Optimal regularity for isoperimetric sets with density

Eleonora Cinti

Università di Bologna

CONFORMAL GEOMETRY AND NON-LOCAL OPERATORS

Granada, June 26th 2023

(joint work with L. Beck and C. Seis)

イロト イボト イヨト イヨト

Let us given two density functions $f, h: \mathbb{R}^n \to (0, +\infty)$.

For any measurable set $E \subset \mathbb{R}^n$, we set

$$V_f(E) := \int_E f(x) \, dx$$

and

$$P_h(E) := \int_{\partial^* E} h(x) \, d\mathcal{H}^{n-1}(x),$$

We are interested in the following minimization problem:

$$\inf \{P_h(E) \colon E \subset \mathbb{R}^n \text{ with } V_f(E) = m\}.$$

イロト イヨト イヨト イヨト

Let us given two density functions $f, h: \mathbb{R}^n \to (0, +\infty)$.

For any measurable set $E \subset \mathbb{R}^n$, we set

$$V_f(E) := \int_E f(x) \, dx$$

and

$$P_h(E) := \int_{\partial^* E} h(x) \, d\mathcal{H}^{n-1}(x),$$

We are interested in the following minimization problem:

$$\inf \{P_h(E) \colon E \subset \mathbb{R}^n \text{ with } V_f(E) = m\}.$$

イロト イヨト イヨト イヨト

Let us given two density functions $f, h: \mathbb{R}^n \to (0, +\infty)$.

For any measurable set $E \subset \mathbb{R}^n$, we set

$$V_f(E) := \int_E f(x) \, dx$$

and

$$P_h(E) := \int_{\partial^* E} h(x) \, d\mathcal{H}^{n-1}(x),$$

We are interested in the following minimization problem:

$$\inf \{P_h(E) \colon E \subset \mathbb{R}^n \text{ with } V_f(E) = m\}.$$

イロン イ団 とく ヨン イヨン

Let us given two density functions $f, h: \mathbb{R}^n \to (0, +\infty)$.

For any measurable set $E \subset \mathbb{R}^n$, we set

$$V_f(E) := \int_E f(x) \, dx$$

and

$$P_h(E) := \int_{\partial^* E} h(x) \, d\mathcal{H}^{n-1}(x),$$

We are interested in the following minimization problem:

inf
$$\{P_h(E): E \subset \mathbb{R}^n \text{ with } V_f(E) = m\}.$$

ヘロト 人間 ト 人造 ト 人造 トー

• Existence: Morgan-Pratelli, De Philippis-Franzina-Pratelli, Pratelli-Saracco

• Regularity: Morgan, C.-Pratelli, Pratelli-Saracco, Beck-C.-Seis.

Many other contributions by: Cañete - Miranda - Vittone; Rosales - Cañete -Bayle - Morgan; Cañete - Rosales; Chambers; Cabré - Ros-Oton - Serra; Brock -Chiacchio - Mercaldo,

- Existence: Morgan-Pratelli, De Philippis-Franzina-Pratelli, Pratelli-Saracco
- Regularity: Morgan, C.-Pratelli, Pratelli-Saracco, Beck-C.-Seis.

Many other contributions by: Cañete - Miranda - Vittone; Rosales - Cañete -Bayle - Morgan; Cañete - Rosales; Chambers; Cabré - Ros-Oton - Serra; Brock -Chiacchio - Mercaldo,

- Existence: Morgan-Pratelli, De Philippis-Franzina-Pratelli, Pratelli-Saracco
- Regularity: Morgan, C.-Pratelli, Pratelli-Saracco, Beck-C.-Seis.

Many other contributions by: Cañete - Miranda - Vittone; Rosales - Cañete -Bayle - Morgan; Cañete - Rosales; Chambers; Cabré - Ros-Oton - Serra; Brock -Chiacchio - Mercaldo,

- Existence: Morgan-Pratelli, De Philippis-Franzina-Pratelli, Pratelli-Saracco
- Regularity: Morgan, C.-Pratelli, Pratelli-Saracco, Beck-C.-Seis.

Many other contributions by: Cañete - Miranda - Vittone; Rosales - Cañete -Bayle - Morgan; Cañete - Rosales; Chambers; Cabré - Ros-Oton - Serra; Brock -Chiacchio - Mercaldo,

Theorem (Morgan, Trans. AMS 2003)

Let f = h be of class $C^{k,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $k \ge 1$ and $\alpha \in (0, 1]$. Then the boundary of any isoperimetric set is of class $C^{k+1,\alpha}$, except for a singular set of Hausdorff dimension at most n - 8.

QUESTION: What about less regular densities?

イロト イボト イヨト イヨト

Theorem (Morgan, Trans. AMS 2003)

Let f = h be of class $C^{k,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $k \ge 1$ and $\alpha \in (0, 1]$. Then the boundary of any isoperimetric set is of class $C^{k+1,\alpha}$, except for a singular set of Hausdorff dimension at most n - 8.

QUESTION: What about less regular densities?

イロン イ団 とく ヨン イヨン

Theorem (C.-Pratelli, Crelle 2017)

Let f = h be of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$. If E is an isoperimetric set, then $\partial^* E \in C^{1,\sigma}$, where

$$\sigma(\alpha, n) := \frac{\alpha}{2n(1-\alpha)+2\alpha}.$$

Remark

• We observe that the Hölder exponent

$$\sigma = \frac{\alpha}{2n(1-\alpha)+2\alpha} \to \frac{1}{2}, \quad \text{as } \alpha \uparrow 1;$$

Theorem (C.-Pratelli, Crelle 2017)

Let f = h be of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$. If E is an isoperimetric set, then $\partial^* E \in C^{1,\sigma}$, where

$$\sigma(\alpha, n) := \frac{\alpha}{2n(1-\alpha)+2\alpha}$$

Remark

We observe that the Hölder exponent

$$\sigma = rac{lpha}{2n(1-lpha)+2lpha} o rac{1}{2}, \quad {
m as} \; lpha \uparrow 1;$$

Theorem (C.-Pratelli, Crelle 2017)

Let f = h be of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$. If E is an isoperimetric set, then $\partial^* E \in C^{1,\sigma}$, where

$$\sigma(\alpha, n) := \frac{\alpha}{2n(1-\alpha)+2\alpha}$$

Remark

We observe that the Hölder exponent

$$\sigma = rac{lpha}{2n(1-lpha)+2lpha} o rac{1}{2}, \quad {
m as} \; lpha \uparrow 1;$$

Theorem (C.-Pratelli, Math. Ann. 2017)

Let n = 2 and f = h be of class $C^{0,\alpha}(\mathbb{R}^2, \mathbb{R}^+)$ for some $\alpha \in (0,1]$. If E is an

isoperimetric set, then $\partial^* E \in C^{1,\alpha/(3-2\alpha)}$.

Remark

• We observe that the Hölder exponent

$$\frac{\alpha}{3-2\alpha} > \frac{\alpha}{4-2\alpha} =: \sigma(\alpha, 2)$$

in particular

$$\frac{\alpha}{3-2\alpha} \to 1, \quad \text{as } \alpha \uparrow 1$$

Theorem (C.-Pratelli, Math. Ann. 2017)

Let n = 2 and f = h be of class $C^{0,\alpha}(\mathbb{R}^2, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$. If E is an

isoperimetric set, then $\partial^* E \in C^{1,\alpha/(3-2\alpha)}$.

Remark

• We observe that the Hölder exponent

$$\frac{\alpha}{3-2\alpha} > \frac{\alpha}{4-2\alpha} =: \sigma(\alpha, 2)$$

in particular

$$\frac{lpha}{3-2lpha}
ightarrow 1, \quad \text{as } lpha \uparrow 1$$

Theorem (C.-Pratelli, Math. Ann. 2017)

Let n = 2 and f = h be of class $C^{0,\alpha}(\mathbb{R}^2, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$. If E is an

isoperimetric set, then $\partial^* E \in C^{1,\alpha/(3-2\alpha)}$.

Remark

• We observe that the Hölder exponent

$$\frac{\alpha}{3-2\alpha} > \frac{\alpha}{4-2\alpha} =: \sigma(\alpha, 2)$$

• in particular

$$rac{lpha}{3-2lpha}
ightarrow 1, \quad ext{as } lpha \uparrow 1$$

Theorem (C.-Pratelli, Math. Ann. 2017)

Let n = 2 and f = h be of class $C^{0,\alpha}(\mathbb{R}^2, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$. If E is an

isoperimetric set, then $\partial^* E \in C^{1,\alpha/(3-2\alpha)}$.

Remark

• We observe that the Hölder exponent

$$\frac{\alpha}{3-2\alpha} > \frac{\alpha}{4-2\alpha} =: \sigma(\alpha, 2)$$

• in particular

$$rac{lpha}{3-2lpha}
ightarrow 1, \quad ext{as } lpha \uparrow 1$$

We show that the following implication holds true:

If E is an isoperimetric set w.r.t. the density $f \in C^{0,\alpha}$

THEN

E is an ω -minimal set for the classical perimeter, i.e. $\forall B_r$ and $\forall F$ such that $F \triangle E \subset \subset B_r$, we have

 $P(E, B_r) \leq P(F, B_r) + \omega(r) \cdot r^{n-1},$

for some modulus of continuity ω .

イロト イヨト イヨト イヨト

We show that the following implication holds true:

If E is an isoperimetric set w.r.t. the density $f \in C^{0,\alpha}$

THEN

E is an ω -minimal set for the classical perimeter, i.e. $\forall B_r$ and $\forall E$ such that $E \land E \subseteq \subseteq B_r$, we have

 $P(E, B_r) \leq P(F, B_r) + \omega(r) \cdot r^{n-1},$

for some modulus of continuity ω .

Eleonora Cinti (Bologna)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We show that the following implication holds true:

If E is an isoperimetric set w.r.t. the density $f \in C^{0,\alpha}$

THEN

E is an ω -minimal set for the classical perimeter,

i.e. $\forall B_r$ and $\forall F$ such that $F \triangle E \subset \subset B_r$, we have

$$P(E, B_r) \leq P(F, B_r) + \omega(r) \cdot r^{n-1},$$

for some modulus of continuity ω .

Eleonora Cinti (Bologna)

イロト イボト イヨト イヨト

Then, the regularity of *E* follows by standard regularity theory for ω -minimal sets:

Theorem (Tamanini, 1984)

If E is ω -minimal with $\omega(r) = r^{2\sigma}$, then $\partial^* E \in C^{1,\sigma}$.

Main ingredient in the proof of the previous implication: $\varepsilon - \varepsilon^{\beta}$ property. We say that *F* fulfills the $\varepsilon - \varepsilon^{\beta}$ property with constant *C* if for any ball *B* such that $\mathcal{H}^{n-1}(B \cap \partial^* F) > 0$, there exists a constant $\overline{\varepsilon} > 0$ such that, for every $|\varepsilon| < \overline{\varepsilon}$, there is a set $G \subseteq \mathbb{R}^n$ such that

 $G \triangle F \subset \subset B$, $V_g(G) - V_g(F) = \varepsilon$, $P_f(G) \le P_f(F) + C |\varepsilon|^{\beta}$.

イロン イヨン イヨン イヨン 三日

Then, the regularity of *E* follows by standard regularity theory for ω -minimal sets:

Theorem (Tamanini, 1984)

If E is ω -minimal with $\omega(r) = r^{2\sigma}$, then $\partial^* E \in C^{1,\sigma}$.

Main ingredient in the proof of the previous implication: $\varepsilon - \varepsilon^{\beta}$ property. We say that F fulfills the $\varepsilon - \varepsilon^{\beta}$ property with constant C if for any ball B such that $\mathcal{H}^{n-1}(B \cap \partial^* F) > 0$, there exists a constant $\overline{\varepsilon} > 0$ such that, for every $|\varepsilon| < \overline{\varepsilon}$, there is a set $G \subseteq \mathbb{R}^n$ such that

 $G \triangle F \subset \subset B$, $V_g(G) - V_g(F) = \varepsilon$, $P_f(G) \le P_f(F) + C |\varepsilon|^{\beta}$.

イロン イヨン イヨン 一日

Then, the regularity of *E* follows by standard regularity theory for ω -minimal sets:

Theorem (Tamanini, 1984)

If E is ω -minimal with $\omega(r) = r^{2\sigma}$, then $\partial^* E \in C^{1,\sigma}$.

Main ingredient in the proof of the previous implication: $\varepsilon - \varepsilon^{\beta}$ property. We say that F fulfills the $\varepsilon - \varepsilon^{\beta}$ property with constant C if for any ball B such that $\mathcal{H}^{n-1}(B \cap \partial^* F) > 0$, there exists a constant $\overline{\varepsilon} > 0$ such that, for every $|\varepsilon| < \overline{\varepsilon}$, there is a set $G \subseteq \mathbb{R}^n$ such that

$$G \triangle F \subset \subset B$$
, $V_g(G) - V_g(F) = \varepsilon$, $P_f(G) \leq P_f(F) + C |\varepsilon|^{\beta}$.

Generalization to the case of two densities

Theorem (Pratelli-Saracco, Adv. Nonlinear Stud. 2020) Let h be a density of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$ and f be a locally

bounded function. If E is an isoperimetric set, then $\partial^* E \in C^{1,\alpha/(2n(1-\alpha)+2\alpha)}$.

Remark

Such regularity does not need any regularity of f!

イロト イボト イヨト イヨト

Generalization to the case of two densities

Theorem (Pratelli-Saracco, Adv. Nonlinear Stud. 2020)

Let h be a density of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ for some $\alpha \in (0, 1]$ and f be a locally bounded function. If E is an isoperimetric set, then $\partial^* E \in C^{1,\alpha/(2n(1-\alpha)+2\alpha)}$.

Remark

Such regularity does not need any regularity of f!

イロト イポト イヨト イヨト

Theorem (Beck, C., Seis, 2023)

Let h be density of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ and f be a density of class $C^{0,\gamma}(\mathbb{R}^n, \mathbb{R}^+)$ for some α and $\gamma \in (0, 1)$. Then the boundary of any isoperimetric set is of class $C^{1,\alpha/(2-\alpha)}$, except for a singular set of Hausdorff dimension at most n - 8.

Remark

- We achieve the Hölder exponent ^α/_{2-α} in any dimensions, improving all the previous results;
- observe that

$$\frac{\alpha}{2-\alpha} \rightarrow 1$$
, as $\alpha \uparrow 1$;

Theorem (Beck, C., Seis, 2023)

Let h be density of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ and f be a density of class $C^{0,\gamma}(\mathbb{R}^n, \mathbb{R}^+)$ for some α and $\gamma \in (0, 1)$. Then the boundary of any isoperimetric set is of class $C^{1,\alpha/(2-\alpha)}$, except for a singular set of Hausdorff dimension at most n - 8.

Remark

• We achieve the Hölder exponent $\frac{\alpha}{2-\alpha}$ in any dimensions, improving all the previous results;

observe that

$$\frac{\alpha}{2-\alpha} \to 1$$
, as $\alpha \uparrow 1$;

Theorem (Beck, C., Seis, 2023)

Let h be density of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ and f be a density of class $C^{0,\gamma}(\mathbb{R}^n, \mathbb{R}^+)$ for some α and $\gamma \in (0, 1)$. Then the boundary of any isoperimetric set is of class $C^{1,\alpha/(2-\alpha)}$, except for a singular set of Hausdorff dimension at most n - 8.

Remark

- We achieve the Hölder exponent $\frac{\alpha}{2-\alpha}$ in any dimensions, improving all the previous results;
- observe that

$$rac{lpha}{2-lpha}
ightarrow 1, \quad ext{as } lpha \uparrow 1;$$

Theorem (Beck, C., Seis, 2023)

Let h be density of class $C^{0,\alpha}(\mathbb{R}^n, \mathbb{R}^+)$ and f be a density of class $C^{0,\gamma}(\mathbb{R}^n, \mathbb{R}^+)$ for some α and $\gamma \in (0, 1)$. Then the boundary of any isoperimetric set is of class $C^{1,\alpha/(2-\alpha)}$, except for a singular set of Hausdorff dimension at most n - 8.

Remark

- We achieve the Hölder exponent $\frac{\alpha}{2-\alpha}$ in any dimensions, improving all the previous results;
- observe that

$$rac{lpha}{2-lpha}
ightarrow 1, \quad ext{as } lpha \uparrow 1;$$

Thanks to the previous results, we know that $\partial^* E$ is locally the graph of a function u, which minimizes the functional

$$\int_{B_R} h(x,w) (1+|Dw|^2)^{\frac{1}{2}} dx$$

among all functions w satisfying the constraint

$$\int_{B_R} \int_0^{w(x)} f(x,t) \, dt \, dx = m$$

for a given constant *m* and with prescribed boundary values on ∂B_R .

Since *h* is merely Hölder continuous, we cannot write the associated Euler-Lagrange equation!!

Idea: we introduce a comparison problem, and consider v to be the minimizer of

$$\int_{B_R} \left(1 + |Dv|^2 \right)^{\frac{1}{2}} dx, \qquad v = u \quad \text{on } \partial B_R;$$

under the constraint

$$\int_{B_R} \int_0^{v(x)} f(x,t) \, dt \, dx = \int_{B_R} \int_0^{u(x)} f(x,t) \, dt \, dx = m$$

Hence v satisfies the E-L equation:

$$\int_{B_R} D_z a(Dv(x)) \cdot D\varphi(x) \, dx + \lambda \int_{B_R} f(x, v) \varphi(x) \, dx = 0.$$

Eleonora Cinti (Bologna)

イロン イ団 とく ヨン イヨン

Since *h* is merely Hölder continuous, we cannot write the associated Euler-Lagrange equation!!

Idea: we introduce a *comparison problem*, and consider v to be the minimizer of

$$\int_{B_R} \left(1 + |Dv|^2\right)^{\frac{1}{2}} dx, \qquad v = u \quad \text{on } \partial B_R;$$

under the constraint

$$\int_{B_R} \int_0^{v(x)} f(x,t) \, dt \, dx = \int_{B_R} \int_0^{u(x)} f(x,t) \, dt \, dx = m.$$

Hence v satisfies the E-L equation:

$$\int_{B_R} D_z a(Dv(x)) \cdot D\varphi(x) \, dx + \lambda \int_{B_R} f(x, v) \varphi(x) \, dx = 0.$$

イロン イ団 とく ヨン イヨン

Since *h* is merely Hölder continuous, we cannot write the associated Euler-Lagrange equation!!

Idea: we introduce a *comparison problem*, and consider v to be the minimizer of

$$\int_{B_R} \left(1 + |Dv|^2\right)^{\frac{1}{2}} dx, \qquad v = u \quad \text{on } \partial B_R;$$

under the constraint

$$\int_{B_R} \int_0^{v(x)} f(x,t) \, dt \, dx = \int_{B_R} \int_0^{u(x)} f(x,t) \, dt \, dx = m$$

Hence v satisfies the E-L equation:

$$\int_{B_R} D_z a(Dv(x)) \cdot D\varphi(x) \, dx + \lambda \int_{B_R} f(x, v) \varphi(x) \, dx = 0.$$

Eleonora Cinti (Bologna)

In order to prove that $u \in C^{1,\alpha/(2-\alpha)}$, it is enough to prove that for any ball $B_{\rho}(y) \subset B_{R}(0)$, we have

$$\int_{B_{\rho}(y)} |\partial_{i}u - (\partial_{i}u)_{B_{\rho}(y)}|^{2} dx \leq C \rho^{n-1+\frac{2\alpha}{2-\alpha}}.$$

We will do this in two setps:

Step 1. We first prove suitable decay estimates for the solution v of the comparison problem;

Step 2. We transfer such decay estimates from v to the solution of our original problem u.

イロン イヨン イヨン イヨン 三日

In order to prove that $u \in C^{1,\alpha/(2-\alpha)}$, it is enough to prove that for any ball $B_{\rho}(y) \subset B_{R}(0)$, we have

$$\int_{B_{\rho}(y)} |\partial_{i}u - (\partial_{i}u)_{B_{\rho}(y)}|^{2} dx \leq C \rho^{n-1+\frac{2\alpha}{2-\alpha}}.$$

We will do this in two setps:

Step 1. We first prove suitable decay estimates for the solution v of the comparison problem;

Step 2. We transfer such decay estimates from v to the solution of our original problem u.

イロト イヨト イヨト イヨト 二日

Idea of the proof

In order to prove that $u \in C^{1,\alpha/(2-\alpha)}$, it is enough to prove that for any ball $B_{\rho}(y) \subset B_{R}(0)$, we have

$$\int_{B_{\rho}(y)} |\partial_{i}u - (\partial_{i}u)_{B_{\rho}(y)}|^{2} dx \leq C \rho^{n-1+\frac{2\alpha}{2-\alpha}}$$

We will do this in two setps:

Step 1. We first prove suitable decay estimates for the solution v of the comparison problem;

Step 2. We transfer such decay estimates from v to the solution of our original problem u.

イロト イロト イヨト イヨト 二日 二

We need to estimate the quantity

$$\int_{B_R} |Du - Dv|^2 \, dx.$$

In order to do that, we have to estimate the Lagrange multiplier λ . First easy estimates:

 $\lambda \lesssim R^{-1};$

$$\int_{B_R} |Du - Dv|^2 dx \lesssim R^{n-1+\frac{2\alpha}{2-\alpha}} + R^{n-1+\frac{2\gamma}{1-\gamma}}.$$

2

We need to estimate the quantity

$$\int_{B_R} |Du - Dv|^2 \, dx.$$

In order to do that, we have to estimate the Lagrange multiplier λ .

First easy estimates:

$$\int_{B_R} |Du - Dv|^2 \, dx \lesssim R^{n-1+\frac{2\alpha}{2-\alpha}} + R^{n-1+\frac{2\gamma}{1-\gamma}}.$$

<ロ> <四> <四> <四> <三</p>

We need to estimate the quantity

$$\int_{B_R} |Du - Dv|^2 \, dx.$$

In order to do that, we have to estimate the Lagrange multiplier λ . First easy estimates:

$$\lambda \lesssim R^{-1};$$

$$\int_{B_R} |Du - Dv|^2 \, dx \lesssim R^{n-1 + \frac{2\alpha}{2-\alpha}} + R^{n-1 + \frac{2\gamma}{1-\gamma}}$$

2

We need to estimate the quantity

$$\int_{B_R} |Du - Dv|^2 \, dx.$$

In order to do that, we have to estimate the Lagrange multiplier λ . First easy estimates:

$$\lambda \lesssim R^{-1};$$

$$\int_{B_R} |Du - Dv|^2 dx \lesssim R^{n-1+\frac{2\alpha}{2-\alpha}} + R^{n-1+\frac{2\gamma}{1-\gamma}}.$$

э

イロン イ団 とく ヨン イヨン

If $\gamma \ge \alpha$ we are happy! Otherwise, the previous estimates needs an improvement. Lemma (Improved error estimate) Let $u \in C^{1,\sigma}(B_R)$ with $\sigma \le \frac{\alpha}{2-\alpha}$, then we have that

 $|\lambda| \lesssim R^{\sigma-1}$

and

$$\int_{B_R} |Du - Dv|^2 dx \lesssim R^{n-1+\frac{2\alpha}{2-\alpha}} + R^{n-1+\frac{2}{1-\gamma}(\gamma+\sigma)}.$$

Step 1: Decay estimates for v

Proposition

Let $u \in C^{1,\sigma}(B_R)$ with $\sigma \leq \frac{\alpha}{2-\alpha}$ and let v be a solution of the comparison problem.

Then, for any $0 < r < \rho$, we have

$$\int_{B_r(x_0)} |\partial_i v - (\partial_i v)_r|^2 dx \lesssim \left(\frac{r}{\rho}\right)^{n-1+2(\gamma+\sigma)} \int_{B_\rho(x_0)} |\partial_i v - (\partial_i v)_\rho|^2 dx + r^{n-1+2(\gamma+\sigma)},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Combining **Step 1** and **Step 2**, we improve the regularity of u

from $C^{1,\gamma}$ to $C^{1,\gamma+\sigma}$.

This allows to iterate the errore estimate Lemma and the deacy estimates for v, to conclude

$$u\in C^{1,\frac{\alpha}{2-\alpha}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Combining **Step 1** and **Step 2**, we improve the regularity of u

from $C^{1,\gamma}$ to $C^{1,\gamma+\sigma}$.

This allows to iterate the errore estimate Lemma and the deacy estimates for v, to conclude

$$u \in C^{1,\frac{\alpha}{2-\alpha}}$$

イロト イロト イヨト イヨト 二日

Final Remarks

• Such regularity is optimal, we provide an explicit example;

- even if the final regularity does not depend on γ we need to assume $f \in C^{0,\gamma}$;
- **Open question**: can we remove such assumption on *f*?

э

Final Remarks

- Such regularity is optimal, we provide an explicit example;
- even if the final regularity does not depend on γ we need to assume $f \in C^{0,\gamma}$;
- **Open question**: can we remove such assumption on *f*?

э

Final Remarks

- Such regularity is optimal, we provide an explicit example;
- even if the final regularity does not depend on γ we need to assume $f \in C^{0,\gamma}$;
- **Open question**: can we remove such assumption on *f*?

э

イロト 不得 トイヨト イヨト

Muchas gracias!!

2