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A variety1 of algebras is called regular when it does satisfy regular identities only, where
an identity σ ≈ τ (in a fixed algebraic language) is regular provided that exactly the same
variables actually occur in both the terms σ and τ. Examples of regular varieties include semi-
groups, (commutative) monoids and semilattices. A variety is irregular if it is not regular.
In particular, a variety V is strongly irregular if it possess a term-definable (binary) operation
f (x, y) such that V |= f (x, y) ≈ x. Intuitively, f behaves in V as a projection in the first com-
ponent. Strongly irregular varieties are very common, as they include, for instance, groups,
rings and any variety having a lattice (or group) reduct.
Given a variety V , one can consider its regularization R(V), namely the variety satisfying only
the regular identities holding in V . In case V is strongly irregular, then the elements of R(V)
admits a well-behaved structure theory: any algebra in R(V) can be represented as a Płonka
sum over a semilattice direct system of algebras in V . The construction was introduced by
the Polish algebraist J. Płonka [4, 5, 6, 7].
In this seminar, I will provide the details of the Płonka representation theorem for regularized
varieties and show some of its applications, such as the description of the lattice of the sub-
varieties of R(V) [2], of the subdirectly irreducible members [3] and of the equational basis.
Finally, I will explain how the theory of Płonka sums has been applied in algebraic logic [1].
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1I am using the term with its usual meaning in Universal Algebra.


