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A variety' of algebras is called regular when it does satisfy regular identities only, where
an identity ¢ ~ 7 (in a fixed algebraic language) is regular provided that exactly the same
variables actually occur in both the terms ¢ and 7. Examples of regular varieties include semi-
groups, (commutative) monoids and semilattices. A variety is irregular if it is not regular.
In particular, a variety V is strongly irregular if it possess a term-definable (binary) operation
f(x,y) such that V |= f(x,y) ~ x. Intuitively, f behaves in V as a projection in the first com-
ponent. Strongly irregular varieties are very common, as they include, for instance, groups,
rings and any variety having a lattice (or group) reduct.

Given a variety V), one can consider its regularization R()), namely the variety satisfying only
the regular identities holding in V. In case V is strongly irregular, then the elements of R()V)
admits a well-behaved structure theory: any algebra in R(V) can be represented as a Plonka
sum over a semilattice direct system of algebras in V. The construction was introduced by
the Polish algebraist J. Ptonka [4, 5, 6, 7].

In this seminar, I will provide the details of the Ptonka representation theorem for regularized
varieties and show some of its applications, such as the description of the lattice of the sub-
varieties of R(V) [2], of the subdirectly irreducible members [3] and of the equational basis.
Finally, I will explain how the theory of Plonka sums has been applied in algebraic logic [1].
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'I am using the term with its usual meaning in Universal Algebra.



