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In the last years there has been a lot of interest around concentration
problems such as {

−∆u = fε(u) in Ω ⊂ RN

u = 0 on ∂Ω

In this talk we only consider positive solutions.
Typical examples are

• fε(s) = s
N+2
N−2−ε, N ≥ 3 (critical Sobolev exponent)

• fε(s) = εes, N = 2 (Gelfand problem, Liouville problem)

A common feature of these problems is that it is possible to build
solutions concentrating at a finite number of points.

Ω

P

uɛ

Solution uε concentrating at P .



Concentration at k points

By concentration at k points we mean

−∆
(
C(ε)uε

)
⇀

k∑
i=1

αiδPi
with αi ∈ R+

with P1, ..Pk ∈ Ω.
An immediate consequence of the previous statement and the
standard regularity theory is the convergence of C(ε)uε to the Green
function of −∆, namely

C(ε)uε(x)→
k∑
i=1

αiG(x, Pi) in Ω \
{
P1, .., Pk

}
What about the location of Pi’s?

Here the role of the Green function is more subtle, as showed in next
definitions.



The Robin function
Let us recall the definitions of the Robin and Kirchhoff-Routh
functions.
For D ⊂ RN , N ≥ 2 we denote by GD(x, y) the Green function in D.{

−∆xGD(x, y) = δy(x) in D

GD(x, y) = 0 on ∂D.

We have the classical representation formula (for N ≥ 3)

GD(x, y) =
1

N(N − 2)ωN

1

|x− y|N−2
−HD(x, y),

HD(x, y) is the regular part of the Green function. The Robin
function is

RD(x) := HD(x, x) in D

Note that since HD(x, y) = CN

|x−y|N−2 on ∂Ω

then RD(x) = +∞ on ∂D.
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The Kirchhoff-Routh function

Once we have defined the Robin function it is immediate to define the
Kirchhoff-Routh function,
For D ⊂ RN and k ≥ 2 set KR(x1, .., xk) : D× · · · ×D → R defined as

KRD(x1, .., xk) =

k∑
i=1

Λ2
iRD(xi)−

k∑
i6=j i,j=1

ΛiΛjGD(xi, xj), for Λi ∈ R+ \ {0}

Note that in the definition some positive number Λi ∈ R appear.
They are related to the “speed of concentration” of the concentrated
solutions.



The Robin function plays a crucial role in several concentration
problems. We have the following necessary condition,

Theorem (Rey (1990), Han (1991))
Suppose that uε is a solution to{

−∆u = u
N+2
N−2−ε in Ω ⊂ RN , N ≥ 3

u = 0 on ∂Ω,

such that uε concentrates at one point P ∈ Ω. Then P is a critical
point of the Robin function.



An (almost) sufficient condition

Under a stability assumption the previous conditions on Robin
function turn to be sufficient

Theorem (Rey (1990))
Assume that P ∈ Ω is a nondegenerate critical points of the Robin.
Then there exist a solution uε to the problem{

−∆u = u
N+2
N−2−ε in Ω ⊂ RN , N ≥ 3

u = 0 on ∂Ω,

which concentrates at P .
Moreover this solution is locally unique, i.e. if vε is another solution
which concentrate at P then uε = vε for ε small.



CRITICAL POINTS OF THE ROBIN FUNCTION

RD(x) := HD(x, x) in D

KNOWN FACTS



Known facts on the Robin function

We recall some known facts about the Robin function.

• The only cases where the Robin function is explicitly known are
the same as for the Green function (ball, half space, exterior of
the ball). If D = BR we have that

RBR
(x) =


1

2π ln R
R2−|x|2 if N = 2,

1
N(N−2)ωN

RN−2(
R2−|x|2

)N−2 if N ≥ 3

Note that here RBR
has exactly one nondegenerate critical point.

• Unfortunately it is not known if the Robin function satisfies any
differential equation. This is known only if Ω ⊂ R2 and Ω is
simply connected. In this case u = 2πRΩ solves the Liouville
equation, {

∆u = 4e2u in Ω

u = +∞ on ∂Ω
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Known facts on the Robin function

• Ω ⊂ R2 convex RΩ has one nondegenerate critical point
(Caffarelli-Friedman, 1985)

• Ω ⊂ RN , N ≥ 3 convex RΩ has one critical point
(Cardaliaguet-Tahraoui, 2002)

• Nondegenaracy of the critical points of RΩ holds generically with
respect to Ω ⊂ RN , N ≥ 2, (Micheletti-Pistoia, 2014)

• Nondegeneracy for symmetric domains (Grossi, 2002)

Remark
The Robin function plays a fundamental role in a great number
of problems: conformal mappings, inner radius, capacity etc. A
great source of references is the classical review by Bandle and
Flucher (1996).
Many questions are still unanswered and we are far from a
complete understanding of its properties.
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CRITICAL POINTS OF THE ROBIN FUNCTION

RD(x) := HD(x, x) in D

ADDITIONAL REMARKS FOR DOMAINS WITH HOLES



Domains with small holes

Here we consider the case where the domain Ω has one hole. Even in
this particular case seems impossible to compute the exact number of
critical points of the Robin function
For this reason we consider the case of one SMALL hole, namely
Ωε = Ω \B(P, ε)
Since RΩε

→ +∞ on ∂Ωe, by topological reasons we have the
existence of at least 2 critical points.

Question Is this number sharp?
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Convergence far away from the hole

Fix the setting of our problem. Denote by RΩε the Robin function in
Ωε and by RΩ the Robin function in Ω. Let us give a look to their
graphs,

Robin function RΩ in Ω Robin function RΩε in Ωε = Ω \ B(P, ε)

Note that RΩε
→ RΩ far away from the hole B(P, ε).

On the other hand, since RΩε
→ +∞ on ∂B(P, ε), there is a big gap

between the two functions near ∂B(P, ε).



Convergence far away from the hole

Remark
The standard regularity theory gives

RΩε → RΩ far away from B(P, ε).

Hence if Q 6= P is a nondegenerate critical point of RΩ then there
exists a critical point Qε → Q of RΩε . In the next slide we try to give
some idea about this fact
The difficult part is to study what happens close to the boundary of
the hole. Here an additional (and delicate!) analysis is needed.



Convergence far away from the hole

The regular part of the Green function HΩε (x, y) solves (for N ≥ 3),

{
∆xHΩε (x, y) = 0 in Ωε

HΩε (x, y) = 1
N(N−2)ωN

1

|x−y|N−2 on ∂Ωε

∂Ω

ε

Using the representation formula for harmonic function we have

HΩε (x, y) = −
1

N(N − 2)ωN

∫
∂Ωε

∂GΩε (x, t)

∂νt

1

|t− y|N−2
dσt ⇒

RΩε (x) = HΩε (x, x) = −
1

N(N − 2)ωN

∫
∂Ωε

∂GΩε (x, t)

∂νt

1

|x− t|N−2
dσt

and

RΩ(x) = HΩ(x, x) = −
1

N(N − 2)ωN

∫
∂Ω

∂GΩ(x, t)

∂νt

1

|x− t|N−2
dσt
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An important consequence

Remark

Let us consider the unit ball B(0) ⊂ RN and Bε = B(0) \B(P, ε) with
P 6= 0. By the previous computations we have that, far away from P ,
RB(P )ε → RB(0).
Since 0 is the only critical point of RB(0) we have that the additional
critical points RB(P )ε must collapse at P !
This is a general fact, all additional critical points of the Robin
function in Ω \B(P, ε) collapse at P .



What happens near the hole?

Remark (Schiffer-Spencer for N = 2 (1952), Ozawa for
N ≥ 3 (1981))

The following expansion for the Robin function is known,

RΩε
(x) = RΩ(x) +

εN−2G2
Ω(x, P )

N(N − 2)ωN (1− εN−2RΩ(P ))
+O

(
εN−1

)
,

(an analogous formula holds for N = 2). However the remainder term
O
(
εN−1

)
is not uniform with respect to x .

We will improve the previous estimate in this way,

RΩε
(x) = RΩ(x) +RBc

ε
(x) +


O
(

εN−2

|x−P |N−2

)
+O(ε) for N ≥ 3,

1
2π ln ε

|x−P |2 +O
(

1
| ln ε|

)
for N = 2,

where the remainder terms are uniform with respect to x ∈ Ωε.



CRITICAL POINTS OF THE ROBIN FUNCTION

RD(x) := HD(x, x) in D

THE MAIN RESULTS



The main result

Our main result is to compare the number of critical points of RΩε
in

Ω \B(P, ε) with RΩ in Ω.
The most interesting phenomenon is that the location of the point P
is important! So it is crucial where you place the center of the hole!
We briefly summarize our results,

• If P is not a critical point of RΩ we have exactly “one more”

critical point (a saddle point).

• If P is a critical point of RΩ then we have more critical points. In
particular if the eigenvalues of the Hessian matrix of RΩ(P ) are

simple we have 2N critical points close to P .

∂B(0, ε)

∂Ω

P ≡ 0
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Theorem (Gladiali, Grossi, Luo, Yan, to appear in JEMS)
Assume that Ωε = Ω \B(P, ε) and

B(P,ε)

Ωε

∇RΩ(P ) 6= 0

then for ε small enough,

]
{

critical points of RΩε in B(P, r) \B(P, ε)
}

= 1,

where B(P, r) ⊂ Ω is chosen not containing any critical point of RΩ.
Moreover the critical point xε ∈ B(P, r) verifies, for ε small enough,

• xε = P + ε
N−2
2N−3

((
2

NωN |∇RΩ(P )|2N−2

) 1
2N−3∇RΩ(P ) + o(1)

)
.

• xε is a non-degenerate saddle point with

indexxε

(
∇RΩε

)
= (−1)N−1.

• RΩε(xε)→RΩ(P ).
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The case Ω = B(0, 1)
Let us recall that in this case we have that (for N ≥ 3)

RB(0,1)(x) =
CN(

1− |x|2
)N−2

Corollary
Assume that Ω = B(0, 1) ⊂ RN , N ≥ 2 and Ωε = B(0, 1)\B(P, ε). Then,
for ε small enough,

]
{

critical points of RΩε in B(0, 1)\B(P, ε)
}

=

{
2 if P 6= 0

∞ if P = 0.

and if P 6= 0 the two critical points are nondegenerate.

εΩ =B(0,1)\B(P,ε) 

P
B(P,ε) 

O
.

Two critical points for RΩε in Ωε

=B(0,1)\B(0,ε) εΩ

P=0

B(0,ε)

Infinitely many critical points for RΩε in Ωε
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The previous result allow to compute di exact number of single-peak
solutions for some suitable problem,

Corollary
Assume that Ω = B(0, 1) ⊂ RN , N ≥ 2 and Ωε = B(0, 1)\B(P, ε).
Then, for ε small enough and P 6= 0 the problem

−∆u = u
N+2
N−2−δ
ε in Ωε ⊂ RN

u > 0 in Ωε

u = 0 on ∂Ωε

admits exactly two single-peak solutions for δ small enough.



Idea of the proof
We have the expansion

RΩε(x) = RΩ(x) + RRN\B(P,ε)(x)︸ ︷︷ ︸
=

CNεN−2(
|x−P |2−ε2

)N−2

+O

(
εN−2

|x− P |N−1

)
+O(ε)︸ ︷︷ ︸

delicate computation

⇒

Computing the gradient of RΩε we get

∇RΩε(x) ∼ ∇RΩ(P ) +∇RRN\B(P,ε)(x)

and then if ∇RΩε(xε) = 0 we deduce

∇RRN\B(P,ε)(xε)︸ ︷︷ ︸
this is explicit=CNεN−2 xε−P

|xε−P |2N−4

= −∇RΩ(P )

Solving the equation we get |xε − P | ∼ ε
N−2
2N−3 .

Observe that the equation

∇RRN\B(P,ε)(xε) = −∇RΩ(P )

has exactly one nonsingular zero and this implies the nondegeneracy of the
critical point xε of RΩε .
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∇RΩε(x) ∼ ∇RΩ(P ) +∇RRN\B(P,ε)(x)

and then if ∇RΩε(xε) = 0 we deduce

∇RRN\B(P,ε)(xε)︸ ︷︷ ︸
this is explicit=CNεN−2 xε−P

|xε−P |2N−4

= −∇RΩ(P )

Solving the equation we get |xε − P | ∼ ε
N−2
2N−3 .

Observe that the equation

∇RRN\B(P,ε)(xε) = −∇RΩ(P )

has exactly one nonsingular zero and this implies the nondegeneracy of the
critical point xε of RΩε .
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The case ∇RΩ(P ) = 0 for N ≥ 3

Theorem,
(
Gladiali, Grossi, Luo, Yan

)
. Assume that

• ∇RΩ(P ) = 0 and P is nondegenerate, i.e. det
(
HessRΩ(P )

)
6= 0.

• The Hessian matrix Hess
(
RΩ(P )

)
has N positive simple eigenvalues

0 < λ1 < .. < λm for i = 1, ..,m.

Then we have that for ε > 0 small enough,

]
{

critical points of RΩε(x) in B(P, r) \B(P, ε)
}

= 2N,

Similar estimates for the critical points
x+

1,ε, x
−
1,ε, . . . , x

+
m,ε, x

−
m,ε

x+
2,ε → 0

x+
1,ε → 0x−1,ε → 0

x−2,ε → 0

∂B(0, ε)

∂Ω

P ≡ 0

hold as when ∇RΩ(O) 6= 0.

In particular x±i,ε → P and

RΩε(x±i,ε)→ RΩ(0) for i = 1, · · · ,m.
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Example
Assume that Ω is an ellipsoid in RN , N ≥ 2 centered at 0. Then it is
possible to choose the N axis such that the conditions

• ∇RΩ(P ) = 0 and P is nondegenerate, i.e. det
(
HessRΩ(P )

)
6= 0.

• The Hessian matrix Hess
(
RΩ(P )

)
has N positive simple

eigenvalues 0 < λ1 < .. < λm for i = 1, ..,m.

are verified.

Then we have that for ε > 0 small enough the previous

result hold.
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∂B(0, ε)
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The previous result allow to compute di exact number of single-peak
solutions for some suitable problem,

Corollary
Assume that Ω verifies

• ∇RΩ(P ) = 0 and P is nondegenerate, i.e. det
(
HessRΩ(P )

)
6= 0.

• The Hessian matrix Hess
(
RΩ(P )

)
has N positive simple

eigenvalues 0 < λ1 < .. < λm for i = 1, ..,m.

hence for Ωε = Ω\B(0, ε) the problem
−∆u = u

N+2
N−2−δ
ε in Ωε ⊂ RN

u > 0 in Ωε

u = 0 on ∂Ωε

admits exactly 2N single-peak solutions for ε small enough.



Analogous results

Similar results about the number of critical points of solutions of nonlinear
problems were obtained jointly with P. Luo,

Theorem (Grossi,Luo, to appear in IUMJ)

Assume that Ωε = Ω \B(P, ε) and and let uε, u0 be solutions of the problems{
−∆uε = 1 in Ωε

uε = 0 on ∂Ωε

{
−∆u0 = 1 in Ω

u0 = 0 on ∂Ω

Moreover,

B(P,ε)

Ωε

∇u0(P ) 6= 0

then for ε small enough,

]
{

critical points of uε in B(P, r) \B(P, ε)
}

= 1,

where B(P, r) ⊂ Ω is chosen not containing any critical point of u0.
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Extensions to the Kirchhoff-Routh function

We would like to extend our results to the following problems,

• The Kirchhoff-Routh function,

KRΩε
(x1, .., xk) =

k∑
i=1

Λ2
iRΩε

(xi)−
k∑

i 6=j i,j=1

ΛiΛjGΩε
(xi, xj)

which gives the location of the peaks of multi-bump solutions.

• If k = 2 the Kirchhoff-Routh function, becomes

KRΩε
(x1, x2) = Λ2

1RΩε
(x1) + Λ2

2RΩε
(x2)− 2ΛiΛjGΩε

(x1, x2).

Even this simplified problem requires A LOT OF computations
(at least 100 pages, in preparation with F. Gladiali, P.Luo and
S.Yan).
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Gracias a todos!


