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The intermediate Schouten curvature tensor

In conformal geometry one often encounters the Schouten
curvature tensor on manifolds (Mn, g)

A =
1

n − 2
(Ric − 1

2(n − 1)
R g)

where Ric stands for the Ricci curvature tensor and R = TrgRic
is the scalar curvature. For a good reason, one uses notation
J = R

2(n−1) . In this talk, we want to call the attention to the
intermediate Schouten curvature tensor

A(p) = (p − 2)A + J g

for p ∈ (1,∞).
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The transformation under conformal changes

For p ∈ (1,n) and ḡ = u
4(p−1)

n−p g,

A(p)[ḡ] = A(p)−2(p − 1)

n − p

[
∆u
u

g + (p − 2)
D2u

u

]
+

2(p − 1)

n − p
[(1− (n + p − 4)

p − 1
n − p

)
|∇u|2

u2 g

+(p − 2)(1 +
2(p − 1)

n − p
)
∇u ⊗∇u

u2 ].
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p-Laplace equations in conformal geometry

Multiplying u|∇u|p−2 ui
|∇u|

uj
|∇u| to and summing up on both sides,

we arrive at the p-Laplace equations in conformal geometry

−∆pu +
n − p

2(p − 1)
S(p)(∇u)u =

n − p
2(p − 1)

(S(p)(∇u))[ḡ]uq

where ḡ = u
4(p−1)

n−p g,

S(p)(∇u) = |∇u|p−2A(p)(∇u), q =
2p(p − 1)

n − p
+ 1,

and A(p)(∇u) is the A(p) curvature in the direction ∇u. Recall

∆pu = div(|∇u|p−2∇u).
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p ∈ [2,n]

For p = 2, the intermediate Schouten curvature goes back to
the scalar curvature and the p-Laplace equation goes back to
the scalar curvature equation

−∆u +
n − 2

4(n − 1)
Ru =

n − 2
4(n − 1)

R[ḡ]u
n+2
n−2

where ḡ = u
4

n−2 g. For p = n, the intermediate Schouten
curvature becomes the Ricci and we recover the n-Laplace
equation

−∆nφ+ |∇φ|n−2Ric(∇φ) = (|∇φ|n−2Ric(∇φ))[ḡ]enφ

where ḡ = e2φg, which was recently introduced.
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p ∈ (n,∞]

For p ∈ (n,∞), the p-Laplace equation for the intermediate
Schouten curvature still holds

−∆pu +
n − p

2(p − 1)
S(p)(∇u)u =

n − p
2(p − 1)

(S(p)(∇u))[ḡ]uq

for ḡ = u−
4(p−1)

p−n g and q = −2p(p−1)
p−n + 1 < 0. And, when taking

p →∞, we arrive at the infinite Laplace equation on Schouten
curvature A

−∆∞u − 1
2
|∇u|2A(∇u)u = −1

2
(|∇u|2A(∇u))[ḡ]u−7

for ḡ = u−4 g. Recall ∆∞u = uijuiuj .
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Positivity cones
For the curvature tensor A(p) we consider the cones

A(p) = {λ ∈ Rn : min
k
{(p − 2)λk +

n∑
i=1

λi} ≥ 0}

Recall, for fully nonlinear equations, we often consider

Γk = {λ ∈ Rn : σ1(λ) ≥ 0, σ2(λ) ≥ 0, · · · , σk (λ) ≥ 0}.

To apply the Böchner formula on r -forms on locally conformally
flat n-manifolds, we consider, for r ≤ n

2 ,

R(r) = {λ ∈ Rn : min{(n − r)
r∑

k=1

λik + r
n∑

k=r+1

λik} ≥ 0}
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Properties of cone A(p)

Lemma

A(p2) ⊂ A(p1) for p1 < p2;
A(2) = {(λ1, λ2, · · · , λn) ∈ Rn :

∑n
i=1 λi ≥ 0} = Γ1 is the

baseline;
A(n) stands for Ric ≥ 0 when (λ1, λ2, · · · , λn) represents
the Schouten curvature tensor A;
A(p) approaches the nonnegative cone Γn as p →∞.

Therefore, we define, for any cone Γ in between Γ1 and Γn,

pΓ = max{p : Γ ⊂ A(p)}.
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cone comparisons

Lemma

pΓk =
n(k − 1)

n − k
+ 2 ∈ [2,n]

for 1 ≤ k ≤ n
2 and p

Γ
n
2

= n.

We also observe
Lemma

R(s) ⊂ R(r) for 0 < s ≤ r ≤ n
2

and
A(p) ⊂ R(r) for

n − p
2

+ 1 ≤ r ≤ n
2
.

Obviously A(2) = R( n
2 ) = Γ1 is the baseline.
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Vanishing of Betti numbers

Theorem (Liu-Ma-Q-Zhong 2023)

Let (Mn,g) be a compact locally conformally flat manifold with
A(p) ≥ 0 for p ∈ [2,n). Suppose that the scalar curvature is
positive somewhere on Mn. Then, for n−p

2 + 1 ≤ k ≤ n+p
2 − 1,

the Betti numbers βk = 0, unless (M̃n,g)
iso∼ Hr × Sn−r .

The Böchner formula on r -forms (cf. Guan-Lin-Wang 2005)

∆ω = ∇∗∇ω +R(ω)

R(ω) = ((n − r)
r∑

i=1

λi + r
n∑

i=r+1

λi)ω

for ω = ω1 ∧ ω2 · · · ∧ ωr and {ωk} is the orthonormal basis under
which A is diagonalized on locally conformally flat n-manifolds.
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Huber’s theorem
Suppose that (M2,g) is a complete surface and that∫

M
K−dvol <∞.

Then M is a closed surface with finitely many points removed.

On the analysis side, Huber’s theorem includes the statement:

For a domain Ω in a surface (M,g) and a compact subset
S ⊂ Ω, if there is a conformal metric ḡ = e2ug on Ω \ S, which
is complete near S and satisfies∫

Ω
(K−dvol)[ḡ] <∞.

Then S consists of finitely many points.
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The development map

Suppose that (Mn,g) is a locally conformally flat manifold and
that the conformal immersion from a covering (M̃n, g̃) to (Sn,gS)
is injective.

M̃n Sn

Mn

φ

π

Then, on φ(M̃n) ⊂ Sn, there is a complete conformal metric
g̃ = e2ugS. One is interested in the size of Sn \ φ(M̃n), or
specifically, the Hausdorff dimension of Sn \ φ(M̃n). Smaller the
Hausdorff dimension is, "less" the topology of Mn has. And,
more "positive" the curvature is, smaller the Hausdorff
dimension is.
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p-capacity

Definition
For a compact subset K of a domain Ω in Rn, we define

capp(K ,Ω) = inf{
∫

Ω
|∇u|pdx : u ∈ C∞0 (Ω) and u ≥ 1 on K}.

Then p-capacity for arbitrary subset E of Ω is

capp(E ,Ω) = inf
E⊂G & G⊂Ω open

sup
K⊂G compact

capp(K ,Ω).
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p-thineness

Definition
A set E ⊂ Rn is said to be p-thin for p ∈ (1,n) at x0 ∈ Rn if∑∞

i=1
capp(E∩ωi (x0),Ωi (x0))

capp(∂B(x0,2−i ),B(x0,2−i+1))
< +∞.

E is said to be n-thin at x0 ∈ Rn if∑∞
i=1 in−1 capn(E ∩ ωi(x0),Ωi(x0)) < +∞.

Lemma
Suppose E is p-thin at x0 for p ∈ (1,n). Then there is a ray from
x0 that avoids E in some neighborhhod of x0.
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The Wolff potential and p-Laplace equation

For a nonnegative Radon measure µ on a bounded domain
Ω ⊂ Rn and p ∈ (1,n], let

Wµ
1,p(x , r) =

∫ r

0
(
µ(B(x0, t))

tn−p )
1

p−1
dt
t

Theorem (Kilpeläinen and Malý 1994)
Suppose that u is a nonnegative p-superharmonic function
satisfying −∆pu = µ. Then

c1Wµ
1,p(x , r) ≤ u(x) ≤ c2( inf

B(x ,r)
u + Wµ

1,p(x ,2r))

for some constants c1(n,p) and c2(n,p) for p ∈ (1,n].
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The asymptotic behavior

Theorem (Liu-Ma-Q-Zhong 2023)

Let µ be a nonnegative finite Radon measure in Ω and
p ∈ (1,n], and let B(x0,3r0) ⊂ Ω. Then there is a subset E that
is p-thin at x0 such that

lim
x→x0 and x /∈E

|x − x0|
n−p
p−1 Wµ

1,p(x , r0) =
p − 1
n − p

µ({x0})
1

p−1

for p ∈ (1,n). Similarly, there is a subset E that is n-thin at x0
such that

lim
x→x0 and x /∈E

Wµ
1,n(x , r0)

log 1
|x−x0|

= µ({x0})
1

n−1 .
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The improved asymptotic behavior

Theorem (Liu-Ma-Q-Zhong 2023)

Suppose µ is a nonnegative finite Radon measure in Ω.
Assume that, for a point x0 ∈ Ω and some number
m ∈ (0,n − p),

µ(B(x0, t)) ≤ Ctm

for all t ∈ (0,3r0) with B(x0,3r0) ⊂ Ω. Then, for ε > 0, there are
a subset E ⊂ Ω, which is p-thin at x0, and a constant C > 0
such that

Wµ
1,p(x , r0) ≤ C|x − x0|

− n−p−m+ε
p−1 for all x ∈ Ω\E

for p ∈ [2,n)
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Asymptotic behavior at singularities

Theorem (Liu-Ma-Q-Zhong 2023)

Suppose that u is a nonnagetive p-superharmonic function in
Ω ⊂ Rn for a nonnegative finite Radon measure on Ω and
p ∈ (1,n]. Then, for x0 ∈ Ω, there is a subset E that p-thin at x0
such that

lim
x→x0 and x /∈E

u(x)

Gp(x , x0)
= m ≥ 0.

Moreover u(x) ≥ mGp(x , x0)− c0 for some c0 and all x in a
neighborhood of x0, where

Gp(x , x0) =

{
|x − x0|

− n−p
p−1 when p ∈ (1,n)

− log |x − x0| when p = n.
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Improved estimates on the asymptotic

Corollary
Suppose u is a nonnegative p-superharmonic function
satisfying −∆pu = µ for a nonnegative finite Radon measure in
Ω. Assume that, for a point x0 ∈ Ω and some number
m ∈ (0,n − p),

µ(B(x0, t)) ≤ Ctm

for all t ∈ (0,3r0) with B(x0,3r0) ⊂ Ω. Then, for ε > 0, there are
a subset E ⊂ Ω, which is p-thin at x0, and a constant C > 0
such that

u(x) ≤ C|x − x0|
− n−p−m+ε

p−1 for all x ∈ Ω\E

for p ∈ [2,n)
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A generalized Lebesgue Theorem

Lemma (Kpata 2019) Let µ be a nonnegative Radon measure
on a complete Riemannian manifold (Mn,g) and let

G∞d = {x ∈ Mn : lim sup
r→0

r−dµ(Br (x)) = +∞}

for any d ∈ [0,n]. Then

Hd (G∞d ) = 0

where Hd is the Hausdorff measure of dimension d .
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On Hausdorff dimensions and consequences

Theorem (Liu-Ma-Q-Zhong 2023)

Suppose that S is a closed subset of the sphere Sn. And
suppose that there is a metric ḡ on Sn \ S that is conformal to
the standard round metric gS. Assume that it is geodesically
complete near S and that A(p)[ḡ] ≥ 0 for some p ∈ [2,n). Then

dimH(S) ≤ n − p
2

.

Corollary

Suppose that (Mn,g) is locally conformally flat with A(p) ≥ 0 for
p ∈ [2,n). Then, for 1 < k < n+p

2 − 1, the homotopy groups
πk (Mn) are trivial.
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On a class of fully nonlinear equations

Corollary (Extension of Labutin 2002)

Suppose that u is nonnegative and u ∈ C2(Ω \S) for a compact
S ⊂ Ω ⊂ Rn. Assume limx→S u(x) =∞, and −λ(D2u(x)) ∈ Γk

for 1 ≤ k ≤ n
2 . Then, for x0 ∈ S, there is E that is pΓk -thin at x0

lim
x→x0 and x /∈E

u(x)

Γk (x , x0)
= m ≥ 0

Moreover u(x) ≥ mΓk (x , x0)− c0 in some neighborhood of x0.
Here pΓk = n(k−1)

n−k + 2 and

Γk (x , x0) =


|x − x0|2−

n
k when 1 ≤ k <

n
2

− log |x − x0| when k =
n
2
.
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Thank you!
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