ). Given a sec-
tion γ ∈ Γ(Y ), its prolongation to JrY is: Jrγ : (xi) 7→ Jrγ(xi) =
(xi, yσ(x), yσ,j(x), ..., y

σ
,j1j2...jr

(x)), where the symbol ,j denotes partial differ-

entiation with respect to xj .
In field theoretical applications, the coordinates xi play the role of space-

time coordinates, while yσ are ”field” coordinates (to be accurate, real fields
are encoded in sections yσ = yσ(xi)). The case of mechanics is characterized
by dimX = 1; in this case, the coordinates on JrY are usually denoted by
(t, qσ, q̇σ, q̈σ, ..., q(r)) and are interpreted as: time, generalized coordinates, gen-
eralized velocity etc.

By Ωr
kW, we denote the set of k-forms of order r over an open set W ⊂ Y,

i.e., the set of k-forms over the r-th prolongation JrW ⊂ JrY . In particular,
F(W ) := Ωr

0W is the set of real-valued smooth functions over JrW.
The subset of Ωr

kW consisting of k-forms:

ρ =
1

k!
ai1i2...ikdx

i1 ∧ dxi2 ∧ ... ∧ dxik , (4)

(where ai1i2...ik , k ≤ n, are smooth functions of the coordinates
xi, yσ, yσj1 , ..., y

σ
j1j2...jr

) is called the set of (πr-)horizontal k-forms of order
r; similarly, one can speak about πr,s-horizontal forms of order r as forms gen-
erated by exterior products of the differentials dxi, dyσ, ..., dyσj1...js .

Examples of πr-horizontal forms are volume forms and Lagrangians.
For X = R

n, the Euclidean volume form is:

ω0 = dx1 ∧ dx2 ∧ ... ∧ dxn. (5)

On pseudo-Riemannian manifolds (X, gij), a coordinate-invariant volume form

is locally given by: dV =
√

|g|ω0, where g := det(gij).
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A Lagrangian of order r is defined as a πr-horizontal n-form of order r :

λ = Lω0, L = L(xi, yσ, ..., yσi1...ir ). (6)

A form θ ∈ Ωr
kY is a contact form if it is annihilated by all jets Jrγ of

sections γ ∈ Γ(Y ). Important examples are the basic contact 1-forms on JrY
defined on a coordinate neighborhood by:

ωσ = dyσ − yσjdx
j , ωσ

i1
= dyσi1 − yσi1jdx

j , ... (7)

ωσ
i1i2...ir−1

= dyσi1i2...ir−1
− yσi1i2...ir−1j

dxj .

A differential form is called p-contact if it is generated by p-th exterior powers
of contact forms.

3 Source forms and variationality conditions

A source form of order r on a fibered manifold Y, [5], is a πr,0-horizontal, 1-
contact (n+1)-form on JrY . In local coordinates, any source form is expressed
as:

ε = εσω
σ ∧ ω0, εσ = εσ(x

i, yσ, yσi, ..., y
σ
j1...jr

). (8)

The set of source forms of order at most r over Y is closed under addition and
under multiplication with functions f ∈ F(JrY ).

The most notable example of a source form is the Euler Lagrange form E(λ)
of a Lagrangian λ = L(xi, yσ, ..., yσi1...ir)ω0 ∈ Ωr

n(Y ) :

E(λ) := Eσω
σ ∧ ω0,

Eσ =
∂L

∂yσ
− dk1

∂L

∂yσk1

+ ...+ (−1)rdk1
...dkr

∂L

∂yσk1...kr

.

A section γ : X → Y is critical for the Lagrangian λ if and only if the E(λ)
is annihilated by the r-jet of γ, i.e., Eσ(λ) ◦ J

rγ = 0, σ = 1, ...,m.

A source form ε is called:
a) locally variational if around any point of the fibered manifold Y, there

exists a local fibered chart (V, ψ) and a Lagrangian λ on some jet prolongation
V r (r ∈ N) of V, such that, on V r, ε = E(λ);

b) globally variational if there exists a Lagrangian λ on the whole manifold
Y such that ε = E(λ).

Local variationality of a source form ε = εσω
σ ∧ ω0 of order r is equivalent

to a generalization of classical Helmholtz conditions, [6]:

H j1...jk
σν (ε) = 0, k = 0, ..., r, (9)

where:
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H j1...jk
σν (ε) =

∂εσ
∂yνj1...jk

− (−1)k
∂εν

∂yσj1...jk
− (10)

−

r
∑

l=k+1

(−1)l(lk)dik+1
dik+2

...dil
∂εν

∂yσj1...jkik+1...il

locally describe the Helmholtz form Hε =
1

2

r
∑

k=0

H j1...jk
σν (ε)ων

j1...jk
∧ ωσ ∧ ω0.

4 Canonical variational completion

By variational completion of a given source form ε on Y, we will mean any
source form τ on Y with the property that ε+ τ is variational. Of course, one
can speak about local and about global variational completions.

In the following, we will only study local variational completions.
Clearly, every source form has infinitely many variational completions: in-

deed, any Lagrangian λ induces the completion τ := E(λ)− ε. Thus, the ques-
tion is how to choose the Lagrangian λ in a meaningful way. In the following,
we will try to give an answer to this question.

Given an arbitrary source form ε = εσω
σ ∧ ω0 ∈ Ωr

n+1Y of order r, a local
Lagrangian attached to ε is the Vainberg-Tonti Lagrangian λε = Lεω0, [7], [4],
defined by:

Lε(x
i, yσ, ..., yσj1...js) = yσ

1
∫

0

εσ(x
i, uyσ, ..., uyσj1...js)du. (11)

The Euler-Lagrange form E(λε) = Eνω
ν ∧ ω0 of the Vainberg-Tonti La-

grangian λε is given, [7], by:

Eν = εν −

1
∫

0

u{yσ(Hνσ ◦ χu) + yσj(H
j

νσ ◦ χu) + ...+ yσj1...jr(H
j1...jr

νσ ◦ χu)}du,

where χu : J2rY → J2rY denotes the homothety (xi, yσ, yσj , ..., y
σ
j1...j2r

) 7→

(xi, uyσ, uyσj , ..., uy
σ
j1...j2r

) and the coefficients H j1...jk
σν are as in (9).

From (9), it follows that the coefficients H j1...jk
σν above have the meaning

of ”obstructions from variationality” of the source form ε. In particular, if the
source form ε is variational, then E(λε) = ε.

It thus appears as natural

Definition 1 The canonical variational completion of a source form ε ∈
Ωr

n+1(Y ), is the source form τ (ε) given by the difference between the Euler-
Lagrange form of the Vainberg–Tonti Lagrangian of ε and ε itself:

τ (ε) = E(λε)− ε. (12)
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The local coefficients τν of the canonical variational completion τ (ε) =
τνω

ν ∧ ω0 can be directly expressed in terms of the coefficients H j1...jk
νσ :

τν = −

1
∫

0

u{yσ(Hνσ ◦ χu) + yσj(H
j

νσ ◦ χu) + ...+ yσj1...jr(H
j1...jr

νσ ◦ χu)}du.

Remark. Generally speaking, the Vainberg-Tonti Lagrangian and, accord-
ingly, the canonical variational completion of a source form of order r, are of
order 2r. Still, under certain conditions, [4] (which are fulfilled by a large number
of equations in physics), the Vainberg-Tonti Lagrangian is actually equivalent
to a Lagrangian of order r.

5 Source forms in general relativity

Consider a Lorentzian manifold (X, gij) of dimension 4, with local charts (U, φ),
φ = (xi)i=0,3 and Levi-Civita connection ∇. We denote by Rij the Ricci tensor

of ∇ and by R = gijRij , the scalar curvature. We assume in the following that
measurement units are chosen in such a way that c = 1. Indices of tensors will
be lowered or raised by means of the metric gij and its inverse gij .

Einstein field equations (3) arise by varying with respect to the metric tensor
the Lagrangian λ = λg + λm, where:

i) λg = −
1

16πκ
R
√

|g|ω0 (with ω0 = dx0 ∧ dx1 ∧ dx2 ∧ dx3) is the Hilbert

Lagrangian;
ii) the matter Lagrangian λm = Lm

√

|g|ω0, is given by a differential invari-
ant Lm = Lm(gij , gij,h, ...; y

σ, yσj , ..., y
σ
j1...jr

) depending on the metric tensor
components and their derivatives up to a certain order s ∈ N and on the r-jet
of a field yσ. Typically, in classical general relativity, s = 0.

In the case of vacuum Einstein equations

Rij −
1

2
Rgij = 0, (13)

the ”field components” to be varied are the metric tensor components gij (or,
more commonly, the inverse metric components gij), hence the fibered manifold
Y is the bundle of metrics Met(X), defined as the set of symmetric nondegen-
erate tensors of type (0,2) on X. Since both Rij and R are of second order in
gij , the space we have to work on is the second order jet bundle J2Met(X).

We denote the local charts on Met(X) by (V, ψ), with ψ = (xi, gjk) and the
induced fibered chart on J2Met(X), by (V 2, ψ2), with ψ2 = (xi, gjk; gjk,i; gjk,il).
We will also use the notations:

ωjk = dgjk − gjk,idx
i; ωjk,l = dgjk,l − gjk,lidx

i

for the basic contact forms on J2Met(X). The Riemann tensor, the Ricci tensor
and the Ricci scalar thus become objects on J2Met(X).
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5.1 Canonical variational completion of the Ricci tensor

We will prove in the following that vacuum Einstein equations (13) can be
obtained by means of the canonical variational completion of the source form
with components Rij .

Take the following source form on J2Met(X) :

ε := αRij
√

|g|ωij ∧ ω0, (14)

where α is a (momentarily) arbitrary constant. Its components εij =
εij(gkl; gkl,i, gkl,ij) are given by

εij = αRij
√

|g|.

The Vainberg-Tonti Lagrangian λε = Lεω0 is defined as:

Lε = gij

1
∫

0

εij(ugkl;ugkl,i;ugkl,ij)du.

Let us study the behavior of the integrand with respect to homotheties
χu : (gkl; gkl,i; gkl,ij) 7→ (ugkl;ugkl,i;ugkl,ij). These homotheties induce the
transformation gkl 7→ u−1gkl of the inverse metric tensor components. The
Christoffel symbols

Γi
jk =

1

2
gih(ghj,k + ghk,j − gjk,h)

are invariant to χu and hence the curvature tensor components R i
j kl = Γ i

jk,l −

Γi
jl,k + Γh

jkΓ
i
hl − Γh

jlΓ
i
hk are also invariant. The Ricci tensor Rjk = R i

j ki is

obtained just by a summation process from R i
j kl, which means that it is also

insensitive to χu. That is, R
ij = gihgjlRhl will acquire a u−2.

It remains to compute the contribution of χu to the factor
√

|g|. Each line
of the matrix (gjk) is multiplied by u, that is, g = det(gij) will acquire a factor
of u4 and finally,

√

|g ◦ χu| = u2
√

|g|.

Substituting into the expression of Lε, we get this way,

Lε = gij

1
∫

0

u0αRij
√

|g|du = αgijR
ij
√

|g|

1
∫

0

u0du = αR
√

|g|.

Thus, if we choose

α :=
−1

16πκ
,

the Vainberg-Tonti Lagrangian λε = Lεω0 becomes the Hilbert Lagrangian λg :

λε = λg. (15)
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We know, however, that the Euler-Lagrange expressions of R
√

|g| with re-
spect to gij are given by (minus) the contravariant components of the Einstein
tensor. In differential form writing, this is:

E(λε) =
1

16πκ
(Rij −

1

2
Rgij)

√

|g|ωij ∧ ω0

hence, we find the variational completion τ = E(λε)− ε as

τ =
1

16πκ
(2Rij −

1

2
Rgij)

√

|g|ωij ∧ ω0.

Remark. The factor α in (14) is actually unessential, the variationally
completed equation

E(λε) = 0

is still the correct vacuum Einstein equation, regardless of its value.

5.2 Energy-momentum tensors

Having one term of an energy-momentum tensor, the canonical variational com-
pletion method offers a way of recovering its full expression. We will apply this
method in the case when the known piece is a (non-symmetrized) Noether cur-
rent.

In the case of Einstein equations with matter (3), we will have to work on
a fibered product Y ×X Met(X) over X (where Y is a fibered manifold with
base X) with coordinate charts (V, ψ), ψ = (xi, yσ, gjk). In this case, one can
speak separately about variations with respect to yσ and to gjk and accordingly,
about Y -variationality and Met(X)-variationality, Y - and Met(X)-variational
completions.

Consider a first order Lagrangian λm on Y ×X Met(X); we suppose in
addition that λm does not depend on xj and on the derivatives gij,k. Thus,

λm = Lm

√

|g|ω0, where

Lm = Lm(yσ, yσj , gij).

In classical relativity theory, there are two major ways of defining energy-
momentum tensors, corresponding to two different contexts:

1) The canonical energy-momentum tensor, corresponding to special relativ-
ity (where X = R

4 and the metric tensor is fixed as ηij = diag(1,−1,−1,−1)).
A Lagrangian λm = Lmω0, which is invariant to the group of space-time trans-
lations x̃i = xi + ai, ai = const., gives rise to a system of conserved Noether
currents, called the canonical energy-momentum tensor (invariance to space-
time translations amounts to the above assumption that Lm does not explicitly
depend on xi). These Noether currents are given by, [8]:

T̃ ij = ηik(yσ,k
∂Lm

∂yσ,j
− δjkLm). (16)
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The canonical energy-momentum tensor T̃ ij is, generally, not symmetric -
which is inconvenient, since symmetry is required on physical grounds (angular
momentum conservation). This is usually solved by adding a divergence-free

term, thus obtaining a tensor
can

T ij which is symmetric and still conserved, i.e.,
can

T ij
,j = 0. There are multiple possibilities of choosing the symmetrization term,

[2].
2) In general relativity (where (X, gij) is an arbitrary Lorentzian manifold),

energy-momentum tensors (Hilbert, or metric energy-momentum tensors)
met

T ij

are defined by means of functional derivatives of the matter Lagrangian λm =
Lmω0, Lm = Lm

√

|g|, with respect to gij :

−
1

2
T ij :=

δLm

δgij
;

met

T ij :=
1

√

|g|
T ij . (17)

Here, Lm = Lm(yσ, yσj , y
σ
j ; gij) is a differential invariant (a ”scalar”), hence the

Lagrangian λm is invariant to (transformations on JrY induced by) arbitrary

diffeomorphisms on X . As a result,
met

T ij obeys on-shell the covariant conser-

vation law
met

T ij
;j = 0 and also, has gauge invariance properties, [2]. Moreover,

met

T ij is, by construction, symmetric.
The two procedures of defining the energy-momentum tensor are fundamen-

tally different and obviously require a thorough geometric analysis. Just as a
first remark, they generally do not even make sense at the same time: in special
relativity, where the metric is fixed, it makes no sense to speak about variations
of a Lagrangian with respect to the metric. On the other hand, in general rel-
ativity, where X is an arbitrary manifold, space-time translations x̃i = xi + ai,
ai = const., cannot be defined geometrically. However, there is a realm (see,
e.g., [10]) where both procedures can be applied, namely, when:

X = R
4, gij − arbitrary (18)

(actually, in [10], it is pointed out the particular case of weak metrics – in which
the author studies the equivalence between the two definitions. Still, for our
purposes, we do not need the assumption that the metric is weak).

For a special-relativistic Lagrangian

λm = Lmω0, Lm = Lm(yσ, yσi, gij = ηij), (19)

the canonical variational completion offers a recipe of symmetrization of the
Noether current T̃ ij. We will do this in three steps:

Step 1. We leave for the moment the special relativistic context and for-
mally allow gij to vary. Abiding by the principle of general covariance, [8], a
straightforward generalization of (16) to the new context is given by the tensor
density:

T̃ ij = gik(yσ;k
∂Lm

∂yσ;j
− δjkLm)

√

|g|, (20)

9



where the semicolon ;k denotes (formal) covariant differentiation with respect
to ∂/∂xk.

Note: In the above, yσ are tensors of some unspecified rank (the upper posi-
tion of the index is chosen just for convenience; yσ can very well be components
of, e.g., a scalar, a covector field or of a tensor of type (0,2)).

Step 2. Taking into account (17), we consider the source form ε = αT̃ ijωij∧

ω0 on J
1(Y ×XMet(X)), with components εij = αT̃ ij(yσ, yσj, gkh), where α ∈ R

is a constant. Its Met(X)-Vainberg-Tonti Lagrangian λε := Lεω0 is:

Lε = αgij

1
∫

0

(T̃ ij ◦ χu)du,

where χu(y
σ, yσi, gij) := (yσ, yσi, ugij) only affects the metric components. Sub-

stituting T̃ ij from (20) and taking into account that χu leaves Christoffel sym-
bols invariant and that δii = dim(X) = 4, we have:

Lε = α

1
∫

0

u(yσ;i
∂(Lm ◦ χu)

∂yσ;i
− 4Lm ◦ χu)

√

|g|du. (21)

Further, we calculate the Hilbert energy-momentum tensor of λε as:

−
1

2

met

T ij :=
1

√

|g|

δLε

δgij
. (22)

Step 3. Finally, particularize in (22) gij as ηij and define

met

T ij : |gij=ηij
=: T ij .

This way,
met

T ij is defined up to multiplication by the constant α. This constant
can then be adjusted, for instance, in such a way that the obtained symmetriza-
tion term

τ ij := T ij − T̃ ij (23)

is independent from T̃ ij (it does not contain any multiple of T̃ ij).

The covariant conservation law of
met

T ij (obtained as a consequence of the

fact that
met

T ij is a Hilbert energy-momentum tensor) now transforms into the
usual conservation law: T ij

,j = 0. Thus, the obtained energy-momentum tensor
Tij is, as required, both symmetric and conserved. Moreover, the symmetrzation

term τ ij offers a measure of the non-Met(X)-variationality of T̃ ij.

Example: energy-momentum tensor of the electromagnetic field.
The electromagnetic field is described by the potential 1-form A = Aidx

i on X

and by the 2-form F := dA =
1

2
Fijdx

i ∧ dxj .

10



In the special relativistic case gij = ηij , we have Fij = Aj,i−Ai,j , or, in terms

of the contravariant components Ai : Fij = ηjkA
k
,i − ηikA

k
,j. The Lagrangian

of the electromagnetic field is λf = Lfω0 with

Lf = −
1

16π
FijF

ij ; (24)

Translational invariance of λf leads to the Noether current, [8]:

T̃ ij = −
1

4π
ηih

∂Al

∂xh
F j

l +
1

16π
ηijFklF

kl. (25)

The curved space generalization of T̃ ij in (25) is the tensor density:

T̃ ij = (−
1

4π
gihAl

;hF
j
l +

1

16π
gijFklF

kl)
√

|g| (26)

where, this time:

Fij = gjkA
k
;i − gikA

k
;j . (27)

Further, we calculate the Vainberg-Tonti Lagrangian of the source form

ε = αT̃ ijωij ∧ ω0,

where T̃ ij = T̃ ij(Ak;Ak
,l; gkl; gkl,h). We prefer to use Ak rather than Ak := gklA

l

as the field variables for a reason which will become transparent below. This
way, χu acts as follows:

gij ◦ χu = ugij , gij ◦ χu = u−1gij ,

while χu does not affect the field variables yσ = Ak. Again, the Christoffel sym-
bols Γi

jk are invariant to χu. Expressing Fij as in (27), we can now determine

the effect of χu on each term of T̃ ij :

Al
;i ◦ χu = Al

;i; Fjl ◦ χu = uFjl; F kl ◦ χu = u−1F kl,
√

|g| ◦ χu = u2
√

|g|.

All in all, we have:

T̃ ij ◦ χu = uT̃ ij

and hence, the Vainberg-Tonti Lagrangian λε = Lεω0 is given by:

Lε = gij

1
∫

0

uαT̃ ijdu =
α

2
gij T̃

ij ,

that is,

Lε = α(−
1

8π
Al;kFkl +

1

8π
FklF

kl)
√

|g|. (28)

11



Taking into account that Fkl = −Flk, the term Al;kFkl in the above can be

re-expressed as: Al;kFkl =
1

2
(Al;k −Ak;l)Fkl =

1

2
F klFkl; substituting into (28),

we finally obtain the Met(X)-Vainberg-Tonti Lagrangian of (26) as:

λε =
α

16π
F klFkl

√

|g|ω0 = −αλf . (29)

But, variation of λf with respect to gij is well-known, [8]; namely, we will
get for λε = −αλf the Hilbert energy-momentum tensor

met

T ij(α) = −α(−
1

4π
F ilF j

l +
1

16π
gijFklF

kl).

Particularizing now gij = ηij , we get the symmetrized energy-momentum
tensor:

T ij :=
met

T ij = −α(T̃ ij +
1

4π
Ai

,lF
jl).

Taking α := −1 (which provides
met

T ij = T̃ ij + independent term), we obtain
λε = λf and the symmetrization term:

τ ij =
1

4π
Ai

,lF
jl,

or, in covariant writing,

τ ij =
1

4π
Ai,lF

l
j

as the correction term. This is the classical symmetrization term, [8], yet,
obtained here by a completely different reasoning.

Remarks.

1) If, for a given (symmetrized or not) energy-momentum tensor T̃ ij , the
Lagrangian λm is not known, a Lagrangian can be constructed as the Met(X)-
Vainberg-Tonti Lagrangian (21); if a Lagrangian λm is already known, the above
gives an alternative construction.

1) If the given matter Lagrangian density Lm is homogeneous both in the
metric components and in the derivatives yσ;i (the homogeneity degrees need not
coincide) then, applying Euler’s theorem in (21), we see that the Vainberg-Tonti
Lagrangian density Lε in (21) actually coincides, up to multiplication by some
constant, with the matter Lagrangian density Lm. In this case, we can always
choose α such that Lε = Lm. In this case, the symmetrization term coincides
with the one in [3], yet, it is found just by considerations of variationality.

2) If we had worked with the potential 1-form components Ai (instead of
the vector field components Ai) as our field variables, we would have had Fij =
Aj;i −Ai;j - invariant to χu and by a similar reasoning to the above, we would

have got T̃ ij(ugkl) = u−1T̃ ij(gkl) and, consequently, to Lε = (gij T̃ij)
1
∫

0

u−1du.

But, since the latter integral does not have a finite value, we could not have

12



calculated Lε this way. Hence, it appears that, at least in this case, the 4-
potential vector field components Ai are a more advantageous choice for our
dynamical variables.

6 An example in first order mechanics

Take Y = R×R
n, with local coordinates (t, qσ); on the second jet prolongation

J2Y, we denote the induced local coordinates by (t, qσ, q̇σ, q̈σ).
Consider the second order source form

ε = εσω
σ ∧ dt,

εσ = mσν q̈
ν + kσνq

ν +
∂F

∂q̇σ
, (30)

where:
- mσν , kσν are constant and symmetric;
- F = F (q̇σ) is homogeneous of some degree p ≥ 1 in q̇σ.

The ODE system εσ = 0 is generally non-variational. Let us determine its
canonical variational completion. The Vainberg-Tonti Lagrangian attached to
ε is λε = Lεdt, with

Lε = qσ
1
∫

0

εσ(t, uq
ν , uq̇ν , uq̈ν)du = qσ

1
∫

0

(mσνuq̈
ν + kσνuq

ν +
∂F

∂q̇σ
(uq̇ν))du.

Taking into account the homogeneity degree of F, this is:

Lε = qσ
1
∫

0

[u(mσν q̈
ν + kσνq

ν) + up−1 ∂F

∂q̇σ
]du =

=
1

2
(mσν q̈

νqσ + kσνq
σqν) +

1

p
qσ
∂F

∂q̇σ
.

The term
1

2
mσν q̈

νqσ differs by a total derivative dt(
1

2
mσν q̇

νqσ) from

−
1

2
mσν q̇

ν q̇σ, hence the two expressions are dynamically equivalent. We will

thus prefer to take the latter, which is of lower order and thus, we obtain the
following Lagrangian function, which is equivalent to the Vainberg-Tonti one:

L =
1

2
(−mσν q̇

ν q̇σ + kσνq
σqν) +

1

p
qσ
∂F

∂q̇σ
. (31)

Let us determine the Euler-Lagrange form of L. We have, on one hand:

∂L

∂qρ
= kσρq

σ +
1

p

∂F

∂q̇ρ

13



and, on the other hand,

∂L

∂q̇ρ
= −mσρq̇

ρ +
1

p

∂2F

∂q̇σ∂q̇ρ
qσ,

dt(
∂L

∂q̇ρ
) = −mσρq̈

ρ +
1

p

∂3F

∂q̇σ∂q̇ρ∂q̇ν
q̈νqσ +

1

p

∂2F

∂q̇σ∂q̇ρ
q̇σ;

taking again into account that
∂F

∂q̇ρ
is homogeneous of degree p − 1, the latter

term is:
1

p

∂2F

∂q̇σ∂q̇ρ
q̇σ =

p− 1

p

∂F

∂q̇ρ
and, finally,

Eρ(L) = (mσρq̈
σ + kσρq

σ) +
2− p

p

∂F

∂q̇ρ
−

1

p

∂3F

∂q̇σ∂q̇ρ∂q̇ν
q̈νqσ.

We find the variational completion τ = τρ(t, q, q̇)ω
ρ ∧ dt as:

τρ = 2(
1

p
− 1)

∂F

∂q̇ρ
−

1

p

∂3F

∂q̇σ∂q̇ρ∂q̇ν
q̈νqσ. (32)

Particular cases:

1) If F = 0, the system εσ = 0 is equivalent to

mσν q̈
ν + kσνq

ν = 0.

These equations characterize free small oscillations with multiple degrees of
freedom, [8]. They are known to be variational; their Lagrangian function L =
1

2
(−mσν q̇

ν q̇σ + kσνq
σqν) coincides (as expected), with (31).

2) If p = 2 and F is quadratic in q̇:

F =
1

2
ασν q̇

σ q̇ν ,

(where ασν = ανσ ∈ R) the ODE system εσ = 0 characterizes, [9], Section 25,
linearly damped oscillations. In this case, the function F is called the Rayleigh
dissipation function and is interpreted as the rate of energy dissipation in the

system. In (30), the last term (with a minus in front) −
∂F

∂q̇σ
= −aσν q̇

ν is

interpreted as a friction force. In this case, the canonical variational completion
(32) is given by

τρ = −
∂F

∂q̇ρ

and the variationally completed equations are:

mρν q̈
ν + kρνq

ν = 0, (33)
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which are precisely the equations of ”undamped” oscillations. That is, the fric-

tion force
∂F

∂q̇ρ
has, in this case, the meaning of obstruction from variationality

of the equations.

Remark. In other cases (e.g., when −
∂F

∂q̇ρ
is quadratic or cubic in q̇σ), the

variationally completed equations will not coincide anymore with the equations
(33) of undamped oscillations.
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