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Intro to the problem

The functional

Let (M, g, %) be a smooth Riemannian, spin manifold and consider
the following functional

E(g, ) = /M Re + (Dt 1) — Alf2 dvg.
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Intro to the problem

The critical points of this functional are solutions of the system

R
Ricg — 7gg = T8&Y
(1)
Dgtp = \p

where T8 denotes the energy-momentum tensor
1
TEV(X,Y) = =2 (X - Vyp+ Y - Vxthv),  (2)
here - and V denote the Clifford multiplication and the metric

connection extended to the spin bundle > M.
Such a spinor will be called Einstein spinor.
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Intro to the problem

Coupling

The structure is similar to some familiar problems such as:

@ Schrodinger-Newton gravity. Actually, one could derive one
from the other, under certain circumstances.

@ Yang-Mills-Higgs-Dirac model (supersymmetric gauge theory).
@ Seiberg-Witten equations.
@ Supersymmetric nonlinear Sigma model.
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Intro to the problem

Do they exist?

First, notice that if (M, g) is Einstein and 1 is a Killing spinor,
then 1 is an Einstein spinor.
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Intro to the problem

Do they exist?

First, notice that if (M, g) is Einstein and 1 is a Killing spinor,
then 1 is an Einstein spinor.
Recall the relation for Killing spinors is Vxi) = aX - .
This was then pushed to the notion of WK-spinors (weak Killing
spinors). In dimension 3, all Einstein spinors are WK-spinors but
this fails in higher dimension.
o Einstein spinors on product manifolds M® x N , where M is
a six-dimensional simply connected nearly Kihler manifold
and N' is a manifold admitting Killing spinors.
@ Warped product of codimension 1 foliations with Killing
horizontal spinor.
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Intro to the problem

@ WK-spinors on quasi-Einstein Sasakian manifolds.

@ WK-spinors on the three-dimensional sphere S3 with
non-standard merics.

@ WK-spinors on the three-dimensional Euclidean space R3 with
non-constant scalar curvature.

There is not a lot of examples, especially that in most cases this
requires the existence of a Killing spinor.
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Intro to the problem

@ WK-spinors on quasi-Einstein Sasakian manifolds.

@ WK-spinors on the three-dimensional sphere S3 with
non-standard merics.

@ WK-spinors on the three-dimensional Euclidean space R3 with
non-constant scalar curvature.

There is not a lot of examples, especially that in most cases this
requires the existence of a Killing spinor.

@ Is there a topological obstruction to the existence of such
structures?

@ Does any spin manifold carry an Einstein spinor?
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Intro to the problem

Objective
We propose to study the properties of this set:
&(D,c,K) = {(g,w) € Crit.(E); diam(M,g) < D, —~AgRy > —KRg}

in terms of compactness and local structure. In the spirit of:
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@ M. Anderson, Ricci curvature bounds and Einstein metrics on
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Main results Convergence
Second Variation

Main results

We will focus on dimensions 3 and 4 but similar results can be
proved under a stronger bound on the Riemann tensor in higher
dimensions.
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Main results Convergence
Second Variation

Main results

We will focus on dimensions 3 and 4 but similar results can be
proved under a stronger bound on the Riemann tensor in higher
dimensions.

Let n = 3, then the space £(D, c, K) is compact in the topology
induced by the Hausdorff distance. That is, if

(gk,Yk) € E(D, c, K) then there exists a subsequence again
denoted by (gx, k) that converges in C“*(M) to (gso, o) for all
¢>0and0 < o<1 and ) is an Einstein spinor on (M, g,).
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Main results Convergence

Second Variation

Let n = 4, then there exist a compact orbifold (M, g~ ) with a
finite set S of orbifold singularities, a spinor s, € ¥(Mx \ S) and
a sequence of C* embeddings F : (Mx \ S, g8) — (M, gk), for k
large enough, such that

o ((Fk)*gk, (Fk)*1k) converges uniformly on compact subsets in
the C5® topology on My, \ 'S, to (gso, Vo) for every £ > 0
and 0 < a < 1 and Y is an Einstein spinor on (M \ S, gc0)-
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@ For each p; € S, there exist a sequence of real numbers ri, and
a sequence of points x, € M such that (M, rigk, xk)
converges in the pointed Gromov-Hausdorff sense to
(Yi,8i: X0), where (Y;,g;) is a Ricci flat non-flat manifold.
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Main results Convergence
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Let n = 4, then there exist a compact orbifold (M, g~ ) with a
finite set S of orbifold singularities, a spinor s, € ¥(Mx \ S) and
a sequence of C* embeddings F : (Mx \ S, g8) — (M, gk), for k
large enough, such that

o ((Fk)*gk, (Fk)*1k) converges uniformly on compact subsets in
the C5® topology on My, \ 'S, to (gso, Vo) for every £ > 0
and 0 < a < 1 and Y is an Einstein spinor on (M \ S, gc0)-

@ For each p; € S, there exist a sequence of real numbers ri, and
a sequence of points x, € M such that (M, rigk, xk)
converges in the pointed Gromov-Hausdorff sense to
(Yi,8i: X0), where (Y;,g;) is a Ricci flat non-flat manifold.
That is, there exists a sequence of smooth diffeomorphisms
Hi : (B(pi,r),g;) = (M, rcgk) so that (H;(r«gk)) converges
in the C%* topology in B(pi,r) C Yi, to g; for every r >0,
{>0and0 < o<l
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Main results Convergence
Second Variation

continued...

Moreover, there exists a parallel spinor ©; ~, € [(XY;) such that
Hi 1y converges in the C% topology in B(p;,r), to the spinor
Vi~ for every £ >0 and 0 < a < 1 and

|5|
I|m|nf/ |Rmg,|? dvg, > /]ng dvg.. + /]Rn’k 1 dvg,.
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Main results Convergence
Second Variation

Second Variation

Let h be a symmetric two tensor transverse to the diffeomorphism
action, that is 5h = 0. If (g,) is a critical point of E, then we
have

2E(g,¢)[(h,<p),(h,s0)]=/ %(ALh—i—VVtr(h),h)
M

(—Atr(h) — <Ricg,h>)tr(h)+%|h|2

(T&Y, hyer(h) + %(h « TEY h) 4 %(Vtr(h) 0, o)

o,9) + 2(Dgp — Ap, p)dv

1
¥
1
"3
+(D
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Examples

Example 1: Killing Spinors

We consider a real Killing spinor ¢, that is Vx¢ = —uX - for a
real constant p > 0, for all tangent vector X.
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Examples

Example 1: Killing Spinors

We consider a real Killing spinor ¢, that is Vx¢ = —uX - for a
real constant p > 0, for all tangent vector X.
The second variation reads

VZE(g,¥)[(h,#), (h,o)]

1 _2
- / Liah By + 22 RIBP 4 20Dy — Ap, o) dv.
M 2 4”
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Examples

Exemple 2: Quasi-Killing Spinors

consider a Sasakian spin-manifold (M2™+1 g & 7). A quasi-Killing
spinor satisfies
Vxtp=aX -+ bn(X)§ -,
where £ is the Reeb vector field of 7. One can construct an
Einstein Spinor from a quasi-Killing spinors with
1 2m? —m—2

ITEy T4 m-1)
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Examples

Exemple 2: Quasi-Killing Spinors

consider a Sasakian spin-manifold (M2™+1 g & 7). A quasi-Killing
spinor satisfies

Vxtp=aX -+ bn(X)§ -,
where £ is the Reeb vector field of 7. One can construct an
Einstein Spinor from a quasi-Killing spinors with

1 2m? —m—2
=+-, b=F———+
ITEy T4 m-1)

In this case, we have

VZE(g, ¥)l(h, ¢), (h,0)]

_ 1 m+1 5 2m? —m—2 5
_/MQ<ALh’h>+m—1|h| + 2 1) |h()|
2m?> —m—1

a1y (&) €t 0) +2(Dp = A, ) dv.
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Examples

Let the pair (g,v) be a critical point for the functional E. Then
the symmetric 2-tensor h belongs to the space of horizontal
Dirac-Einstein deformations, if it solves the following system of
equations

((6h=0

<Ricg — %g, h> =(T&%,h) =0

Ah+Rgh+ T&¥ x h=0

In particular, the space of horizontal Dirac-Einstein perturbations is
finite dimensional.
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Tools
Key Estimates

Idea of the Proof

o Ry = -25|1|? by contracting the metric equation.
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Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in LP(M), for

p# 2.
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Tools
Key Estimates

Idea of the Proof

o Ry = -25|1|? by contracting the metric equation.
e ARm = Rm* Rm + V?Ric.
°

ATEY =2 (4 )\2> TEY 4 RmsVsgp+V Rmaapstp+ V2 V.

o —Ayg+0g*g = Ricg.
Another important item that made the analysis challenging is the
lack of a uniform Calderon-Zygmund type estimates in LP(M), for

p# 2.

But under a uniform Ricci bound, one has it for p = 2.
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Tools
Key Estimates
Idea of the Proof

Key Estimates

Let (g,¢) € E(D,K,c), p € M and r > 0 sufficiently small. There
exists eo(A, K, D) > 0 such that, if

/ |Rm|?dv < e,
B2r

then there exists C(\, K, D) > 0 such that

1
|Rmllie(a,) < € (IIRmIli2(s,,) + vol(Bsr)?)
and

1
IV Rml 25,y < C[IRmIZ2(5, ) +IRm 2(,)+vol (Bar)+vol (Bs) 2]
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Tools
Key Estimates

Idea of the Proof

e-regularity

Proposition
There exist £1(\, K, D) > 0 and 0 < ry < 1 such that, if

/ |Rm|?dv < e1, r < n,
Bier

then there exists C(\, K, D) such that

sup |[Rm| < C(\, K, D).
B;
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Tools
Key Estimates
Idea of the Proof

The Good, the Bad

Let r < 7 as defined in above and consider a covering of (M, g;)
by balls B(x, r) such that B(x, 5) are disjoint. We let

l=<ke N;/ |Rmg,[*dvg, <1 ¢,
B(xk,16r)

and we define
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The Good, the Bad

Let r < 7 as defined in above and consider a covering of (M, g;)
by balls B(x, r) such that B(x, 5) are disjoint. We let

l=<ke N;/ |Rmg,[*dvg, <1 ¢,
B(xk,16r)

and we define
o Gj(r) = Ukes B(xk, r).
o Hi(r)=U B0, 1) |Rmg,|2 dvg >e1t.
ks B(Xk,16r) 8ilgi 8i
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Tools
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The Good, the Bad

Let r < 7 as defined in above and consider a covering of (M, g;)
by balls B(x, r) such that B(x, 5) are disjoint. We let

l=<ke N;/ |Rmg,[*dvg, <1 ¢,
B(xk,16r)

and we define
® Gi(r) = Ukes Bxk, ).
o Hi(r)=U {B(ka r); fB(xk,16r) ’ng,-@,- dvg, > 51} .
So that M; = H;(r) U G;(r). This is a splitting of M; into a good

set where one can control the curvature and a bad set where there
is no L°° control on the curvature.
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Tools
Key Estimates
Idea of the Proof

The Singular Set

The singular set S can then be defined by S = M., \ M. It can be
characterized by

p € M, such that there exists x, € M, r > 0,e1 > 0 with
S =

xx — p and liminf liminf \ngk|2dvgk >e
r—0 k—oo B(xk,r)
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Idea of the Proof

Around the Singularity

Around the singularity, we rescale the metric in order to have a
uniform bound on the curvature tensor.
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Tools
Key Estimates
Idea of the Proof

Around the Singularity

Around the singularity, we rescale the metric in order to have a
uniform bound on the curvature tensor.

e Tracking the various quantities (as in the Einstein setting), we
get a non-flat Ricci flat metric at the limit. In fact, it is ALE.

@ The eigenspinors will converge to a harmonic spinor.

@ But the limit has zero mass. So the spinor is parallel.
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Tools

Key Estimates

Idea of the Proof

Thank you for your attention!
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