Exponential PDE's in high dimensions

Pierpaolo Esposito
Department of Mathematics and Physics
University of Roma Tre

The n-Liouville equation

Consider the quasilinear PDE with exponential nonlinearity

$$
\begin{equation*}
-\Delta_{n} u=V e^{u} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

The n-Liouville equation

Consider the quasilinear PDE with exponential nonlinearity

$$
\begin{equation*}
-\Delta_{n} u=V e^{u} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

$\Delta_{n} u=\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right) n$-Laplace operator, $\Omega \subset \mathbb{R}^{n}, n \geq 2$ and

$$
\begin{equation*}
0<a \leq V \leq b<+\infty, \quad|\nabla V| \leq b \tag{V}
\end{equation*}
$$

The n-Liouville equation

Consider the quasilinear PDE with exponential nonlinearity

$$
\begin{equation*}
-\Delta_{n} u=V e^{u} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

$\Delta_{n} u=\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right) n$-Laplace operator, $\Omega \subset \mathbb{R}^{n}, n \geq 2$ and

$$
\begin{equation*}
0<a \leq V \leq b<+\infty, \quad|\nabla V| \leq b \tag{V}
\end{equation*}
$$

Planar case $n=2$: arises in conformal geometry, statistical and fluid mechanics, Chern-Simons theories;

The n-Liouville equation

Consider the quasilinear PDE with exponential nonlinearity

$$
\begin{equation*}
-\Delta_{n} u=V e^{u} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

$\Delta_{n} u=\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right) n$-Laplace operator, $\Omega \subset \mathbb{R}^{n}, n \geq 2$ and

$$
\begin{equation*}
0<a \leq V \leq b<+\infty, \quad|\nabla V| \leq b \tag{V}
\end{equation*}
$$

Planar case $n=2$: arises in conformal geometry, statistical and fluid mechanics, Chern-Simons theories; well studied on Euclidean domains or on closed Riemannian surfaces

- H. Brézis, F. Merle, Comm. PDE '91
- Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94
- Y.Y. Li, Comm. Math. Phys. '99
- C.C. Chen, C.S. Lin, Comm. Pure Appl. Math. '02 \& '03

Quasilinear operators in conformal geometry I

In the theory of log-determinants: A_{g} injective conformally covariant operator in a closed Riemannian manifold $\left(M^{4}, g\right)$

Quasilinear operators in conformal geometry I

In the theory of log-determinants: A_{g} injective conformally covariant operator in a closed Riemannian manifold $\left(M^{4}, g\right)$ Branson-Orsted formula: $\hat{g}=e^{2 u} g \Rightarrow$

$$
F_{A_{g}}[u]=\log \frac{\operatorname{det} A_{\hat{g}}}{\operatorname{det} A_{g}}=\gamma_{1}\left(A_{g}\right) /[u]+\gamma_{2}\left(A_{g}\right) \Pi[u]+\gamma_{3}\left(A_{g}\right) / \Pi[u]
$$

Quasilinear operators in conformal geometry I

In the theory of log-determinants: A_{g} injective conformally covariant operator in a closed Riemannian manifold $\left(M^{4}, g\right)$
Branson-Orsted formula: $\hat{g}=e^{2 u} g \Rightarrow$

$$
F_{A_{g}}[u]=\log \frac{\operatorname{det} A_{\hat{g}}}{\operatorname{det} A_{g}}=\gamma_{1}\left(A_{g}\right) /[u]+\gamma_{2}\left(A_{g}\right) / I[u]+\gamma_{3}\left(A_{g}\right) / \Pi![u]
$$

W_{g} Weyl tensor, R_{g} scalar curv., P_{g} Paneitz operator

$$
I[u]=4 \int_{M}\left|W_{g}\right|_{g}^{2} u d v_{g}-\left(\int_{M}\left|W_{g}\right|_{g}^{2} d v_{g}\right) \log f_{M} e^{4 u} d v_{g}
$$

Quasilinear operators in conformal geometry I

In the theory of log-determinants: A_{g} injective conformally covariant operator in a closed Riemannian manifold $\left(M^{4}, g\right)$
Branson-Orsted formula: $\hat{g}=e^{2 u} g \Rightarrow$

$$
F_{A_{g}}[u]=\log \frac{\operatorname{det} A_{\hat{g}}}{\operatorname{det} A_{g}}=\gamma_{1}\left(A_{g}\right) /[u]+\gamma_{2}\left(A_{g}\right) / I[u]+\gamma_{3}\left(A_{g}\right) / \Pi![u]
$$

W_{g} Weyl tensor, R_{g} scalar curv., P_{g} Paneitz operator

$$
I[u]=4 \int_{M}\left|W_{g}\right|_{g}^{2} u d v_{g}-\left(\int_{M}\left|W_{g}\right|_{g}^{2} d v_{g}\right) \log f_{M} e^{4 u} d v_{g}
$$

$$
\Pi[u]=\int_{M} u P_{g} u d v_{g}+4 \int_{M} Q_{g} u d v_{g}-\left(\int_{M} Q_{g} d v_{g}\right) \log f_{M} e^{4 u} d v_{g}
$$

Quasilinear operators in conformal geometry I

In the theory of log-determinants: A_{g} injective conformally covariant operator in a closed Riemannian manifold $\left(M^{4}, g\right)$
Branson-Orsted formula: $\hat{g}=e^{2 u} g \Rightarrow$

$$
F_{A_{g}}[u]=\log \frac{\operatorname{det} A_{\hat{g}}}{\operatorname{det} A_{g}}=\gamma_{1}\left(A_{g}\right) /[u]+\gamma_{2}\left(A_{g}\right) / I[u]+\gamma_{3}\left(A_{g}\right) / \Pi![u]
$$

W_{g} Weyl tensor, R_{g} scalar curv., P_{g} Paneitz operator

$$
I[u]=4 \int_{M}\left|W_{g}\right|_{g}^{2} u d v_{g}-\left(\int_{M}\left|W_{g}\right|_{g}^{2} d v_{g}\right) \log f_{M} e^{4 u} d v_{g}
$$

$$
\Pi[u]=\int_{M} u P_{g} u d v_{g}+4 \int_{M} Q_{g} u d v_{g}-\left(\int_{M} Q_{g} d v_{g}\right) \log f_{M} e^{4 u} d v_{g}
$$

$$
I I I[u]=12 \int_{M}\left(\Delta_{g} u+|\nabla u|_{g}^{2}\right)^{2} d v_{g}-4 \int_{M}\left(u \Delta_{g} R+R_{g}|\nabla u|_{g}^{2}\right) d v_{g}
$$

Euler-Lagrange equation for $F_{A_{g}}$

$$
F_{A_{g}}^{\prime}(u)=0 \Leftrightarrow U_{\tilde{g}}=\text { const., }
$$

Euler-Lagrange equation for $F_{A_{g}}$

$$
F_{A_{g}}^{\prime}(u)=0 \Leftrightarrow U_{\tilde{g}}=\text { const., } U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g}
$$

Euler-Lagrange equation for $F_{A_{g}}$

$F_{A_{g}}^{\prime}(u)=0 \Leftrightarrow U_{\tilde{g}}=$ const., $U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g}$
Conformal invariant quantity: $\kappa_{A}=-\int_{M} U_{g} d v_{g}$

Euler-Lagrange equation for $F_{A_{\xi}}$

$F_{A_{g}}^{\prime}(u)=0 \Leftrightarrow U_{\tilde{g}}=$ const., $U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g}$
Conformal invariant quantity: $\kappa_{A}=-\int_{M} U_{g} d v_{g}$
E-L eqn: $\mathcal{N}(u)+U_{g}=-k_{A} \frac{e^{4 u}}{\int_{M} e^{4 u} d v_{g}}$ where

$$
\begin{aligned}
\mathcal{N}(u)= & \frac{\gamma_{2}}{2} P_{g} u+6 \gamma_{3} \Delta_{g}\left(\Delta_{g} u+|\nabla u|_{g}^{2}\right) \\
& -12 \gamma_{3} \operatorname{div}\left[\left(\Delta_{g} u+|\nabla u|_{g}^{2}\right) \nabla u\right]+2 \gamma_{3} \operatorname{div}\left(R_{g} \nabla u\right)
\end{aligned}
$$

Euler-Lagrange equation for $F_{A_{g}}$

$F_{A_{g}}^{\prime}(u)=0 \Leftrightarrow U_{\tilde{g}}=$ const., $U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g}$
Conformal invariant quantity: $\kappa_{A}=-\int_{M} U_{g} d v_{g}$
E-L eqn: $\mathcal{N}(u)+U_{g}=-k_{A} \frac{e^{4 u}}{\int_{M} e^{4 u} d v_{g}}$ where

$$
\begin{aligned}
\mathcal{N}(u)= & \frac{\gamma_{2}}{2} P_{g} u+6 \gamma_{3} \Delta_{g}\left(\Delta_{g} u+|\nabla u|_{g}^{2}\right) \\
& -12 \gamma_{3} \operatorname{div}\left[\left(\Delta_{g} u+|\nabla u|_{g}^{2}\right) \nabla u\right]+2 \gamma_{3} \operatorname{div}\left(R_{g} \nabla u\right)
\end{aligned}
$$

Difficulty: $\mathcal{N}(u)=\left(\frac{\gamma_{2}}{2}+6 \gamma_{3}\right) \Delta^{2} u-12 \gamma_{3} \Delta_{4} u+\ldots$ is a quasi-linear operator of mixed orders

- T. Branson, A. Chang, P. Yang, CMP '92
- A. Chang, P. Yang, Ann. Math. '95
- P.E., A. Malchiodi, JDG to appear
- M. Gursky, CMP '99 \& '07
- M. Gursky, A. Malchiodi, CMP '12

Quasilinear operators in conformal geometry II

Simplified problem: retain Δ_{4} in \mathcal{N} and consider it in general dimensions $n \geq 2$

Quasilinear operators in conformal geometry II

Simplified problem: retain Δ_{4} in \mathcal{N} and consider it in general dimensions $n \geq 2$

Arises also in

$$
-\Delta_{n} u+|\nabla u|^{n-2} \operatorname{Ric}(\nabla u, \nabla u)=\left[|\nabla u|^{n-2} \operatorname{Ric}(\nabla u, \nabla u)\right]_{g} e^{n u}
$$

see

- S. Ma, J. Qing, Calc. Var '21 \& Adv. Math. '22

The quasilinear case

Question: $n>2$?

The quasilinear case

Question: $n>2$? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

The quasilinear case

Question: $n>2$? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 1 (P.E., F. Morlando, JMPA '15)

Let u_{k} be solutions of (P) with V_{k} satisfying (V) and

$$
\sup _{k \in \mathbb{N}} \int_{\Omega} e^{u_{k}}<+\infty \quad \& \quad \sup _{k \in \mathbb{N}} \operatorname{osc}_{\partial \Omega} u_{k}<+\infty
$$

The quasilinear case

Question: $n>2$? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 1 (P.E., F. Morlando, JMPA '15)

Let u_{k} be solutions of (P) with V_{k} satisfying (V) and

$$
\sup _{k \in \mathbb{N}} \int_{\Omega} e^{u_{k}}<+\infty \quad \& \quad \sup _{k \in \mathbb{N}} \operatorname{osc} \partial \Omega u_{k}<+\infty
$$

Up to subsequences, either (i) u_{k}^{+}is uniformly bounded in $L_{\text {loc }}^{\infty}(\Omega)$

The quasilinear case

Question: $n>2$? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 1 (P.E., F. Morlando, JMPA '15)

Let u_{k} be solutions of (P) with V_{k} satisfying (V) and

$$
\sup _{k \in \mathbb{N}} \int_{\Omega} e^{u_{k}}<+\infty \quad \& \quad \sup _{k \in \mathbb{N}} \operatorname{osc}_{\partial \Omega} u_{k}<+\infty
$$

Up to subsequences, either (i) u_{k}^{+}is uniformly bounded in $L_{\text {loc }}^{\infty}(\Omega)$ or (ii) \exists a finite blow-up set $\emptyset \neq S \subset \bar{\Omega}$ s.t. $u_{k} \rightarrow-\infty$ in $L_{\text {loc }}^{\infty}(\Omega \backslash S)$ and $V_{k} e^{u_{k}} \rightharpoonup c_{n} \omega_{n} \sum_{p \in S \cap \Omega} \delta_{p}$ in Ω as $k \rightarrow+\infty$

The quasilinear case

Question: $n>2$? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 1 (P.E., F. Morlando, JMPA '15)

Let u_{k} be solutions of (P) with V_{k} satisfying (V) and

$$
\sup _{k \in \mathbb{N}} \int_{\Omega} e^{u_{k}}<+\infty \quad \& \quad \sup _{k \in \mathbb{N}} \operatorname{osc}_{\partial \Omega} u_{k}<+\infty
$$

Up to subsequences, either (i) u_{k}^{+}is uniformly bounded in $L_{\text {loc }}^{\infty}(\Omega)$ or (ii) \exists a finite blow-up set $\emptyset \neq S \subset \bar{\Omega}$ s.t. $u_{k} \rightarrow-\infty$ in $L_{\text {loc }}^{\infty}(\Omega \backslash S)$ and $V_{k} e^{u_{k}} \rightharpoonup c_{n} \omega_{n} \sum_{p \in S \cap \Omega} \delta_{p}$ in Ω as $k \rightarrow+\infty$
If osc $\partial \Omega u_{k}=0$, (i)-(ii) do hold in $\bar{\Omega}$ with $S \subset \Omega$ in case (ii).

The quasi-linear MF equation

For $\lambda \notin c_{n} \omega_{n} \mathbb{N}$ Theorem 1 gives compactness for solutions of

$$
-\Delta_{n} u=\lambda \frac{V e^{u}}{\int_{\Omega} V e^{u}} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \quad(P)_{\lambda}
$$

The quasi-linear MF equation

For $\lambda \notin c_{n} \omega_{n} \mathbb{N}$ Theorem 1 gives compactness for solutions of

$$
\begin{equation*}
-\Delta_{n} u=\lambda \frac{V e^{u}}{\int_{\Omega} V e^{u}} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

Theorem 2 (P.E., F. Morlando, JMPA '15)
If $\mathfrak{B}_{m}(\Omega)=\left\{\sum_{i=1}^{m} t_{i} \delta_{p_{i}}: t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1, p_{i} \in \Omega\right\}$ is non
contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_{n} \omega_{n}(m, m+1)$

The quasi-linear MF equation

For $\lambda \notin c_{n} \omega_{n} \mathbb{N}$ Theorem 1 gives compactness for solutions of

$$
\begin{equation*}
-\Delta_{n} u=\lambda \frac{V e^{u}}{\int_{\Omega} V e^{u}} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

Theorem 2 (P.E., F. Morlando, JMPA '15)
If $\mathfrak{B}_{m}(\Omega)=\left\{\sum_{i=1}^{m} t_{i} \delta_{p_{i}}: t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1, p_{i} \in \Omega\right\}$ is non
contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_{n} \omega_{n}(m, m+1)$

- W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
- Z. Djadli, A. Malchiodi, Ann. Math. '08
- Z. Djadli, Commun. Contemp. Math. '08

The quasi-linear MF equation

For $\lambda \notin c_{n} \omega_{n} \mathbb{N}$ Theorem 1 gives compactness for solutions of

$$
\begin{equation*}
-\Delta_{n} u=\lambda \frac{V e^{u}}{\int_{\Omega} V e^{u}} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

Theorem 2 (P.E., F. Morlando, JMPA '15)
If $\mathfrak{B}_{m}(\Omega)=\left\{\sum_{i=1}^{m} t_{i} \delta_{p_{i}}: t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1, p_{i} \in \Omega\right\}$ is non
contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_{n} \omega_{n}(m, m+1)$

- W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
- Z. Djadli, A. Malchiodi, Ann. Math. '08
- Z. Djadli, Commun. Contemp. Math. '08

Alternative approaches: via degree (blow-up analysis misses)

The quasi-linear MF equation

For $\lambda \notin c_{n} \omega_{n} \mathbb{N}$ Theorem 1 gives compactness for solutions of

$$
\begin{equation*}
-\Delta_{n} u=\lambda \frac{V e^{u}}{\int_{\Omega} V e^{u}} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

Theorem 2 (P.E., F. Morlando, JMPA '15)
If $\mathfrak{B}_{m}(\Omega)=\left\{\sum_{i=1}^{m} t_{i} \delta_{p_{i}}: \quad t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1, p_{i} \in \Omega\right\}$ is non
contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_{n} \omega_{n}(m, m+1)$

- W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
- Z. Djadli, A. Malchiodi, Ann. Math. '08
- Z. Djadli, Commun. Contemp. Math. '08

Alternative approaches: via degree (blow-up analysis misses); via perturbative methods (difficult due to nonlinearity of Δ_{n})

The limiting problem

Aim: classify solutions of

$$
-\Delta_{n} U=e^{U} \text { in } \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{U}<\infty \quad(P)_{\infty}
$$

The limiting problem

Aim: classify solutions of

$$
-\Delta_{n} U=e^{U} \text { in } \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{U}<\infty \quad(P)_{\infty}
$$

Scaling and translation invariance \Rightarrow explicit solutions $U_{\lambda, p}$:

$$
U_{\lambda, p}(x)=\log \frac{c_{n} \lambda^{n}}{\left(1+\lambda^{\frac{n}{n-1}}|x-p|^{\frac{n}{n-1}}\right)^{n}} \quad \lambda>0, p \in \mathbb{R}^{n}
$$

The limiting problem

Aim: classify solutions of

$$
-\Delta_{n} U=e^{U} \text { in } \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{U}<\infty \quad(P)_{\infty}
$$

Scaling and translation invariance \Rightarrow explicit solutions $U_{\lambda, p}$:

$$
U_{\lambda, p}(x)=\log \frac{c_{n} \lambda^{n}}{\left(1+\lambda^{\frac{n}{n-1}}|x-p|^{\frac{n}{n-1}}\right)^{n}} \quad \lambda>0, p \in \mathbb{R}^{n}
$$

Quantization: $\int_{\mathbb{R}^{n}} e^{U_{\lambda, p}}=c_{n} \omega_{n}, c_{n}=n\left(\frac{n^{2}}{n-1}\right)^{n-1}$

The limiting problem

Aim: classify solutions of

$$
-\Delta_{n} U=e^{U} \text { in } \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{U}<\infty \quad(P)_{\infty}
$$

Scaling and translation invariance \Rightarrow explicit solutions $U_{\lambda, p}$:

$$
U_{\lambda, p}(x)=\log \frac{c_{n} \lambda^{n}}{\left(1+\lambda^{\frac{n}{n-1}}|x-p|^{\frac{n}{n-1}}\right)^{n}} \quad \lambda>0, p \in \mathbb{R}^{n}
$$

Quantization: $\int_{\mathbb{R}^{n}} e^{U_{\lambda, p}}=c_{n} \omega_{n}, c_{n}=n\left(\frac{n^{2}}{n-1}\right)^{n-1}$

Theorem 3 (P.E., AIHP '18)

Any solution U of $(P)_{\infty}$ has the form $U_{\lambda, p}$. In particular $\int_{\mathbb{R}^{n}} e^{U}=c_{n} \omega_{n}$

The semilinear case $n=2$

Classification known since a long ago, proved in different ways:

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

The semilinear case $n=2$

Classification known since a long ago, proved in different ways:

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability \& the Liouville theorem in \mathbb{C}

The semilinear case $n=2$

Classification known since a long ago, proved in different ways:

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability \& the Liouville theorem in \mathbb{C}
Chen-Li approach: integral representation of U to deduce logarithmic behavior of U at ∞ in terms of $\int_{\mathbb{R}^{2}} e^{U}$

The semilinear case $n=2$

Classification known since a long ago, proved in different ways:

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability \& the Liouville theorem in \mathbb{C}
Chen-Li approach: integral representation of U to deduce logarithmic behavior of U at ∞ in terms of $\int_{\mathbb{R}^{2}} e^{U}$ $\& \int_{\mathbb{R}^{2}} e^{U} \geq 8 \pi$ via an isoperimetric argument

The semilinear case $n=2$

Classification known since a long ago, proved in different ways:

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability \& the Liouville theorem in \mathbb{C}
Chen-Li approach: integral representation of U to deduce logarithmic behavior of U at ∞ in terms of $\int_{\mathbb{R}^{2}} e^{U}$ \& $\int_{\mathbb{R}^{2}} e^{U} \geq 8 \pi$ via an isoperimetric argument \Rightarrow enough decay to carry out a simple MP approach

The quasilinear case $n>2$

Several difficulties:

- no integral representation for a solution U of $(P)_{\infty}$

The quasilinear case $n>2$

Several difficulties:

- no integral representation for a solution U of $(P)_{\infty}$
- the lack of comparison/maximum principles on thin strips makes difficult the moving plane method

The quasilinear case $n>2$

Several difficulties:

- no integral representation for a solution U of $(P)_{\infty}$
- the lack of comparison/maximum principles on thin strips
makes difficult the moving plane method
- $(P)_{\infty}$ is not invariant under Kelvin transform

The quasilinear case $n>2$

Several difficulties:

- no integral representation for a solution U of $(P)_{\infty}$
- the lack of comparison/maximum principles on thin strips makes difficult the moving plane method
- $(P)_{\infty}$ is not invariant under Kelvin transform

An alternative approach: via Pohozev identity in

- P.-L. Lions, Appl. Anal. ' 81
- S. Kesavan, F. Pacella, Appl. Anal. '94
- S. Chanillo, M. Kiessling, Geom. Funct. Anal. '95

Quantization and classification issues

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$
-\Delta_{n} \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}} \text { in } \mathbb{R}^{n} \backslash\{0\}, \int_{\mathbb{R}^{n}} \frac{e^{\hat{U}}}{|x|^{2 n}}<+\infty
$$

Quantization and classification issues

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$
-\Delta_{n} \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}} \text { in } \mathbb{R}^{n} \backslash\{0\}, \int_{\mathbb{R}^{n}} \frac{e^{\hat{U}}}{|x|^{2 n}}<+\infty
$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. 275 ('86)
fails in the limiting situation $F \in L^{1}$

Quantization and classification issues

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$
-\Delta_{n} \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}} \text { in } \mathbb{R}^{n} \backslash\{0\}, \int_{\mathbb{R}^{n}} \frac{e^{\hat{U}}}{|x|^{2 n}}<+\infty
$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. 275 ('86)
fails in the limiting situation $F \in L^{1} \Rightarrow-\Delta \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}}-\left(\int_{\mathbb{R}^{n}} e^{U}\right) \delta_{0}$ \& $\hat{U} \log$. behavior at 0

Quantization and classification issues

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$
-\Delta_{n} \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}} \text { in } \mathbb{R}^{n} \backslash\{0\}, \int_{\mathbb{R}^{n}} \frac{e^{\hat{U}}}{|x|^{2 n}}<+\infty
$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. 275 ('86)
fails in the limiting situation $F \in L^{1} \Rightarrow-\Delta \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}}-\left(\int_{\mathbb{R}^{n}} e^{U}\right) \delta_{0}$
\& \hat{U} log. behavior at $0 \Rightarrow$ classification by Pohozaev identity

Quantization and classification issues

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$
-\Delta_{n} \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}} \text { in } \mathbb{R}^{n} \backslash\{0\}, \int_{\mathbb{R}^{n}} \frac{e^{\hat{U}}}{|x|^{2 n}}<+\infty
$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. 275 ('86)
fails in the limiting situation $F \in L^{1} \Rightarrow-\Delta \hat{U}=\frac{e^{\hat{U}}}{|x|^{2 n}}-\left(\int_{\mathbb{R}^{n}} e^{U}\right) \delta_{0}$
\& \hat{U} log. behavior at $0 \Rightarrow$ classification by Pohozaev identity
Mass quantization for singular n-Liouville equation:

$$
-\Delta_{n} U=e^{U}-\gamma \delta_{0} \text { in } \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{U}<+\infty
$$

- P. E., Calc. Var. PDE '21 [if $n \geq 2$]
- J. Prajapat, G. Tarantello, Proc. Edinburgh '01 [if $n=2$]

Interior blow-up

Dropping sup osc ${ }_{\partial \Omega} u_{k}<+\infty$, in general concentration masses $k \in \mathbb{N}$
satisfy $\alpha_{p} \geq n^{n} \omega_{n}$

Interior blow-up

Dropping sup osc $\partial_{\Omega} u_{k}<+\infty$, in general concentration masses $k \in \mathbb{N}$
satisfy $\alpha_{p} \geq n^{n} \omega_{n}$
If $0 \leq V_{k} \rightarrow V$ in $C_{\text {loc }}(\Omega)$, then $\alpha_{p} \geq c_{n} \omega_{n}$ thanks to mass
quantization for the limiting problem

Interior blow-up

Dropping sup osc $\partial_{\Omega} u_{k}<+\infty$, in general concentration masses

$$
k \in \mathbb{N}
$$

satisfy $\alpha_{p} \geq n^{n} \omega_{n}$
If $0 \leq V_{k} \rightarrow V$ in $C_{\text {loc }}(\Omega)$, then $\alpha_{p} \geq c_{n} \omega_{n}$ thanks to mass
quantization for the limiting problem
In the two-dimensional case $\alpha_{p} \in 8 \pi \mathbb{N}$ is shown in

- Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94
based on a Harnack inequality of sup + inf type
- I. Shafrir, C.R.A.S. '92
through an isoperimetric argument

sup + inf Inequalities

The main point comes from the "linear theory": if $-\Delta_{n} u=f$ in Ω and $B_{2 \delta}(x) \subset \Omega$, then

$$
u(x)-\inf _{\Omega} u \geq c_{1} \int_{0}^{\delta}\left[\int_{B_{t}(x)} f\right]^{\frac{1}{n-1}} \frac{d t}{t}
$$

sup + inf Inequalities

The main point comes from the "linear theory": if $-\Delta_{n} u=f$ in Ω and $B_{2 \delta}(x) \subset \Omega$, then

$$
\begin{gathered}
u(x)-\inf _{\Omega} u \geq c_{1} \int_{0}^{\delta}\left[\int_{B_{t}(x)} f\right]^{\frac{1}{n-1}} \frac{d t}{t} \\
\text { If } c_{1}=\left(n \omega_{n}\right)^{-\frac{1}{n-1}}, \operatorname{set} \mu_{k}=e^{-\frac{u_{k}\left(x_{k}\right)}{n}} \text { with } u_{k}\left(x_{k}\right)=\max _{k} u_{k}: \\
u_{k}\left(x_{k}\right)-\inf _{\Omega} u_{k} \geq\left[\frac{1}{n \omega_{n}} \int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}}\right]^{\frac{1}{n-1}} \log \frac{\delta}{R \mu_{k}}
\end{gathered}
$$

sup + inf Inequalities

The main point comes from the "linear theory": if $-\Delta_{n} u=f$ in Ω and $B_{2 \delta}(x) \subset \Omega$, then

$$
\begin{gathered}
u(x)-\inf _{\Omega} u \geq c_{1} \int_{0}^{\delta}\left[\int_{B_{t}(x)} f\right]^{\frac{1}{n-1}} \frac{d t}{t} \\
\text { If } c_{1}=\left(n \omega_{n}\right)^{-\frac{1}{n-1}}, \operatorname{set} \mu_{k}=e^{-\frac{u_{k}\left(x_{k}\right)}{n}} \text { with } u_{k}\left(x_{k}\right)=\max _{k} u_{k}: \\
u_{k}\left(x_{k}\right)-\inf _{\Omega} u_{k} \geq\left[\frac{1}{n \omega_{n}} \int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}}\right]^{\frac{1}{n-1}} \log \frac{\delta}{R \mu_{k}} \\
\Rightarrow u_{k}\left(x_{k}\right)-\inf _{\Omega} u_{k} \geq\left(\frac{n}{n-1}-\delta\right) u_{k}\left(x_{k}\right)+C
\end{gathered}
$$

for all δ small in view of $\int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$

sup + inf Inequalities

The main point comes from the "linear theory": if $-\Delta_{n} u=f$ in Ω and $B_{2 \delta}(x) \subset \Omega$, then

$$
\begin{gathered}
u(x)-\inf _{\Omega} u \geq c_{1} \int_{0}^{\delta}\left[\int_{B_{t}(x)} f f^{\frac{1}{n-1}} \frac{d t}{t}\right. \\
\text { If } c_{1}=\left(n \omega_{n}\right)^{-\frac{1}{n-1}} \text {, set } \mu_{k}=e^{-\frac{u_{k}\left(x_{k}\right)}{n}} \text { with } u_{k}\left(x_{k}\right)=\max _{k} u_{k}: \\
u_{k}\left(x_{k}\right)-\inf _{\Omega} u_{k} \geq\left[\frac{1}{n \omega_{n}} \int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}}\right]^{\frac{1}{n-1}} \log \frac{\delta}{R \mu_{k}} \\
\Rightarrow u_{k}\left(x_{k}\right)-\inf _{\Omega} u_{k} \geq\left(\frac{n}{n-1}-\delta\right) u_{k}\left(x_{k}\right)+C
\end{gathered}
$$

for all δ small in view of $\int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$ yielding

Theorem 4 (P.E., M. Lucia, preprint)

Given $K \subset \Omega$ compact and $C_{1}<\frac{1}{n-1}$, there exists $C_{2}>0$ so that

$$
C_{1} \max _{K} u_{k}+\inf _{\Omega} u_{k} \leq C_{2}
$$

About c_{1}

The constant c_{1} is not explicit but $0<c_{1} \leq\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, see

- T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

About c_{1}

The constant c_{1} is not explicit but $0<c_{1} \leq\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, see

- T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

If $f \geq 0$ is radial in $B_{\delta}(x)$, then by comparison

$$
u(x)-\inf _{\Omega} u \geq u(x)-\inf _{B_{\delta}(x)} u \geq \int_{0}^{\delta}\left(\frac{1}{n \omega_{n}} \int_{B_{t}(x)} f\right)^{\frac{1}{n-1}} \frac{d t}{t}
$$

About c_{1}

The constant c_{1} is not explicit but $0<c_{1} \leq\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, see

- T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

If $f \geq 0$ is radial in $B_{\delta}(x)$, then by comparison

$$
u(x)-\inf _{\Omega} u \geq u(x)-\inf _{B_{\delta}(x)} u \geq \int_{0}^{\delta}\left(\frac{1}{n \omega_{n}} \int_{B_{t}(x)} f\right)^{\frac{1}{n-1}} \frac{d t}{t}
$$

$\underline{n=2}$: by Green's representation formula for all $y \in B_{\delta}(x)$

$$
u(y)-\inf _{B_{\delta}(x)} u \geq \int_{B_{\delta}(x)}\left[-\frac{1}{2 \pi} \log |y-z|+H(z, y)\right] f(z) d z
$$

About c_{1}

The constant c_{1} is not explicit but $0<c_{1} \leq\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, see

- T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

If $f \geq 0$ is radial in $B_{\delta}(x)$, then by comparison

$$
u(x)-\inf _{\Omega} u \geq u(x)-\inf _{B_{\delta}(x)} u \geq \int_{0}^{\delta}\left(\frac{1}{n \omega_{n}} \int_{B_{t}(x)} f\right)^{\frac{1}{n-1}} \frac{d t}{t}
$$

$\underline{n=2}$: by Green's representation formula for all $y \in B_{\delta}(x)$

$$
\begin{aligned}
& u(y)-\inf _{B_{\delta}(x)} u \geq \int_{B_{\delta}(x)}\left[-\frac{1}{2 \pi} \log |y-z|+H(z, y)\right] f(z) d z \\
\Rightarrow & u(x)-\inf _{\Omega} u \geq-\frac{1}{2 \pi} \int_{B_{\delta}(x)} \log \frac{|z-x|}{\delta} f(z) d z \\
= & -\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \int_{0}^{\delta} t \log \frac{t}{\delta} f(t \theta) d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \int_{0}^{\delta} \frac{d t}{t} \int_{0}^{t} r f(r \theta) d r \\
= & \frac{1}{2 \pi} \int_{0}^{\delta}\left[\int_{B_{t}(x)} f\right] \frac{d t}{t}
\end{aligned}
$$

General case

Since in general $c_{1}<\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

General case

Since in general $c_{1}<\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

- linear theory still implies finite mass for the limiting profiles

General case

Since in general $c_{1}<\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

- linear theory still implies finite mass for the limiting profiles
- since $\int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$, use $u_{k}(x)-\inf _{\Omega} u_{k} \geq w_{k}$, where

$$
\begin{cases}-\Delta_{n} w_{k}=V_{k} e^{u_{k}} \chi_{B_{R \mu_{k}}\left(x_{k}\right)} & \text { in } B_{\delta}\left(x_{k}\right) \\ w_{k}=0 & \text { on } \partial B_{\delta}\left(x_{k}\right)\end{cases}
$$

General case

Since in general $c_{1}<\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

- linear theory still implies finite mass for the limiting profiles
- since $\int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$, use $u_{k}(x)-\inf _{\Omega} u_{k} \geq w_{k}$, where

$$
\begin{cases}-\Delta_{n} w_{k}=V_{k} e^{u_{k}} & \chi_{B_{R \mu_{k}}\left(x_{k}\right)} \\ w_{k}=0 & \text { in } B_{\delta}\left(x_{k}\right) \\ \text { on } \partial B_{\delta}\left(x_{k}\right)\end{cases}
$$

- since $V_{k} e^{u_{k}} \sim V(p) e^{U_{x_{k}, \mu_{k}}-1}$ in $B_{R \mu_{k}}\left(x_{k}\right)$ with $p=\lim _{k \rightarrow+\infty} x_{k}$, further compare w_{k} from below with the radial case where $c_{1}=\left(n \omega_{n}\right)^{-\frac{1}{n-1}}$

Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on $h_{k} e^{u_{k}}$:

$$
V_{k} e^{u_{k}} \leq C \frac{\mu_{k}^{\alpha}}{\left|x-x_{k}\right|^{n+\alpha}} \quad \text { in } B_{\frac{d_{k}}{2}}\left(x_{k}\right) \backslash B_{R \mu_{k}}\left(x_{k}\right)
$$

for some $\alpha>0$, where d_{k} is the distance of x_{k} from other blow-up sequences

Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on $h_{k} e^{u_{k}}$:

$$
V_{k} e^{u_{k}} \leq C \frac{\mu_{k}^{\alpha}}{\left|x-x_{k}\right|^{n+\alpha}} \quad \text { in } B_{\frac{d_{k}}{2}}\left(x_{k}\right) \backslash B_{R \mu_{k}}\left(x_{k}\right)
$$

for some $\alpha>0$, where d_{k} is the distance of x_{k} from other blow-up sequences

By $\int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$ and decay estimates one gets that $\int_{B_{\frac{d_{k}}{2}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$

Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on $h_{k} e^{u_{k}}$:

$$
V_{k} e^{u_{k}} \leq C \frac{\mu_{k}^{\alpha}}{\left|x-x_{k}\right|^{n+\alpha}} \quad \text { in } B_{\frac{d_{k}}{2}}\left(x_{k}\right) \backslash B_{R \mu_{k}}\left(x_{k}\right)
$$

for some $\alpha>0$, where d_{k} is the distance of x_{k} from other blow-up sequences

By $\int_{B_{R \mu_{k}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$ and decay estimates one gets that
$\int_{B_{\frac{d_{k}}{2}}\left(x_{k}\right)} V_{k} e^{u_{k}} \sim c_{n} \omega_{n}$
Following clusters by clusters, rather standard to show that

Theorem 5 (P.E., M. Lucia, preprint)

$$
\alpha_{p} \in c_{n} \omega_{n} \mathbb{N}
$$

extending the two-dimensional result in

- Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94

Open questions

The decay exponent is in general with $\alpha<\frac{n}{n-1}$. When blow-up is simple, is it possible to reach $\alpha=\frac{n}{n-1}$? Equivalent to

$$
V_{k} e^{u_{k}} \leq C \frac{\mu_{k}^{\frac{n}{n-1}}}{\left|x-x_{k}\right|^{\frac{n^{2}}{n-1}}} \quad \text { in } B_{\delta}(p) \backslash B_{R \mu_{k}}\left(x_{k}\right)
$$

Open questions

The decay exponent is in general with $\alpha<\frac{n}{n-1}$. When blow-up is simple, is it possible to reach $\alpha=\frac{n}{n-1}$? Equivalent to

$$
V_{k} e^{u_{k}} \leq C \frac{\mu_{k}^{\frac{n}{n-1}}}{\left|x-x_{k}\right|^{\frac{n^{2}}{n-1}}} \quad \text { in } B_{\delta}(p) \backslash B_{R \mu_{k}}\left(x_{k}\right)
$$

The answer is related to the following fundamental expansion

$$
u_{k}-U_{x_{k}, \mu_{k}^{-1}}=O(1) \quad \text { in } B_{\delta}(p)
$$

and optimal constant $C_{1}=\frac{1}{n-1}$ in the sup + inf inequality, see

- D. Bartolucci, C.C. Chen, C.S. Lin, G. Tarantello, Comm. PDE '04
- H. Brézis, Y.Y. Li, I. Shafrir, JFA '93
- Y.Y. Li, Comm. Math. Phys. '99

Thanks for your attention

