p-Laplace equations, *p*-superharmonic functions, and their applications in conformal geometry

Jie Qing

University of California, Santa Cruz

International Doctoral Summer School in Conformal Geometry and Non-Local Operators IMAG, Granada, June 29, 2023

・ 同下 ・ ヨト ・ ヨ

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications *p*-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

・ロト ・ 理 ト ・ ヨ ト ・

The intermediate Schouten curvature tensor

In conformal geometry one often encounters the Schouten curvature tensor on manifolds (M^n, g)

$$A = \frac{1}{n-2} (Ric - \frac{1}{2(n-1)}Rg)$$

where *Ric* stands for the Ricci curvature tensor and $R = \text{Tr}_g Ric$ is the scalar curvature. For a good reason, one uses notation $J = \frac{R}{2(n-1)}$. In this talk, we want to call the attention to **the intermediate Schouten curvature tensor**

$$A^{(p)} = (p-2)A + Jg$$

for $p \in (1, \infty)$.

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications p-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

ヘロト 人間 ト ヘヨト ヘヨト

э

The transformation under conformal changes

For
$$p \in (1, n)$$
 and $\overline{g} = u^{\frac{4(p-1)}{n-p}}g$,

$$\begin{aligned} A^{(p)}[\bar{g}] &= A^{(p)} - \frac{2(p-1)}{n-p} \left[\frac{\Delta u}{u} g + (p-2) \frac{D^2 u}{u} \right] \\ &+ \frac{2(p-1)}{n-p} \left[(1 - (n+p-4) \frac{p-1}{n-p}) \frac{|\nabla u|^2}{u^2} g \right. \\ &+ (p-2)(1 + \frac{2(p-1)}{n-p}) \frac{\nabla u \otimes \nabla u}{u^2} \right]. \end{aligned}$$

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications p-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

・ロット (雪) () () () ()

p-Laplace equations in conformal geometry

Multiplying $u|\nabla u|^{p-2} \frac{u_i}{|\nabla u|} \frac{u_j}{|\nabla u|}$ to and summing up on both sides, we arrive at **the** *p***-Laplace equations** in conformal geometry

$$-\Delta_{p}u+rac{n-p}{2(p-1)}S^{(p)}(
abla u)u=rac{n-p}{2(p-1)}(S^{(p)}(
abla u))[ar{g}]u^{q}$$

where $\bar{g} = u^{\frac{4(p-1)}{n-p}}g$,

$$S^{(p)}(\nabla u) = |\nabla u|^{p-2} A^{(p)}(\nabla u), \quad q = \frac{2p(p-1)}{n-p} + 1,$$

and $A^{(p)}(\nabla u)$ is the $A^{(p)}$ curvature in the direction ∇u . Recall

$$\Delta_{p} u = \operatorname{div}(|\nabla u|^{p-2} \nabla u).$$

$p \in [2, n]$

For p = 2, the intermediate Schouten curvature goes back to the scalar curvature and the *p*-Laplace equation goes back to the scalar curvature equation

$$-\Delta u + \frac{n-2}{4(n-1)}Ru = \frac{n-2}{4(n-1)}R[\bar{g}]u^{\frac{n+2}{n-2}}$$

where $\bar{g} = u^{\frac{4}{n-2}}g$. For p = n, the intermediate Schouten curvature becomes the Ricci and we recover the *n*-Laplace equation

$$-\Delta_{n}\phi + |\nabla\phi|^{n-2}\textit{Ric}(\nabla\phi) = (|\nabla\phi|^{n-2}\textit{Ric}(\nabla\phi))[\bar{g}]e^{n\phi}$$

・ロト ・ 理 ト ・ ヨ ト ・

where $\bar{g} = e^{2\phi}g$, which was recently introduced.

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications *p*-Laplace equations for the intermediate Schouten curvature **The family of quasilinear elliptic equations** Intermediate positivity of the Schouten curvature tensor

ヘロト 人間 とくほ とくほ とう

1

$p \in (n, \infty]$

For $p \in (n, \infty)$, the *p*-Laplace equation for the intermediate Schouten curvature still holds

$$-\Delta_{p}u + \frac{n-p}{2(p-1)}S^{(p)}(\nabla u)u = \frac{n-p}{2(p-1)}(S^{(p)}(\nabla u))[\bar{g}]u^{q}$$

for $\bar{g} = u^{-\frac{4(p-1)}{p-n}}g$ and $q = -\frac{2p(p-1)}{p-n} + 1 < 0$. And, when taking $p \to \infty$, we arrive at the infinite Laplace equation on Schouten curvature *A*

$$-\Delta_{\infty}u - \frac{1}{2}|\nabla u|^2 A(\nabla u)u = -\frac{1}{2}(|\nabla u|^2 A(\nabla u))[\bar{g}]u^{-7}$$

for
$$\bar{g} = u^{-4} g$$
. Recall $\Delta_{\infty} u = u_{ij} u_i u_j$.

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications p-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

ヘロト ヘアト ヘビト ヘビト

Positivity cones

For the curvature tensor $A^{(p)}$ we consider the cones

$$\mathcal{A}^{(p)} = \{\lambda \in \mathbb{R}^n : \min_k \{(p-2)\lambda_k + \sum_{i=1}^n \lambda_i\} \ge 0\}$$

Recall, for fully nonlinear equations, we often consider

$$\Gamma^{k} = \{\lambda \in \mathbb{R}^{n} : \sigma_{1}(\lambda) \geq 0, \sigma_{2}(\lambda) \geq 0, \cdots, \sigma_{k}(\lambda) \geq 0\}.$$

To apply the Böchner formula on *r*-forms on locally conformally flat *n*-manifolds, we consider, for $r \leq \frac{n}{2}$,

$$\mathcal{R}^{(r)} = \{\lambda \in \mathbb{R}^n : \min\{(n-r)\sum_{k=1}^r \lambda_{i_k} + r\sum_{k=r+1}^n \lambda_{i_k}\} \ge 0\}$$

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications *p*-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

イロト 不得 とくほ とくほ とう

1

Properties of cone $\mathcal{A}^{(p)}$

Lemma

- $\mathcal{A}^{(p_2)} \subset \mathcal{A}^{(p_1)}$ for $p_1 < p_2$;
- $\mathcal{A}^{(2)} = \{(\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathbb{R}^n : \sum_{i=1}^n \lambda_i \ge \mathbf{0}\} = \Gamma^1$ is the baseline;
- A⁽ⁿ⁾ stands for Ric ≥ 0 when (λ₁, λ₂, · · · , λ_n) represents the Schouten curvature tensor A;
- $\mathcal{A}^{(p)}$ approaches the nonnegative cone Γ^n as $p \to \infty$.

Therefore, we define, for any cone Γ in between Γ^1 and Γ^n ,

$$p_{\Gamma} = \max\{p : \Gamma \subset \mathcal{A}^{(p)}\}.$$

Motivating problems in conformal geometry *p*-superharmonic functions and the Wolff potentials Applications *p*-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

cone comparisons

Lemma

$$\mathcal{P}_{\Gamma^k} = rac{n(k-1)}{n-k} + 2 \in [2, n]$$

for
$$1 \le k \le \frac{n}{2}$$
 and $p_{\Gamma^{\frac{n}{2}}} = n$.

We also observe

Lemma

$$\mathcal{R}^{(s)} \subset \mathcal{R}^{(r)}$$
 for $0 < s \le r \le \frac{n}{2}$

and

$$\mathcal{A}^{(p)} \subset \mathcal{R}^{(r)}$$
 for $\frac{n-p}{2} + 1 \le r \le \frac{n}{2}$

Obviously $A^{(2)} = \mathcal{R}^{(\frac{n}{2})} = \Gamma^1$ is the baseline.

Motivating problems in conformal geometry p-superharmonic functions and the Wolff potentials Applications *p*-Laplace equations for the intermediate Schouten curvature The family of quasilinear elliptic equations Intermediate positivity of the Schouten curvature tensor

Vanishing of Betti numbers

Theorem (Liu-Ma-Q-Zhong 2023)

Let (M^n, g) be a compact locally conformally flat manifold with $A^{(p)} \ge 0$ for $p \in [2, n]$. Suppose that the scalar curvature is positive somewhere on M^n . Then, for $\frac{n-p}{2} + 1 \le k \le \frac{n+p}{2} - 1$, the Betti numbers $\beta_k = 0$, unless $(\tilde{M}^n, g) \stackrel{iso}{\sim} \mathbb{H}^r \times \mathbb{S}^{n-r}$.

The Böchner formula on *r*-forms (cf. Guan-Lin-Wang 2005)

$$\Delta \omega = \nabla^* \nabla \omega + \mathcal{R}(\omega)$$

$$\mathcal{R}(\omega) = ((n-r)\sum_{i=1}^r \lambda_i + r\sum_{i=r+1}^n \lambda_i)\omega$$

for $\omega = \omega_1 \wedge \omega_2 \cdots \wedge \omega_r$ and $\{\omega_k\}$ is the orthonormal basis under which *A* is diagonalized on locally conformally flat *n*-manifolds.

Huber's theorem Locally conformally flat manifolds

ヘロト ヘワト ヘビト ヘビト

Huber's theorem

Suppose that (M^2, g) is a complete surface and that

 $\int_M K^- dvol < \infty.$

Then *M* is a closed surface with finitely many points removed.

On the analysis side, Huber's theorem includes the statement:

For a domain Ω in a surface (M, g) and a compact subset $S \subset \Omega$, if there is a conformal metric $\overline{g} = e^{2u}g$ on $\Omega \setminus S$, which is complete near *S* and satisfies

$$\int_{\Omega} (\mathsf{K}^- \mathsf{dvol})[ar{g}] < \infty.$$

Then S consists of finitely many points.

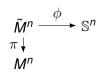
Huber's theorem Locally conformally flat manifolds

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

The development map

Suppose that (M^n, g) is a locally conformally flat manifold and that the conformal immersion from a covering (\tilde{M}^n, \tilde{g}) to $(\mathbb{S}^n, g_{\mathbb{S}})$ is injective.



Then, on $\phi(\tilde{M}^n) \subset \mathbb{S}^n$, there is a complete conformal metric $\tilde{g} = e^{2u}g_{\mathbb{S}}$. One is interested in the size of $\mathbb{S}^n \setminus \phi(\tilde{M}^n)$, or specifically, the Hausdorff dimension of $\mathbb{S}^n \setminus \phi(\tilde{M}^n)$. Smaller the Hausdorff dimension is, "less" the topology of M^n has. And, more "positive" the curvature is, smaller the Hausdorff dimension is.

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

ヘロト 人間 ト ヘヨト ヘヨト

э

p-capacity

Definition

For a compact subset *K* of a domain Ω in \mathbb{R}^n , we define

$$cap_p(K,\Omega) = \inf\{\int_{\Omega} |\nabla u|^p dx: \ u \in C_0^\infty(\Omega) \text{ and } u \geq 1 \text{ on } K\}.$$

Then *p*-capacity for arbitrary subset *E* of Ω is

$$cap_p(E,\Omega) = \inf_{E \subset G \& G \subset \Omega \text{ open }} \sup_{K \subset G \text{ compact }} cap_p(K,\Omega).$$

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

ヘロト ヘ戸ト ヘヨト ヘヨト

p-thineness

Definition

A set $E \subset \mathbb{R}^n$ is said to be *p*-thin for $p \in (1, n)$ at $x_0 \in \mathbb{R}^n$ if

$$\sum_{i=1}^{\infty} \frac{cap_{p}(E \cap \omega_{i}(x_{0}), \Omega_{i}(x_{0}))}{cap_{p}(\partial B(x_{0}, 2^{-i}), B(x_{0}, 2^{-i+1}))} < +\infty.$$

E is said to be *n*-thin at $x_0 \in \mathbb{R}^n$ if

$$\sum_{i=1}^{\infty} i^{n-1} \operatorname{cap}_n(E \cap \omega_i(x_0), \Omega_i(x_0)) < +\infty.$$

Lemma

Suppose *E* is *p*-thin at x_0 for $p \in (1, n)$. Then there is a ray from x_0 that avoids *E* in some neighborhhod of x_0 .

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

The Wolff potential and *p*-Laplace equation

For a nonnegative Radon measure μ on a bounded domain $\Omega \subset \mathbb{R}^n$ and $p \in (1, n]$, let

$$W_{1,p}^{\mu}(x,r) = \int_0^r (\frac{\mu(B(x_0,t))}{t^{n-p}})^{\frac{1}{p-1}} \frac{dt}{t}$$

Theorem (Kilpeläinen and Malý 1994)

Suppose that *u* is a nonnegative *p*-superharmonic function satisfying $-\Delta_p u = \mu$. Then

$$c_1 W^{\mu}_{1,p}(x,r) \leq u(x) \leq c_2(\inf_{B(x,r)} u + W^{\mu}_{1,p}(x,2r))$$

for some constants $c_1(n,p)$ and $c_2(n,p)$ for $p \in (1,n]$.

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

・ロット (雪) () () () ()

э

The asymptotic behavior

Theorem (Liu-Ma-Q-Zhong 2023)

Let μ be a nonnegative finite Radon measure in Ω and $p \in (1, n]$, and let $B(x_0, 3r_0) \subset \Omega$. Then there is a subset E that is p-thin at x_0 such that

$$\lim_{x \to x_0 \text{ and } x \notin E} |x - x_0|^{\frac{n-p}{p-1}} W^{\mu}_{1,p}(x, r_0) = \frac{p-1}{n-p} \mu(\{x_0\})^{\frac{1}{p-1}}$$

for $p \in (1, n)$. Similarly, there is a subset E that is n-thin at x_0 such that

$$\lim_{x \to x_0 \text{ and } x \notin E} \frac{W_{1,n}^{\mu}(x, r_0)}{\log \frac{1}{|x - x_0|}} = \mu(\{x_0\})^{\frac{1}{n-1}}.$$

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

ヘロト ヘアト ヘビト ヘビト

э

The improved asymptotic behavior

Theorem (Liu-Ma-Q-Zhong 2023)

Suppose μ is a nonnegative finite Radon measure in Ω . Assume that, for a point $x_0 \in \Omega$ and some number $m \in (0, n - p)$,

 $\mu(B(x_0,t)) \leq Ct^m$

for all $t \in (0, 3r_0)$ with $B(x_0, 3r_0) \subset \Omega$. Then, for $\varepsilon > 0$, there are a subset $E \subset \Omega$, which is p-thin at x_0 , and a constant C > 0 such that

$$W^{\mu}_{1,p}(x,\,r_0)\leq C|x-x_0|^{-rac{n-p-m+arepsilon}{p-1}}$$
 for all $x\in \Omegaackslash E$

for $p \in [2, n)$

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

Asymptotic behavior at singularities

Theorem (Liu-Ma-Q-Zhong 2023)

Suppose that u is a nonnagetive p-superharmonic function in $\Omega \subset \mathbb{R}^n$ for a nonnegative finite Radon measure on Ω and $p \in (1, n]$. Then, for $x_0 \in \Omega$, there is a subset E that p-thin at x_0 such that

$$\lim_{x\to x_0 \text{ and } x\notin E}\frac{u(x)}{G_p(x,x_0)}=m\geq 0.$$

Moreover $u(x) \ge mG_p(x, x_0) - c_0$ for some c_0 and all x in a neighborhood of x_0 , where

$$G_p(x, x_0) = \begin{cases} |x - x_0|^{-rac{n-p}{p-1}} & when \ p \in (1, n) \\ -\log |x - x_0| & when \ p = n. \end{cases}$$

ヘロア ヘビア ヘビア・

э

p-capacity and *p*-thinness The Wolff potential and key estimates Estimates on *p*-superharmonic functions

Improved estimates on the asymptotic

Corollary

Suppose u is a nonnegative p-superharmonic function satisfying $-\Delta_p u = \mu$ for a nonnegative finite Radon measure in Ω . Assume that, for a point $x_0 \in \Omega$ and some number $m \in (0, n - p)$,

 $\mu(B(x_0,t)) \leq Ct^m$

for all $t \in (0, 3r_0)$ with $B(x_0, 3r_0) \subset \Omega$. Then, for $\varepsilon > 0$, there are a subset $E \subset \Omega$, which is p-thin at x_0 , and a constant C > 0 such that

$$u(x) \leq C|x-x_0|^{-rac{n-p-m+arepsilon}{p-1}}$$
 for all $x \in \Omega ackslash E$

for $p \in [2, n)$

Motivating problems in conformal geometry *p*-superharmonic functions and the Wolff potentials

Applications

On Hausdorff dimension A class of fully nonlinear elliptic equations

ヘロト 人間 ト ヘヨト ヘヨト

A generalized Lebesgue Theorem

Lemma (Kpata 2019) Let μ be a nonnegative Radon measure on a complete Riemannian manifold (M^n, g) and let

$$G_d^{\infty} = \{x \in M^n : \limsup_{r \to 0} r^{-d} \mu(B_r(x)) = +\infty\}$$

for any $d \in [0, n]$. Then

$$\mathcal{H}_d(G^\infty_d)=0$$

where \mathcal{H}_d is the Hausdorff measure of dimension *d*.

Motivating problems in conformal geometry *p*-superharmonic functions and the Wolff potentials

Applications

On Hausdorff dimension A class of fully nonlinear elliptic equations

On Hausdorff dimensions and consequences

Theorem (Liu-Ma-Q-Zhong 2023)

Suppose that *S* is a closed subset of the sphere \mathbb{S}^n . And suppose that there is a metric \overline{g} on $\mathbb{S}^n \setminus S$ that is conformal to the standard round metric $g_{\mathbb{S}}$. Assume that it is geodesically complete near *S* and that $A^{(p)}[\overline{g}] \ge 0$ for some $p \in [2, n)$. Then

$$\dim_{\mathcal{H}}(S) \leq rac{n-p}{2}.$$

Corollary

Suppose that (M^n, g) is locally conformally flat with $A^{(p)} \ge 0$ for $p \in [2, n)$. Then, for $1 < k < \frac{n+p}{2} - 1$, the homotopy groups $\pi_k(M^n)$ are trivial.

Motivating problems in conformal geometry *p*-superharmonic functions and the Wolff potentials

Applications

On Hausdorff dimension A class of fully nonlinear elliptic equations

On a class of fully nonlinear equations

Corollary (Extension of Labutin 2002)

Suppose that u is nonnegative and $u \in C^2(\Omega \setminus S)$ for a compact $S \subset \Omega \subset \mathbb{R}^n$. Assume $\lim_{x\to S} u(x) = \infty$, and $-\lambda(D^2u(x)) \in \Gamma^k$ for $1 \le k \le \frac{n}{2}$. Then, for $x_0 \in S$, there is E that is p_{Γ^k} -thin at x_0

$$\lim_{x \to x_0 \text{ and } x \notin E} \frac{u(x)}{\Gamma^k(x, x_0)} = m \ge 0$$

Moreover $u(x) \ge m\Gamma^k(x, x_0) - c_0$ in some neighborhood of x_0 . Here $p_{\Gamma^k} = \frac{n(k-1)}{n-k} + 2$ and

$$\Gamma^{k}(x, x_{0}) = \begin{cases} |x - x_{0}|^{2 - \frac{n}{k}} \text{ when } 1 \leq k < \frac{n}{2} \\ -\log|x - x_{0}| \text{ when } k = \frac{n}{2}. \end{cases}$$

Huajie Liu, Shiguang Ma, Jie Qing, and Shuhui Zhong

Potential theory and conformal geometry

On Hausdorff dimension A class of fully nonlinear elliptic equations

ヘロト ヘワト ヘビト ヘビト

ъ

Thank you!

Huajie Liu, Shiguang Ma, Jie Qing, and Shuhui Zhong Potential theory and conformal geometry