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The functional

Let (M, g ,Σ) be a smooth Riemannian, spin manifold and consider
the following functional

E (g , ψ) =

∫
M
Rg + ⟨Dgψ,ψ⟩ − λ|ψ|2g dvg .

The variables are the metric g and the spinor field ψ

.

But this should be seen as a bundle, since the spinor ψ might
depend on the metric g .

It should be understood as g is a horizontal variation and ψ is
a vertical one.

The functional is natural so it is invariant under
diffeomorphism.
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The critical points of this functional are solutions of the system
Ricg − Rg

2
g = T g ,ψ

Dgψ = λψ

(1)

where T g ,ψ denotes the energy-momentum tensor

T g ,ψ(X ,Y ) = −1

4
⟨X · ∇Yψ + Y · ∇Xψ,ψ⟩ , (2)

here · and ∇ denote the Clifford multiplication and the metric
connection extended to the spin bundle ΣM.
Such a spinor will be called Einstein spinor.
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Coupling

The structure is similar to some familiar problems such as:

Schrödinger-Newton gravity. Actually, one could derive one
from the other, under certain circumstances.

Yang-Mills-Higgs-Dirac model (supersymmetric gauge theory).

Seiberg-Witten equations.

Supersymmetric nonlinear Sigma model.
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Do they exist?

First, notice that if (M, g) is Einstein and ψ is a Killing spinor,
then ψ is an Einstein spinor.
Recall the relation for Killing spinors is ∇Xψ = αX · ψ.

This was then pushed to the notion of WK-spinors (weak Killing
spinors). In dimension 3, all Einstein spinors are WK-spinors but
this fails in higher dimension.

Einstein spinors on product manifolds M6 × N r , where M6 is
a six-dimensional simply connected nearly Kähler manifold
and N r is a manifold admitting Killing spinors.

Warped product of codimension 1 foliations with Killing
horizontal spinor.
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WK-spinors on quasi-Einstein Sasakian manifolds.

WK-spinors on the three-dimensional sphere S3 with
non-standard merics.

WK-spinors on the three-dimensional Euclidean space R3 with
non-constant scalar curvature.

There is not a lot of examples, especially that in most cases this
requires the existence of a Killing spinor.

Is there a topological obstruction to the existence of such
structures?

Does any spin manifold carry an Einstein spinor?
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Objective

We propose to study the properties of this set:

E(D, c,K ) =
{
(g , ψ) ∈ Critc(E ); diam(M, g) ≤ D,−∆gRg ≥ −KRg

}
in terms of compactness and local structure. In the spirit of:

M. Anderson, Ricci curvature bounds and Einstein metrics on
compact manifolds. J. Amer. Math. Soc. 2 (1989).
M. Anderson, Convergence and rigidity of manifolds under
Ricci curvature bounds. Invent. Math. 102 (1990).
H. Nakajima, Hausdorff convergence of Einstein 4-manifolds.
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988).

J. Cheeger, Structure theory and convergence in Riemannian
geometry. Milan J. Math. 78 (2010).
J. Lott, Â-genus and collapsing, J. Geom. Anal. 10 (2000).
V. Kapovitch, J. Lott, On noncollapsed almost Ricci-flat
4-manifolds. Amer. J. Math. 141 (2019).
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Convergence
Second Variation

Main results

We will focus on dimensions 3 and 4 but similar results can be
proved under a stronger bound on the Riemann tensor in higher
dimensions.

Theorem

Let n = 3, then the space E(D, c ,K ) is compact in the topology
induced by the Hausdorff distance. That is, if
(gk , ψk) ∈ E(D, c ,K ) then there exists a subsequence again
denoted by (gk , ψk) that converges in C ℓ,α(M) to (g∞, ψ∞) for all
ℓ > 0 and 0 < α < 1 and ψ∞ is an Einstein spinor on (M, g∞).
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Convergence
Second Variation

Theorem

Let n = 4, then there exist a compact orbifold (M∞, g∞) with a
finite set S of orbifold singularities, a spinor ψ∞ ∈ Σ(M∞ \ S) and
a sequence of C∞ embeddings Fk : (M∞ \ S , g∞) → (M, gk), for k
large enough, such that

((Fk)
∗gk , (Fk)

∗ψk) converges uniformly on compact subsets in
the C ℓ,α topology on M∞ \ S , to (g∞, ψ∞) for every ℓ > 0
and 0 < α < 1 and ψ∞ is an Einstein spinor on (M∞ \ S , g∞).

For each pi ∈ S , there exist a sequence of real numbers rk and
a sequence of points xk ∈ M such that (M, rkgk , xk)
converges in the pointed Gromov-Hausdorff sense to
(Yi , g i , x∞), where (Yi , g i ) is a Ricci flat non-flat manifold.

That is, there exists a sequence of smooth diffeomorphisms
Hk : (B(pi , r), g i ) → (M, rkgk) so that (H∗

k (rkgk)) converges
in the C ℓ,α topology in B(pi , r) ⊂ Yi , to g i for every r > 0,
ℓ > 0 and 0 < α < 1.
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continued...

Theorem

Moreover, there exists a parallel spinor ψi ,∞ ∈ Γ(ΣYi ) such that
H∗
kψk converges in the C ℓ,α topology in B(pi , r), to the spinor

ψi ,∞ for every ℓ > 0 and 0 < α < 1 and

lim inf
k→∞

∫
M
|Rmgk |

2 dvgk ≥
∫
M
|Rmg∞ |2 dvg∞ +

|S|∑
i=1

∫
Yi

|Rmg i
|2 dvg i

.
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Convergence
Second Variation

Second Variation

Theorem

Let h be a symmetric two tensor transverse to the diffeomorphism
action, that is δh = 0. If (g , ψ) is a critical point of E , then we
have

∇2E (g , ψ)[(h, φ), (h, φ)] =

∫
M

1

2
⟨∆Lh +∇∇tr(h), h⟩

+
1

2
(−∆tr(h)− ⟨Ricg , h⟩) tr(h) +

Rg

2
|h|2

+
1

2
⟨T g ,ψ, h⟩tr(h) + 1

2
⟨h × T g ,ψ, h⟩+ 1

2
⟨∇tr(h) · ψ,φ⟩

+ ⟨Dhφ,ψ⟩+ 2⟨Dgφ− λφ, φ⟩dv
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Example 1: Killing Spinors

We consider a real Killing spinor ψ, that is ∇Xψ = −µX · ψ for a
real constant µ > 0, for all tangent vector X .
The second variation reads

∇2E (g , ψ)[(h, φ), (h, φ)]

=

∫
M

1

2
⟨∆Lh, h⟩+

3n − 2

4n
R|h|2 + 2⟨Dφ− λφ, φ⟩dv .

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Example 1: Killing Spinors

We consider a real Killing spinor ψ, that is ∇Xψ = −µX · ψ for a
real constant µ > 0, for all tangent vector X .
The second variation reads

∇2E (g , ψ)[(h, φ), (h, φ)]

=

∫
M

1

2
⟨∆Lh, h⟩+

3n − 2

4n
R|h|2 + 2⟨Dφ− λφ, φ⟩dv .

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Exemple 2: Quasi-Killing Spinors

consider a Sasakian spin-manifold (M2m+1, g , ϕ, η). A quasi-Killing
spinor satisfies

∇Xψ = aX · ψ + bη(X )ξ · ψ,
where ξ is the Reeb vector field of η. One can construct an
Einstein Spinor from a quasi-Killing spinors with

a = ±1

2
, b = ∓2m2 −m − 2

4(m − 1)
.

In this case, we have

∇2E (g , ψ)[(h, φ), (h, φ)]

=

∫
M

1

2
⟨∆Lh, h⟩+

m + 1

m − 1
|h|2 + 2m2 −m − 2

2(m − 1)
|h(ξ)|2

− 2m2 −m − 1

4(m − 1)
⟨h(ξ) · ξ · ψ,φ⟩+ 2⟨Dφ− λφ, φ⟩ dv .
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Corollary

Let the pair (g , ψ) be a critical point for the functional E . Then
the symmetric 2-tensor h belongs to the space of horizontal
Dirac-Einstein deformations, if it solves the following system of
equations 

δh = 0〈
Ricg − Rg

2
g , h

〉
=

〈
T g ,ψ, h

〉
= 0

∆h + Rgh + T g ,ψ × h = 0

In particular, the space of horizontal Dirac-Einstein perturbations is
finite dimensional.
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Tools
Key Estimates

Tools

Rg = λ
n−2 |ψ|

2 by contracting the metric equation.

∆Rm = Rm ∗ Rm +∇2Ric .

∆T g ,ψ
ij = 2

(
R

4
− λ2

)
T g ,ψ
ij +Rm∗∇ψ∗ψ+∇Rm∗ψ∗ψ+∇2ψ∗∇ψ.

−∆gg + ∂g ∗ g = Ricg .

Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in Lp(M), for
p ̸= 2.
But under a uniform Ricci bound, one has it for p = 2.

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Tools
Key Estimates

Tools

Rg = λ
n−2 |ψ|

2 by contracting the metric equation.

∆Rm = Rm ∗ Rm +∇2Ric .

∆T g ,ψ
ij = 2

(
R

4
− λ2

)
T g ,ψ
ij +Rm∗∇ψ∗ψ+∇Rm∗ψ∗ψ+∇2ψ∗∇ψ.

−∆gg + ∂g ∗ g = Ricg .

Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in Lp(M), for
p ̸= 2.
But under a uniform Ricci bound, one has it for p = 2.

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Tools
Key Estimates

Tools

Rg = λ
n−2 |ψ|

2 by contracting the metric equation.

∆Rm = Rm ∗ Rm +∇2Ric .

∆T g ,ψ
ij = 2

(
R

4
− λ2

)
T g ,ψ
ij +Rm∗∇ψ∗ψ+∇Rm∗ψ∗ψ+∇2ψ∗∇ψ.

−∆gg + ∂g ∗ g = Ricg .

Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in Lp(M), for
p ̸= 2.
But under a uniform Ricci bound, one has it for p = 2.

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Tools
Key Estimates

Tools

Rg = λ
n−2 |ψ|

2 by contracting the metric equation.

∆Rm = Rm ∗ Rm +∇2Ric .

∆T g ,ψ
ij = 2

(
R

4
− λ2

)
T g ,ψ
ij +Rm∗∇ψ∗ψ+∇Rm∗ψ∗ψ+∇2ψ∗∇ψ.

−∆gg + ∂g ∗ g = Ricg .

Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in Lp(M), for
p ̸= 2.

But under a uniform Ricci bound, one has it for p = 2.

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Tools
Key Estimates

Tools

Rg = λ
n−2 |ψ|

2 by contracting the metric equation.

∆Rm = Rm ∗ Rm +∇2Ric .

∆T g ,ψ
ij = 2

(
R

4
− λ2

)
T g ,ψ
ij +Rm∗∇ψ∗ψ+∇Rm∗ψ∗ψ+∇2ψ∗∇ψ.

−∆gg + ∂g ∗ g = Ricg .

Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in Lp(M), for
p ̸= 2.
But under a uniform Ricci bound, one has it for p = 2.

A. Maalaoui Dirac-Einstein Structures



Intro to the problem
Main results

Examples
Idea of the Proof

Tools
Key Estimates

Tools

Rg = λ
n−2 |ψ|

2 by contracting the metric equation.

∆Rm = Rm ∗ Rm +∇2Ric .
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(
R

4
− λ2

)
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Key Estimates

Proposition

Let (g , ψ) ∈ E(D,K , c), p ∈ M and r > 0 sufficiently small. There
exists ε0(λ,K ,D) > 0 such that, if∫

B2r

|Rm|2dv < ε0,

then there exists C (λ,K ,D) > 0 such that

∥Rm∥L4(Br ) ≤ C
(
∥Rm∥L2(B2r ) + vol(B8r )

1
2

)
and

∥∇Rm∥L2(Br ) ≤ C
[
∥Rm∥2L2(B2r )

+∥Rm∥L2(B2r )+vol(B8r )+vol(B8r )
1
2

]
,

where we set Br = B(p, r).A. Maalaoui Dirac-Einstein Structures
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ε-regularity

Proposition

There exist ε1(λ,K ,D) > 0 and 0 < r0 < 1 such that, if∫
B16r

|Rm|2dv < ε1, r < r0,

then there exists C (λ,K ,D) such that

sup
B r

2

|Rm| ≤ C (λ,K ,D).
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The Good, the Bad

Let r < r0
4 as defined in above and consider a covering of (M, gi )

by balls B(xk , r) such that B(xk ,
r
2) are disjoint. We let

I =

{
k ∈ N;

∫
B(xk ,16r)

|Rmgi |
2dvgi < ε1

}
,

and we define

Gi (r) =
⋃

k∈I B(xk , r).

Hi (r) =
⋃{

B(xk , r);
∫
B(xk ,16r)

|Rmgi |2gi dvgi ≥ ε1

}
.

So that Mi = Hi (r) ∪ Gi (r). This is a splitting of Mi into a good
set where one can control the curvature and a bad set where there
is no L∞ control on the curvature.
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The Singular Set

The singular set S can then be defined by S = M∞ \M0. It can be
characterized by

S =


p ∈ M, such that there exists xk ∈ M, r > 0, ε1 > 0 with

xk → p and lim inf
r→0

lim inf
k→∞

∫
B(xk ,r)

|Rmgk |
2dvgk ≥ ε1

 .
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Around the Singularity

Around the singularity, we rescale the metric in order to have a
uniform bound on the curvature tensor.

Tracking the various quantities (as in the Einstein setting), we
get a non-flat Ricci flat metric at the limit. In fact, it is ALE.

The eigenspinors will converge to a harmonic spinor.

But the limit has zero mass. So the spinor is parallel.
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Thank you for your attention!
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