

# **CRITICAL POINTS OF THE MOSER-TRUDINGER FUNCTIONAL**

Francesca De Marchis Sapienza, Università di Roma

work in collaboration with A. Malchiodi, L. Martinazzi, P-D. Thizy

International doctoral summer school in conformal geometry and non-local operators

Let  $\Omega \subset \mathbb{R}^2$  be a smooth open bounded set

 $H^1_0(\Omega) \not\hookrightarrow L^\infty(\Omega)$ 

2

Let  $\Omega \subset \mathbb{R}^2$  be a smooth open bounded set

 $H_0^1(\Omega) \not\hookrightarrow L^\infty(\Omega)$ 

[Pohozaev, Dock. Acad. Nauk '65, Trudinger, J. Math. Mech. '67]

$$u \in H_0^1(\Omega) \quad \Rightarrow \quad e^{u^2} \in L^1(\Omega)$$

and there exists  $\bar{\Lambda} > 0$  such that for any  $\Lambda \in (0, \bar{\Lambda}]$ 

$$\sup_{\|u\|_{H_0^1(\Omega)}^2 \le \Lambda} \int_{\Omega} e^{u^2} dx < +\infty$$
 (MT)

• • • • • • • • • • • • •

Let  $\Omega \subset \mathbb{R}^2$  be a smooth open bounded set

 $H_0^1(\Omega) \not\hookrightarrow L^\infty(\Omega)$ 

[Pohozaev, Dock. Acad. Nauk '65, Trudinger, J. Math. Mech. '67]

$$u \in H_0^1(\Omega) \quad \Rightarrow \quad e^{u^2} \in L^1(\Omega)$$

and there exists  $\bar{\Lambda} > 0$  such that for any  $\Lambda \in (0, \bar{\Lambda}]$ 

$$\sup_{\int_{\Omega} |\nabla u|^2 dx =: \|u\|_{H^1_0(\Omega)}^2 \le \Lambda} \int_{\Omega} e^{u^2} dx < +\infty$$
 (MT)

• • • • • • • • • • • • •

Let  $\Omega \subset \mathbb{R}^2$  be a smooth open bounded set

 $H_0^1(\Omega) \not\hookrightarrow L^\infty(\Omega)$ 

[Pohozaev, Dock. Acad. Nauk '65, Trudinger, J. Math. Mech. '67]

$$u \in H_0^1(\Omega) \quad \Rightarrow \quad e^{u^2} \in L^1(\Omega)$$

and there exists  $\bar{\Lambda} > 0$  such that for any  $\Lambda \in (0, \bar{\Lambda}]$ 

$$\sup_{\int_{\Omega} |\nabla u|^2 dx =: \|u\|_{H_0^1(\Omega)}^2 \le \Lambda} \int_{\Omega} e^{u^2} dx < +\infty$$
(MT)

#### [Moser, Indiana '71]

 $\bar{\Lambda} = 4\pi$  is sharp in (*MT*), in particular

$$\sup_{\|u\|^2_{H^1_0(\Omega)} \leq 4\pi} \int_{\Omega} e^{u^2} dx < +\infty,$$

while the supremum is  $+\infty$  if  $\Lambda > 4\pi$ .

 $(MT)_{4\pi}$ 

Let  $\Omega \subset \mathbb{R}^2$  be a smooth open bounded set

 $H_0^1(\Omega) \not\hookrightarrow L^\infty(\Omega)$ 

[Pohozaev, Dock. Acad. Nauk '65, Trudinger, J. Math. Mech. '67]

$$u \in H_0^1(\Omega) \quad \Rightarrow \quad e^{u^2} \in L^1(\Omega)$$

and there exists  $\bar{\Lambda} > 0$  such that for any  $\Lambda \in (0, \bar{\Lambda}]$ 

$$\sup_{\int_{\Omega} |\nabla u|^2 dx =: \|u\|_{H_0^1(\Omega)}^2 = \Lambda} \int_{\Omega} e^{u^2} dx < +\infty$$
(MT)

#### [Moser, Indiana '71]

 $\bar{\Lambda} = 4\pi$  is sharp in (*MT*), in particular

$$\sup_{\|u\|_{H^1_0(\Omega)}^2=4\pi}\int_{\Omega}e^{u^2}\,dx<+\infty,$$

while the supremum is  $+\infty$  if  $\Lambda > 4\pi$ .

 $(MT)_{4\pi}$ 

$$\sup_{\|u\|^2_{H^1_{\alpha}(\Omega)} = \Lambda} \int_{\Omega} e^{u^2} dx = C_{\Lambda,\Omega}$$
(MT)

For  $\Lambda \in (0, 4\pi)$  the supremum in (MT) is attained by standard minimization arguments.



æ

イロン イボン イヨン イヨン

$$\sup_{\|u\|_{H^{1}_{0}(\Omega)}^{2}=\Lambda} \int_{\Omega} e^{u^{2}} dx = C_{\Lambda,\Omega}$$
(MT)

For  $\Lambda \in (0, 4\pi)$  the supremum in (MT) is attained by standard minimization arguments.

The supremum is attained also for  $\Lambda = 4\pi$ !

**[Carleson-Chang**, Bull. Sci. Math. '86] if  $\Omega = B_1(0)$ 

э

$$\sup_{\|u\|_{H^{1}_{0}(\Omega)}^{2}=\Lambda} \int_{\Omega} e^{u^{2}} dx = C_{\Lambda,\Omega}$$
(MT)

For  $\Lambda \in (0, 4\pi)$  the supremum in (MT) is attained by standard minimization arguments.

| The supremum is attained also for $\Lambda = 4\pi!$ |                                 |
|-----------------------------------------------------|---------------------------------|
| [Carleson-Chang, Bull. Sci. Math. '86]              | $\text{if } \Omega = B_1(0)$    |
| [Struwe, Ann. IHP '88]                              | $\text{if }\Omega\simeq B_1(0)$ |
|                                                     |                                 |

3 x 3

$$\sup_{\|u\|_{H^{1}_{0}(\Omega)}^{2}=\Lambda} \int_{\Omega} e^{u^{2}} dx = C_{\Lambda,\Omega}$$
(MT)

For  $\Lambda \in (0, 4\pi)$  the supremum in (MT) is attained by standard minimization arguments.

| The supremum is attained also for $\Lambda = 4\pi!$ |                              |
|-----------------------------------------------------|------------------------------|
| [Carleson-Chang, Bull. Sci. Math. '86]              | $\text{if } \Omega = B_1(0)$ |
| [Struwe, Ann. IHP '88]                              | if $\Omega \simeq B_1(0)$    |
| [Flucher, Comm. Math. Helv.'92]                     | for any $\Omega$             |

2

Moser Trudinger Functional

$$F(u) := \int_{\Omega} e^{u^2} dx$$
$$M_{\Lambda} := \{ u \in H_0^1(\Omega) : \|u\|_{H_0^1(\Omega)}^2 = \Lambda \}$$

Question: Given  $\Lambda > 0$  does  $F_{|M_{\Lambda}}$  admit positive critical points, i.e. positive solutions to

$$-\Delta u = 2\lambda u e^{u^2}$$
 in  $\Omega$ ,  $\Lambda = \int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} 2\lambda u^2 e^{u^2} dx$ ?

æ

Moser Trudinger Functional

$$F(u) := \int_{\Omega} e^{u^2} dx$$
$$M_{\Lambda} := \{ u \in H_0^1(\Omega) : \|u\|_{H_0^1(\Omega)}^2 = \Lambda \}$$

Question: Given  $\Lambda > 0$  does  $F_{|M_{\Lambda}}$  admit positive critical points, i.e. positive solutions to

$$-\Delta u = 2\lambda u e^{u^2}$$
 in  $\Omega$ ,  $\Lambda = \int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} 2\lambda u^2 e^{u^2} dx$ ?

For  $\Lambda \leq 4\pi$  there are maximizers ([Carleson-Chang, '86], [Struwe, '88], [Flucher, '92]). For  $\Lambda > 4\pi$ ?

2

Moser Trudinger Functional

$$F(u) := \int_{\Omega} e^{u^2} dx$$
$$M_{\Lambda} := \{ u \in H_0^1(\Omega) : \|u\|_{H_0^1(\Omega)}^2 = \Lambda \}$$

Question: Given  $\Lambda > 0$  does  $F_{|M_{\Lambda}}$  admit positive critical points, i.e. positive solutions to

$$-\Delta u = 2\lambda u e^{u^2}$$
 in  $\Omega$ ,  $\Lambda = \int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} 2\lambda u^2 e^{u^2} dx$ ?

For  $\Lambda \leq 4\pi$  there are maximizers ([Carleson-Chang, '86], [Struwe, '88], [Flucher, '92]). For  $\Lambda > 4\pi$ ?

[Monahan, Princeton Univ. '71], [Struwe, Ann. IHP '88], [Lamm-Robert-Struwe, J. Funct. Anal. '09]

If 
$$\Lambda \in (4\pi, 4\pi + \varepsilon)$$
, then  $F_{|M_{\Lambda}}$  has

a local maximum

イロン イポン イヨン イヨン

Moser Trudinger Functional

$$F(u) := \int_{\Omega} e^{u^2} dx$$
$$M_{\Lambda} := \{ u \in H_0^1(\Omega) : \|u\|_{H_0^1(\Omega)}^2 = \Lambda \}$$

Question: Given  $\Lambda > 0$  does  $F_{|M_{\Lambda}}$  admit positive critical points, i.e. positive solutions to

$$-\Delta u = 2\lambda u e^{u^2}$$
 in  $\Omega$ ,  $\Lambda = \int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} 2\lambda u^2 e^{u^2} dx$ ?

For  $\Lambda \leq 4\pi$  there are maximizers ([Carleson-Chang, '86], [Struwe, '88], [Flucher, '92]). For  $\Lambda > 4\pi$ ?

[Monahan, Princeton Univ. '71], [Struwe, Ann. IHP '88], [Lamm-Robert-Struwe, J. Funct. Anal. '09]

If  $\Lambda \in (4\pi, 4\pi + \varepsilon)$ , then  $F_{|M_{\Lambda}}$  has at least two critical points: a local maximum and a saddle point.

June 25, 2023

イロン イポン イヨン イヨン

# $\Omega = B_1(0)$

### [Malchiodi-Martinazzi, JEMS '14]

There exists  $\Lambda_{\#} > 4\pi$  such that  $F_{|M_{\Lambda}}$  has:  $\triangleright$  at least one positive critical point for  $\Lambda \in (0, 4\pi] \cup \{\Lambda_{\#}\};$   $\triangleright$  at least two positive critical points for  $\Lambda \in (4\pi, \Lambda_{\#});$  $\triangleright$  no critical points for  $\Lambda > \Lambda_{\#}.$ 



# $\Omega = B_1(0)$

### [Malchiodi-Martinazzi, JEMS '14]

There exists  $\Lambda_{\#} > 4\pi$  such that  $F_{|M_{\Lambda}}$  has:  $\triangleright$  at least one positive critical point for  $\Lambda \in (0, 4\pi] \cup \{\Lambda_{\#}\};$   $\triangleright$  at least two positive critical points for  $\Lambda \in (4\pi, \Lambda_{\#});$  $\triangleright$  no critical points for  $\Lambda > \Lambda_{\#}.$ 



#### [Mancini-Martinazzi, Calc. Var. '17]

Blow-up only occurs from the right, namely if  $\mu := \|u_{\mu}\|_{\infty} = u_{\mu}(0) \to +\infty$ 

$$\Lambda_{\mu} = \int_{\Omega} |\nabla u_{\mu}|^2 dx \ge 4\pi + \frac{4\pi}{\mu^4} + o(\mu^{-4}) > 4\pi$$

Francesca De Marchis

# $\Omega = B_1(0)$

### [Malchiodi-Martinazzi, JEMS '14]

There exists  $\Lambda_{\#} > 4\pi$  such that  $F_{|M_{\Lambda}}$  has:  $\triangleright$  at least one positive critical point for  $\Lambda \in (0, 4\pi] \cup \{\Lambda_{\#}\};$   $\triangleright$  at least two positive critical points for  $\Lambda \in (4\pi, \Lambda_{\#});$  $\triangleright$  no critical points for  $\Lambda > \Lambda_{\#}.$ 



[Mancini-Martinazzi, Calc. Var. '17]

Blow-up only occurs from the right, namely if  $\mu := \|u_{\mu}\|_{\infty} = u_{\mu}(0) \to +\infty$ 

$$\Lambda_{\mu} = \int_{\Omega} |\nabla u_{\mu}|^2 dx \ge 4\pi + \frac{4\pi}{\mu^4} + o(\mu^{-4}) > 4\pi$$

Francesca De Marchis

# $\Omega$ not simply connected

### [del Pino-Musso-Ruf, J. Funct. Anal. '10]

If  $\Omega$  is non simply connected, then there exists  $\Lambda_j \longrightarrow 8\pi^+$ , such that  $F_{|M_{\Lambda j}|}$  has at least one critical point (with two peaks).

æ

イロン イボン イヨン イヨン

# $\Omega$ not simply connected

### [del Pino-Musso-Ruf, J. Funct. Anal. '10]

If  $\Omega$  is non simply connected, then there exists  $\Lambda_j \longrightarrow 8\pi^+$ , such that  $F_{|M_{\Lambda j}|}$  has at least one critical point (with two peaks).

#### [del Pino-Musso-Ruf, J. Funct. Anal. '10]

If  $\Omega$  is an annulus, then, for any  $k \in \mathbb{N}$ , there exists  $\Lambda_j \longrightarrow 4\pi k^+$  such that  $F_{|M_{\Lambda_j}}$  has at least one critical point (with k peaks).

э

# $\Omega$ not simply connected

### [del Pino-Musso-Ruf, J. Funct. Anal. '10]

If  $\Omega$  is non simply connected, then there exists  $\Lambda_j \longrightarrow 8\pi^+$ , such that  $F_{|M_{\Lambda j}|}$  has at least one critical point (with two peaks).

#### [del Pino-Musso-Ruf, J. Funct. Anal. '10]

If  $\Omega$  is an annulus, then, for any  $k \in \mathbb{N}$ , there exists  $\Lambda_j \longrightarrow 4\pi k^+$  such that  $F_{|M_{\Lambda_j}}$  has at least one critical point (with k peaks).

### Remarks

▷ at  $4\pi k, k \in \mathbb{N}$ , blow-up can occur ▷ topology seems to play a role

э

# Blow-up and compactness of positive critical points

#### [Druet, Duke '06]

Let  $(u_j)_j \in H_0^1(\Omega)$  be a sequence of positive solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}; \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

Then (up to a subsequence) either

- (i)  $u_j \to u_\infty$  in  $C^\infty(\overline{\Omega})$  or
- (ii)  $u_j \to u_\infty$  in  $C^1_{loc}(\Omega \setminus \{x_1, \ldots, x_N\})$

$$\Lambda_j \to \int_{\Omega} |\nabla u_{\infty}|^2 dx + 4\pi k = \Lambda, \qquad k \ge N.$$



There is a related parabolic version in [Lamm-Robert-Struwe, '09].

# Blow-up and compactness of positive critical points

#### [Druet, Duke '06]

Let  $(u_j)_j \in H^1_0(\Omega)$  be a sequence of positive solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}; \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

Then (up to a subsequence) either

- (i)  $u_j \to u_\infty$  in  $C^\infty(\overline{\Omega})$  or
- (ii)  $u_j \to u_\infty$  in  $C^1_{loc}(\Omega \setminus \{x_1, \ldots, x_N\})$

$$\Lambda_j \to \int_{\Omega} |\nabla u_{\infty}|^2 dx + 4\pi k = \Lambda, \qquad k \ge N.$$

There is a related parabolic version in [Lamm-Robert-Struwe, '09].

[Druet-Thizy, JEMS '20] ([Malchiodi-Martinazzi, JEMS '14] for the radial case)

In case (ii):  $u_{\infty} = 0$  and k = N.

**Consequence:** compactness holds provided  $\Lambda \not\in 4\pi\mathbb{N}$ .

[Malchiodi-Martinazzi-Thizy, preprint '22]

Let  $\Lambda \in (4\pi k, 4\pi (k+1))$ . Then

$$d_{\Lambda} = \frac{(1-\chi(\Omega))(2-\chi(\Omega))\dots(k-\chi(\Omega))}{k!}$$

Ξ.

[Malchiodi-Martinazzi-Thizy, preprint '22]

Let  $\Lambda \in (4\pi k, 4\pi (k+1))$ . Then

$$d_{\Lambda} = \frac{(1-\chi(\Omega))(2-\chi(\Omega))\dots(k-\chi(\Omega))}{k!}$$

### Corollary

 $\triangleright$  If  $\Omega$  is non contractible (being  $\chi(\Omega) \leq 0$ ), then  $d_{\Lambda} \geq 1$  for any  $\Lambda \notin 4\pi\mathbb{N}$ .

[Malchiodi-Martinazzi-Thizy, preprint '22]

Let  $\Lambda \in (4\pi k, 4\pi (k+1))$ . Then

$$d_{\Lambda} = \frac{(1-\chi(\Omega))(2-\chi(\Omega))\dots(k-\chi(\Omega))}{k!}$$

#### Corollary

 $\triangleright$  If  $\Omega$  is non contractible (being  $\chi(\Omega) \leq 0$ ), then  $d_{\Lambda} \geq 1$  for any  $\Lambda \notin 4\pi \mathbb{N}$ .

▷ Via estimates as in [Mancini-Martinazzi, '16] blow up can occur only from the right hand side

 $\Downarrow$  if  $\Omega$  is non contractible, then  $F_{|M_{\Lambda}}$  admits a positive critical point for any  $\Lambda > 0$ .

2

[Malchiodi-Martinazzi-Thizy, preprint '22]

Let  $\Lambda \in (4\pi k, 4\pi (k+1))$ . Then

$$d_{\Lambda} = \frac{(1-\chi(\Omega))(2-\chi(\Omega))\dots(k-\chi(\Omega))}{k!}$$

#### Corollary

▷ If  $\Omega$  is non contractible (being  $\chi(\Omega) \leq 0$ ), then  $d_{\Lambda} \geq 1$  for any  $\Lambda \notin 4\pi \mathbb{N}$ .

▷ Via estimates as in [Mancini-Martinazzi, '16] blow up can occur only from the right hand side

if  $\Omega$  is non contractible, then  $F_{|M_{\Lambda}}$  admits a positive critical point for any  $\Lambda > 0$ .



3

[Malchiodi-Martinazzi-Thizy, preprint '22]

Let  $\Lambda \in (4\pi k, 4\pi (k+1))$ . Then

$$d_{\Lambda} = \frac{(1-\chi(\Omega))(2-\chi(\Omega))\dots(k-\chi(\Omega))}{k!}$$

### Corollary

▷ If  $\Omega$  is non contractible (being  $\chi(\Omega) \leq 0$ ), then  $d_{\Lambda} \geq 1$  for any  $\Lambda \notin 4\pi\mathbb{N}$ .

▷ Via estimates as in [Mancini-Martinazzi, '16] blow up can occur only from the right hand side

if  $\Omega$  is non contractible, then  $F_{|M_{\Lambda}}$  admits a positive critical point for any  $\Lambda > 0$ .



Same degree formula as for the equation  $-\Delta u = 2\Lambda \frac{e^u}{\int_{\Omega} e^u dx}$  [Chen-Lin, '03].

[Moser, Indiana '71], [Fontana, Comment. Math. Helv. '93], [Y. Li, J. PDE '01]

 $(\Sigma, g_0)$  compact Riemannian surface. For any  $\Lambda \leq 4\pi$ 

$$\sup_{\|u\|_{H^1(\Sigma)}^2 = \Lambda} \int_{\Sigma} e^{u^2} dv_{g_0} = C_{\Sigma,\Lambda} \quad \text{and} \quad \sup_{\|\nabla u\|_{L^2(\Sigma)}^2 = \Lambda} \int_{\Sigma} e^{u^2} dv_{g_0} = C_{\Sigma,\Lambda},$$

and the supremum is attained, while the supremum is  $+\infty$  if  $\Lambda > 4\pi$ .

[Moser, Indiana '71], [Fontana, Comment. Math. Helv. '93], [Y. Li, J. PDE '01]

 $(\Sigma,g_0)$  compact Riemannian surface. For any  $\Lambda \leq 4\pi$ 

$$\sup_{\|u\|_{H^1(\Sigma)}^2 = \Lambda} \int_{\Sigma} e^{u^2} dv_{g_0} = C_{\Sigma,\Lambda} \quad \text{and} \quad \sup_{\|\nabla u\|_{L^2(\Sigma)}^2 = \Lambda} \int_{\Sigma} e^{u^2} dv_{g_0} = C_{\Sigma,\Lambda},$$

and the supremum is attained, while the supremum is  $+\infty$  if  $\Lambda > 4\pi$ .

#### [DM-Malchiodi-Martinazzi-Thizy, Inventiones '22]

For every  $\Lambda > 0$  and for any *K* smooth positive function the functional

$$\tilde{\boldsymbol{F}}(u) = \int_{\Sigma} K e^{u^2} \qquad dv_{g_0}$$

has a positive critical point constrained on

$$\tilde{\boldsymbol{M}}_{\boldsymbol{\Lambda}} = \{ \boldsymbol{u} \in \boldsymbol{H}^1(\Sigma) : \|\boldsymbol{u}\|_{\boldsymbol{H}^1}^2 = \Lambda \}$$

[Moser, Indiana '71], [Fontana, Comment. Math. Helv. '93], [Y. Li, J. PDE '01]

 $(\Sigma,g_0)$  compact Riemannian surface. For any  $\Lambda \leq 4\pi$ 

$$\sup_{\|u\|_{H^{1}(\Sigma)}^{2}=\Lambda}\int_{\Sigma}e^{u^{2}}dv_{g_{0}}=C_{\Sigma,\Lambda} \quad \text{and} \quad \sup_{\|\nabla u\|_{L^{2}(\Sigma)}^{2}=\Lambda}\int_{\Sigma}e^{u^{2}}dv_{g_{0}}=C_{\Sigma,\Lambda},$$

and the supremum is attained, while the supremum is  $+\infty$  if  $\Lambda > 4\pi$ .

### [DM-Malchiodi-Martinazzi-Thizy, Inventiones '22]

For every  $\Lambda > 0$  and for any *K* smooth positive function the functional

$$\tilde{F}(u) = \int_{\Sigma} K e^{u^2} \qquad dv_{g_0}$$

has a positive critical point constrained on

$$\tilde{\boldsymbol{M}}_{\boldsymbol{\Lambda}} = \{ \boldsymbol{u} \in \boldsymbol{H}^1(\boldsymbol{\Sigma}) : \|\boldsymbol{u}\|_{\boldsymbol{H}^1}^2 = \boldsymbol{\Lambda} \}$$

i.e. a positive solution to

$$-\Delta_{g_0}u + u = 2\lambda K u e^{u^2}, \qquad \|u\|_{H^1(\Sigma)}^2 = \Lambda, \quad \lambda = \frac{\Lambda}{\int_{\Sigma} 2K u^2 e^{u^2} dv_{g_0}} > 0$$

[Moser, Indiana '71], [Fontana, Comment. Math. Helv. '93], [Y. Li, J. PDE '01]

 $(\Sigma,g_0)$  compact Riemannian surface. For any  $\Lambda \leq 4\pi$ 

$$\sup_{\|u\|_{H^{1}(\Sigma)}^{2}=\Lambda}\int_{\Sigma}e^{u^{2}}dv_{g_{0}}=C_{\Sigma,\Lambda} \quad \text{and} \quad \sup_{\|\nabla u\|_{L^{2}(\Sigma)}^{2}=\Lambda}\int_{\Sigma}e^{u^{2}}dv_{g_{0}}=C_{\Sigma,\Lambda},$$

and the supremum is attained, while the supremum is  $+\infty$  if  $\Lambda > 4\pi$ .

#### [DM-Malchiodi-Martinazzi-Thizy, Inventiones '22]

For every  $\Lambda > 0$  and for any *K* smooth positive function the functional

$$\tilde{F}(u) = \int_{\Sigma} K(e^{u^2} - 1) \, dv_{g_0}$$

has a positive critical point constrained on

$$\tilde{\boldsymbol{M}}_{\boldsymbol{\Lambda}} = \{ \boldsymbol{u} \in \boldsymbol{H}^1(\boldsymbol{\Sigma}) : \|\boldsymbol{u}\|_{\boldsymbol{H}^1}^2 = \boldsymbol{\Lambda} \}$$

i.e. a positive solution to

$$-\Delta_{g_0}u + u = 2\lambda K u e^{u^2}, \qquad \|u\|_{H^1(\Sigma)}^2 = \Lambda, \quad \lambda = \frac{\Lambda}{\int_{\Sigma} 2K u^2 e^{u^2} dv_{g_0}} > 0$$

Introducing the norm

$$||u||_{h}^{2} = \int_{\Sigma} (|\nabla u|^{2} + hu^{2}) dv_{g}$$

where  $h := \frac{1}{K}$  and  $g := Kg_0$ 

= 990

Introducing the norm

$$||u||_{h}^{2} = \int_{\Sigma} (|\nabla u|^{2} + hu^{2}) \, dv_{g} = \left( \int_{\Sigma} (|\nabla u|^{2} + u^{2}) \, dv_{g_{0}} =: ||u||_{H^{1}}^{2} \right)$$

where  $h := \frac{1}{K}$  and  $g := Kg_0$ , being  $\Delta_g = h\Delta_{g_0}$ , the result can be reformulated as follows:

An equivalent version [DM-Malchiodi-Martinazzi-Thizy, Inventiones '22]

For every  $\Lambda > 0$  and for any *h* smooth positive function the functional

$$\hat{F}(u) = \int_{\Sigma} (e^{u^2} - 1) \, dv_g$$

has a positive critical point constrained on

$$\hat{\boldsymbol{M}}_{\boldsymbol{\Lambda}} = \{ \boldsymbol{u} \in \boldsymbol{H}^1(\boldsymbol{\Sigma}) : \|\boldsymbol{u}\|_h^2 = \boldsymbol{\Lambda} \}$$

ъ

Introducing the norm

$$||u||_{h}^{2} = \int_{\Sigma} (|\nabla u|^{2} + hu^{2}) \, dv_{g} = \left( \int_{\Sigma} (|\nabla u|^{2} + u^{2}) \, dv_{g_{0}} =: ||u||_{H^{1}}^{2} \right)$$

where  $h := \frac{1}{K}$  and  $g := Kg_0$ , being  $\Delta_g = h\Delta_{g_0}$ , the result can be reformulated as follows:

An equivalent version [DM-Malchiodi-Martinazzi-Thizy, Inventiones '22]

For every  $\Lambda > 0$  and for any *h* smooth positive function the functional

$$\hat{F}(u) = \int_{\Sigma} (e^{u^2} - 1) \, dv_g$$

has a positive critical point constrained on

$$\hat{\boldsymbol{M}}_{\boldsymbol{\Lambda}} = \{ \boldsymbol{u} \in \boldsymbol{H}^1(\boldsymbol{\Sigma}) : \|\boldsymbol{u}\|_h^2 = \boldsymbol{\Lambda} \}$$

i.e. a positive solution to

$$-\Delta_g u + hu = 2\lambda u e^{u^2}, \qquad \|u\|_h^2 = \Lambda, \quad \lambda = \frac{\Lambda}{\int_{\Sigma} 2u^2 e^{u^2} dv_g} > 0$$

June 25, 2023

э

ヘロト ヘアト ヘビト ヘビト

### A known compactness result

### [Y. Yang, Calc. Var. '15]

Let  $(u_j)_j \in H^1(\Sigma)$  be a sequence of positive solutions to

$$-\Delta_g u_j + \frac{h}{u_j} = 2\lambda_j u_j e^{u_j^2}, \qquad \Lambda_j = \|u\|_h^2 \to \Lambda.$$

Then (up to a subsequence) either

(i) 
$$u_j \to u_\infty$$
 in  $C^\infty(\Sigma)$  or  
(ii)  $u_j \to u_\infty$  in  $C^1_{loc}(\Sigma \setminus \{x_1, \dots, x_N\})$  and  
 $\Lambda_j \to \|u_\infty\|_h^2 + 4\pi k = \Lambda, \qquad k \ge N.$ 

2

### How to get existence?

#### Ingredients

▷ New compactness results (the idea is to prove that  $u_{\infty} = 0$  and k = N, but an extra parameter is introduced)

▷ A min-max scheme (in the spirit of [Djadli-Malchiodi, '08])

3 →

• • • • • • • • •
#### Ingredients

▷ New compactness results (the idea is to prove that  $u_{\infty} = 0$  and k = N, but an extra parameter is introduced)

▷ A min-max scheme (in the spirit of [Djadli-Malchiodi, '08])

#### Problem

Min-max schemes produce Palais-Smale sequences, but the Palais-Smale condition it is known to hold for  $\Lambda < 4\pi$  [Adimurthi, '90], [Adimurthi-Struwe, '00] and it fails for  $\Lambda > 4\pi$  [Costa-Tintarev, '14].

イロト イポト イヨト イヨト

For  $p \in (1, 2)$ ,  $\Lambda > 0$ , we introduce the functional

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left( \frac{p ||u||_{h}^{2}}{2\Lambda} \right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

2

ヘロト ヘアト ヘビト ヘビト

For  $p \in (1, 2)$ ,  $\Lambda > 0$ , we introduce the functional

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left( \frac{p \|u\|_{h}^{2}}{2\Lambda} \right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Any non trivial critical point of  $J_{p,\Lambda}$  is a positive solution to

$$-\Delta_g u + hu = p\lambda u^{p-1} e^{u^p} \tag{(*)}_p$$

where  $\lambda > 0$  is given by the relation

$$\Lambda = \frac{\lambda p^2}{2} \left( \int_{\Sigma} \left( e^{u^p} - 1 \right) dv_g \right)^{\frac{2-p}{p}} \left( \int_{\Sigma} u^p e^{u^p} dv_g \right)^{\frac{2(p-1)}{p}} \tag{**}_p$$

æ

For  $p \in (1, 2)$ ,  $\Lambda > 0$ , we introduce the functional

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left( \frac{p \|u\|_{h}^{2}}{2\Lambda} \right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Any non trivial critical point of  $J_{p,\Lambda}$  is a positive solution to

$$-\Delta_g u + hu = p\lambda u^{p-1} e^{u^p} \tag{(*)}_p$$

where  $\lambda > 0$  is given by the relation

$$\Lambda = \frac{\lambda p^2}{2} \left( \int_{\Sigma} \left( e^{u^p} - 1 \right) dv_g \right)^{\frac{2-p}{p}} \left( \int_{\Sigma} u^p e^{u^p} dv_g \right)^{\frac{2(p-1)}{p}} \tag{**}_p$$

#### Strategy

Solve for p < 2 (via a min-max method) and prove compactness for  $p \nearrow 2$ .

For  $p \in (1, 2)$ ,  $\Lambda > 0$ , we introduce the functional

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left( \frac{p \|u\|_{h}^{2}}{2\Lambda} \right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Any non trivial critical point of  $J_{p,\Lambda}$  is a positive solution to

$$-\Delta_g u + hu = p\lambda u^{p-1} e^{u^p} \tag{(*)}_p$$

where  $\lambda > 0$  is given by the relation

$$\Lambda = \frac{\lambda p^2}{2} \left( \int_{\Sigma} \left( e^{u^p} - 1 \right) dv_g \right)^{\frac{2-p}{p}} \left( \int_{\Sigma} u^p e^{u^p} dv_g \right)^{\frac{2(p-1)}{p}} \tag{**}_p$$

#### Strategy

Solve for p < 2 (via a min-max method) and prove compactness for  $p \nearrow 2$ . Indeed if  $(u_p)_p$  are positive solutions to  $(*)_p$  and  $(**)_p$  converging strongly, as  $p \nearrow 2$ , to u, then u is a positive solution to  $(*)_2$  and it satisfies

$$\Lambda = 2\lambda \int_{\Sigma} u^2 e^{u^2} \, dv_g.$$

Let  $p \in (1, 2)$  and  $\Lambda > 0$ 

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left(\frac{p \|u\|_{h}^{2}}{2\Lambda}\right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Francesca De Marchis

2

Let  $p \in (1, 2)$  and  $\Lambda > 0$ 

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left(\frac{p \|u\|_{h}^{2}}{2\Lambda}\right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Moser-Trudinger + Young's inequality

$$\log \int_{\Sigma} (e^{u_{+}^{p}} - 1) dv_{g} \leq \frac{2 - p}{2} \left( \frac{p ||u||_{h}^{2}}{8\pi} \right)^{\frac{p}{2 - p}} + C$$

Ξ.

Let  $p \in (1, 2)$  and  $\Lambda > 0$ 

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left(\frac{p \|u\|_{h}^{2}}{2\Lambda}\right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Moser-Trudinger + Young's inequality

$$\log \int_{\Sigma} (e^{u_{+}^{p}} - 1) dv_{g} \leq \frac{2 - p}{2} \left( \frac{p ||u||_{h}^{2}}{8\pi} \right)^{\frac{p}{2 - p}} + C$$

Francesca De Marchis

June 25, 2023

Ξ.

Let  $p \in (1,2)$  and  $\Lambda > 0$ 

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left(\frac{p \|u\|_{h}^{2}}{2\Lambda}\right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Moser-Trudinger + Young's inequality

$$\log \int_{\Sigma} (e^{u_{+}^{p}} - 1) dv_{g} \leq \frac{2 - p}{2} \left( \frac{p ||u||_{h}^{2}}{8\pi} \right)^{\frac{p}{2 - p}} + C$$

As a consequence:

• if  $\Lambda < 4\pi$ :  $J_{p,\Lambda}$  is coercive

2

Let  $p \in (1,2)$  and  $\Lambda > 0$ 

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left(\frac{p \|u\|_{h}^{2}}{2\Lambda}\right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Moser-Trudinger + Young's inequality

$$\log \int_{\Sigma} (e^{u_{+}^{p}} - 1) dv_{g} \leq \frac{2 - p}{2} \left( \frac{p \|u\|_{h}^{2}}{8\pi} \right)^{\frac{p}{2 - p}} + C$$

As a consequence:

- if  $\Lambda < 4\pi$ :  $J_{p,\Lambda}$  is coercive
- if  $\Lambda = 4\pi$ :  $J_{p,\Lambda}$  is bounded from below

2

Let  $p \in (1,2)$  and  $\Lambda > 0$ 

$$J_{p,\Lambda}(u) := \frac{2-p}{2} \left(\frac{p \|u\|_{h}^{2}}{2\Lambda}\right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_{+}^{p}} - 1) \, dv_{g}$$

Moser-Trudinger + Young's inequality

$$\log \int_{\Sigma} (e^{u_{+}^{p}} - 1) dv_{g} \leq \frac{2 - p}{2} \left( \frac{p \|u\|_{h}^{2}}{8\pi} \right)^{\frac{p}{2 - p}} + C$$

As a consequence:

- if  $\Lambda < 4\pi$ :  $J_{p,\Lambda}$  is coercive
- if  $\Lambda = 4\pi$ :  $J_{p,\Lambda}$  is bounded from below

Conversely:

• if  $\Lambda > 4\pi$ :  $J_{p,\Lambda}$  is unbounded from below.

2

Some improved inequalities allow to perform an analysis of the topology of low sublevels of  $J_{p,\Lambda}$  and to prove that:

there exists a PS-sequence at some min-max level

3 x 3

Some improved inequalities allow to perform an analysis of the topology of low sublevels of  $J_{p,\Lambda}$  and to prove that:

there exists a PS-sequence at some min-max level

#### Back to the same problem!

Even for the approximate problem it is not known whether the Palais-Smale condition holds or not. But in the subcritical case, p < 2, it is standard to prove convergence of bounded (in  $H^1$ -norm) Palais-Smale sequences.

< ロ > < 同 > < 三 > < 三 >

Some improved inequalities allow to perform an analysis of the topology of low sublevels of  $J_{p,\Lambda}$  and to prove that:

there exists a PS-sequence at some min-max level

#### Back to the same problem!

Even for the approximate problem it is not known whether the Palais-Smale condition holds or not. But in the subcritical case, p < 2, it is standard to prove convergence of bounded (in  $H^1$ -norm) Palais-Smale sequences.

Using p < 2, via the Struwe's monotonicity trick, we are able to prove for a.e.  $\Lambda$  the existence of a bounded Palais-Smale sequence and thus to find a **positive critical point of**  $J_{p,\Lambda}$  for a.e.  $\Lambda$ , namely a positive solution to

$$-\Delta u + hu = p\lambda u^{p-1}e^{u^p}, \qquad \lambda = \lambda(p, \Lambda, u).$$

# Existence for $\Lambda \not\in 4\pi\mathbb{N}$

### Compactness for p < 2 fixed

Let  $\Lambda_j \to \Lambda$  and let  $(u_j)_j$  be positive solutions to

$$-\Delta_g u_j + h u_j = p \lambda_j u_j^{p-1} e^{u_j^p}, \qquad \lambda_j = \lambda(p, \Lambda_j, u_j).$$

If  $(u_j)_j$  blow up, then  $\Lambda \in 4\pi\mathbb{N}$ 

2

# Existence for $\Lambda \not\in 4\pi\mathbb{N}$

#### Compactness for p < 2 fixed

Let  $\Lambda_j \to \Lambda$  and let  $(u_j)_j$  be positive solutions to

$$-\Delta_g u_j + h u_j = p \lambda_j u_j^{p-1} e^{u_j^p}, \qquad \lambda_j = \lambda(p, \Lambda_j, u_j).$$

If  $(u_j)_j$  blow up, then  $\Lambda \in 4\pi\mathbb{N}$ 

### ₩

Existence for every  $\Lambda \not\in 4\pi\mathbb{N}$  and for every  $p \in (1,2)$  of a positive solution to

$$-\Delta_g u + hu = p\lambda u^{p-1}e^{u^p}, \qquad \lambda = \lambda(p, \Lambda, u),$$

and so of a positive critical point of  $J_{p,\Lambda}$  for every  $\Lambda \notin 4\pi\mathbb{N}$  and for every  $p \in (1,2)$ .

2

# Existence for $\Lambda \not\in 4\pi\mathbb{N}$

#### Compactness for p < 2 fixed

Let  $\Lambda_j \to \Lambda$  and let  $(u_j)_j$  be positive solutions to

$$-\Delta_g u_j + h u_j = p \lambda_j u_j^{p-1} e^{u_j^p}, \qquad \lambda_j = \lambda(p, \Lambda_j, u_j).$$

If  $(u_j)_j$  blow up, then  $\Lambda \in 4\pi\mathbb{N}$ 

### ₩

Existence for every  $\Lambda \not\in 4\pi\mathbb{N}$  and for every  $p \in (1,2)$  of a positive solution to

$$-\Delta_g u + hu = p\lambda u^{p-1}e^{u^p}, \qquad \lambda = \lambda(p, \Lambda, u),$$

and so of a positive critical point of  $J_{p,\Lambda}$  for every  $\Lambda \notin 4\pi\mathbb{N}$  and for every  $p \in (1,2)$ .

#### ∜

#### Compactness as $p \nearrow 2$

Let  $u_j$  be critical points of  $J_{p_j,\Lambda}$  with  $p_j \nearrow 2$ . If  $\Lambda \not\in 4\pi\mathbb{N}$ , then (no blow-up so)  $u_j \to u_\infty, u_\infty > 0$ , solution to

$$-\Delta_g u_{\infty} + h u_{\infty} = 2\lambda u_{\infty} e^{u_{\infty}^2}, \qquad \|u_{\infty}\|_h^2 = \Lambda,$$

namely  $u_{\infty}$  is a positive critical point of the M-T functional  $\hat{F}$  on  $\hat{M}_{\Lambda} = \{ \|u\|_{h}^{2} = \Lambda \}.$ 

# Existence for any $\Lambda > 0$

Let  $\Lambda = 4\pi N$  and let  $(u_j)_j$  be positive solutions to

$$-\Delta u_j + hu_j = 2\lambda_j u_j e^{u_j^2}, \qquad \|u_j\|_h^2 = \Lambda_j \to \Lambda,$$

blowing up. Then  $u_j$  blows up at N points  $x_1, \ldots, x_N$  and

$$\|u_j\|_h^2 \ge 4\pi N + \sum_{i=1}^N \frac{4\pi + o(1)}{\mu_{i,j}^4} > 4\pi N$$
  $\mu_{i,j} = \max_{B_\delta(x_i)} u_j.$ 

2

ヘロト ヘアト ヘビト ヘビト

# Existence for any $\Lambda > 0$

Let  $\Lambda = 4\pi N$  and let  $(u_j)_j$  be positive solutions to

$$-\Delta u_j + hu_j = 2\lambda_j u_j e^{u_j^2}, \qquad \|u_j\|_h^2 = \Lambda_j \to \Lambda,$$

blowing up. Then  $u_j$  blows up at N points  $x_1, \ldots, x_N$  and

$$\Lambda_j = \|u_j\|_h^2 \ge 4\pi N + \sum_{i=1}^N \frac{4\pi + o(1)}{\mu_{i,j}^4} > 4\pi N = \Lambda, \qquad \mu_{i,j} = \max_{B_{\delta}(x_i)} u_j.$$

### ∜

For  $\Lambda_j \nearrow 4\pi N$  no blow up , hence  $u_j \to u$  positive solution for  $\Lambda = 4\pi N$ . Thus *u* is a positive critical point of the M-T functional  $\hat{F}$  on  $\hat{M}_{\Lambda} = \{ ||u||_h^2 = \Lambda \}$ .

э

## A remark on the case p = 1

Analogously, let  $\Lambda \notin 4\pi\mathbb{N}$  and let  $u_j$  be positive critical points to  $J_{p,\Lambda_j}$ , then as  $p_j \searrow 1 u_j \longrightarrow u$  positive critical point of  $J_{1,\Lambda}$ .

2

## A remark on the case p = 1

Analogously, let  $\Lambda \notin 4\pi\mathbb{N}$  and let  $u_j$  be positive critical points to  $J_{p,\Lambda_j}$ , then as  $p_j \searrow 1 u_j \longrightarrow u$  positive critical point of  $J_{1,\Lambda}$ .

Moreover we can exclude blow up from the left hand side for any  $p \in (1, 2]$  but not for p = 1. Indeed if  $u_j$  is a sequence of positive blowing-up critical points of  $J_{p,\Lambda_j}$  (when p is fixed and  $\Lambda_j \longrightarrow \Lambda = 4\pi N$ ) then

$$\Lambda_j \ge 4\pi N + \sum_{i=1}^N \frac{16\pi(p-1) + o(1)}{p^2 \mu_{i,j}^{2p}} \stackrel{\text{if } p > 1}{>} 4\pi N = \Lambda, \qquad \mu_{i,j} = \max_{B_{\delta}(x_i)} u_j.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

## A remark on the case p = 1

Analogously, let  $\Lambda \notin 4\pi\mathbb{N}$  and let  $u_j$  be positive critical points to  $J_{p,\Lambda_j}$ , then as  $p_j \searrow 1 u_j \longrightarrow u$  positive critical point of  $J_{1,\Lambda}$ .

Moreover we can exclude blow up from the left hand side for any  $p \in (1, 2]$  but not for p = 1. Indeed if  $u_j$  is a sequence of positive blowing-up critical points of  $J_{p,\Lambda_j}$  (when p is fixed and  $\Lambda_j \longrightarrow \Lambda = 4\pi N$ ) then

$$\Lambda_j \ge 4\pi N + \sum_{i=1}^N \frac{16\pi(p-1) + o(1)}{p^2 \mu_{i,j}^{2p}} \stackrel{\text{if } p > 1}{>} 4\pi N = \Lambda, \qquad \mu_{i,j} = \max_{B_{\delta}(x_i)} u_j.$$

For the widely studied functional

$$I_{\Lambda}(u) := \frac{1}{2} \int_{\Sigma} \left| \nabla u \right|^2 dv_{g_0} + 2\Lambda \oint_{\Sigma} u \, dv_{g_0} - 2\Lambda \log \int_{\Sigma} K e^u \, dv_{g_0}$$

the side condition (which depends on the Gauss curvature of the surface) was determined in [Chen-Lin, '02].

э

#### ▷ What about multiplicity?

Is there generic multiplicity (in *h* and *g*) of solutions for any fixed  $p \in [1, 2]$  and  $\Lambda \notin 4\pi\mathbb{N}$ , as proved for  $I_{\Lambda}$  in [DM, '10]?

문어 문

#### ▷ What about multiplicity?

Is there generic multiplicity (in *h* and *g*) of solutions for any fixed  $p \in [1, 2]$  and  $\Lambda \notin 4\pi\mathbb{N}$ , as proved for  $I_{\Lambda}$  in [DM, '10]?

▷ What about the existence of critical points of

$$F(u) = \int_{\Sigma} e^{u^2} dv_g \qquad \text{constrained on } \bar{M}_{\Lambda} = \{ u \in H^1(\Sigma) \, : \, \|\nabla u\|_{L^2(\Sigma)}^2 = \Lambda, \, \int_{\Sigma} u \, dv_g = 0 \}?$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### ▷ What about multiplicity?

Is there generic multiplicity (in *h* and *g*) of solutions for any fixed  $p \in [1, 2]$  and  $\Lambda \notin 4\pi\mathbb{N}$ , as proved for  $I_{\Lambda}$  in [DM, '10]?

▷ What about the existence of critical points of

$$F(u) = \int_{\Sigma} e^{u^2} dv_g \qquad \text{constrained on } \bar{M}_{\Lambda} = \{ u \in H^1(\Sigma) : \|\nabla u\|_{L^2(\Sigma)}^2 = \Lambda, \int_{\Sigma} u \, dv_g = 0 \}?$$

• Existence of 2 peaks solutions  $\Lambda_j \longrightarrow 8\pi^+$  [Figueroa-Musso, '09]

< < >> < <</>

#### ▷ What about multiplicity?

Is there generic multiplicity (in *h* and *g*) of solutions for any fixed  $p \in [1, 2]$  and  $\Lambda \notin 4\pi\mathbb{N}$ , as proved for  $I_{\Lambda}$  in [DM, '10]?

▷ What about the existence of critical points of

$$F(u) = \int_{\Sigma} e^{u^2} dv_g \qquad \text{constrained on } \bar{M}_{\Lambda} = \{ u \in H^1(\Sigma) : \|\nabla u\|_{L^2(\Sigma)}^2 = \Lambda, \int_{\Sigma} u \, dv_g = 0 \}?$$

- Existence of 2 peaks solutions  $\Lambda_j \longrightarrow 8\pi^+$  [Figueroa-Musso, '09]
- Quantization seems to be very hard, indeed there exist blowing-up sequences  $u_{\varepsilon}$  of critical points of

$$F_{h_{\varepsilon}}(u) = \int_{\Omega} h_{\varepsilon} e^{u^2} dx$$
, where  $h_{\varepsilon} \to 1$  in  $C^2(\Omega)$  as  $\varepsilon \to 0$ ,

such that  $\|\nabla u_{\varepsilon}\|_{L^{2}}^{2} \to \Lambda$ ,  $u_{\varepsilon} \rightharpoonup u_{0} \in H_{0}^{1}(\Omega)$ , where  $u_{0}$  is a sign changing critical point of  $F(u) = \int_{\Omega} e^{u^{2}} dx$  [Martinazzi-Thizy-Vétois, '22]

・ロト ・ (日) ・ ・ ヨ ・ ・ ヨ ・









Suppose  $(u_j)_j$  is a sequence of positive blowing-up solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}, \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

and set  $\mu_j = ||u_j||_{\infty} = u_j(x_j) \to +\infty$ .

イロト 不得 とくほ とくほう

∃ 900

Suppose  $(u_i)_i$  is a sequence of positive blowing-up solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}, \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

and set  $\mu_j = ||u_j||_{\infty} = u_j(x_j) \to +\infty$ . Define

$$r_j := \frac{2}{(2\lambda_j \mu_j^2 e^{\mu_j^2})^{\frac{1}{2}}} \to 0 \qquad v_j(x) = \mu_j [u_j(x_j + r_j x) - \mu_j] \le 0$$

then  $v_j$  satisfies

$$-\Delta v_j = 4\left(1+\frac{v_j}{\mu_j^2}\right)e^{2v_j+\frac{v_j^2}{\mu_j^2}} \simeq 4e^{2v_j}.$$

∃ 900

Suppose  $(u_j)_j$  is a sequence of positive blowing-up solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}, \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

and set  $\mu_j = ||u_j||_{\infty} = u_j(x_j) \to +\infty$ . Define

$$r_j := \frac{2}{(2\lambda_j \mu_j^2 e^{\mu_j^2})^{\frac{1}{2}}} \to 0 \qquad v_j(x) = \mu_j [u_j(x_j + r_j x) - \mu_j] \le 0$$

then  $v_j$  satisfies

$$-\Delta v_j = 4\left(1+rac{v_j}{\mu_j^2}
ight)e^{2v_j+rac{v_j^2}{\mu_j^2}} \simeq 4e^{2v_j}.$$

It is possible to prove that  $v_j \to V$  in  $C^2_{loc}(\mathbb{R}^2)$ , where V solves

$$-\Delta V = 4e^{2V}$$
 in  $\mathbb{R}^2$ ;  $\int_{\mathbb{R}^2} e^{2V} dx < +\infty$ .

Solutions were classified in [Chen-Li, '91]:  $V(x) = -\log(1 + |x|^2)$  and  $\int_{\mathbb{R}^2} 4e^{2V} dx = 4\pi$ .

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ June 25, 2023

Suppose  $(u_j)_j$  is a sequence of positive blowing-up solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}, \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

and set  $\mu_j = ||u_j||_{\infty} = u_j(x_j) \to +\infty$ . Define

$$r_j := \frac{2}{(2\lambda_j \mu_j^2 e^{\mu_j^2})^{\frac{1}{2}}} \to 0 \qquad v_j(x) = \mu_j [u_j(x_j + r_j x) - \mu_j] \le 0$$

then  $v_j$  satisfies

$$-\Delta v_j = 4\left(1+\frac{v_j}{\mu_j^2}\right)e^{2v_j+\frac{v_j^2}{\mu_j^2}} \simeq 4e^{2v_j}.$$

It is possible to prove that  $v_j \to V$  in  $C^2_{loc}(\mathbb{R}^2)$ , where V solves

$$-\Delta V = 4e^{2V} \quad \text{in } \mathbb{R}^2; \qquad \int_{\mathbb{R}^2} e^{2V} dx < +\infty.$$

Solutions were classified in [Chen-Li, '91]:  $V(x) = -\log(1+|x|^2)$  and  $\int_{\mathbb{R}^2} 4e^{2V} dx = 4\pi$ .

$$\int_{B_{Rr_j}(x_j)} 2\lambda_j u_j^2 e^{u_j^2} dx = \int_{B_R} 4\left(1+\frac{v_j}{\mu_j^2}\right)^2 e^{\frac{2v_j+\frac{v_j}{\mu_j^2}}{\mu_j^2}} dx \stackrel{j\to\infty}{\longrightarrow} \int_{B_R} 4e^{2V} dx \stackrel{R\to\infty}{\longrightarrow} 4\pi.$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ June 25, 2023

Suppose  $(u_j)_j$  is a sequence of positive blowing-up solutions to

$$-\Delta u_j = 2\lambda_j u_j e^{u_j^2}, \qquad \Lambda_j = \int_{\Omega} |\nabla u_j|^2 dx \to \Lambda$$

and set  $\mu_j = ||u_j||_{\infty} = u_j(x_j) \to +\infty$ . Define

$$r_j := \frac{2}{(2\lambda_j \mu_j^2 e^{\mu_j^2})^{\frac{1}{2}}} \to 0 \qquad v_j(x) = \mu_j [u_j(x_j + r_j x) - \mu_j] \le 0$$

then  $v_j$  satisfies

$$-\Delta v_j = 4\left(1+\frac{v_j}{\mu_j^2}\right)e^{2v_j+\frac{v_j^2}{\mu_j^2}} \simeq 4e^{2v_j}.$$

It is possible to prove that  $v_j \to V$  in  $C^2_{loc}(\mathbb{R}^2)$ , where V solves

$$-\Delta V = 4e^{2V} \quad \text{in } \mathbb{R}^2; \qquad \int_{\mathbb{R}^2} e^{2V} dx < +\infty.$$

Solutions were classified in [Chen-Li, '91]:  $V(x) = -\log(1+|x|^2)$  and  $\int_{\mathbb{R}^2} 4e^{2V} dx = 4\pi$ .

$$\int_{B_{Rr_j}(x_j)} 2\lambda_j u_j^2 e^{u_j^2} dx = \int_{B_R} 4\left(1+\frac{v_j}{\mu_j^2}\right)^2 e^{\frac{2v_j+\frac{v_j}{\mu_j^2}}{\mu_j^2}} dx \xrightarrow{j\to\infty} \int_{B_R} 4e^{2V} dx \xrightarrow{R\to\infty} 4\pi.$$

Hard part of the analysis: what happens at larger scales?

Francesca De Marchis

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

### Proposition (after [Moser,'73], [Aubin,'76], [Chen-Li,'91])

Let  $\Omega_1, \ldots, \Omega_{k+1} \subset \Sigma$  satisfy  $\operatorname{dist}(\Omega_i, \Omega_j) \ge \delta > 0$  and let  $\gamma > 0$ .

Suppose that

$$\frac{\int_{\Omega_i} (e^{|u|^p} - 1) dv_g}{\int_{\Sigma} (e^{|u|^p} - 1) dv_g} \ge \gamma \qquad \forall i \in \{1, \dots, k+1\}.$$



Then for any  $\varepsilon > 0$  there exists  $C = C(\varepsilon, \delta, \gamma) > 0$  (independent of *u*) such that

$$\log \int_{\Sigma} (e^{|u|^p} - 1) dv_g \le \frac{2 - p}{p} \left( \frac{p ||u||_h^2}{8\pi (k+1) - \varepsilon} \right)^{\frac{p}{2-p}} + C$$

э
### How to get existence?

### Proposition (after [Moser,'73], [Aubin,'76], [Chen-Li,'91])

Let  $\Omega_1, \ldots, \Omega_{k+1} \subset \Sigma$  satisfy  $\operatorname{dist}(\Omega_i, \Omega_j) \ge \delta > 0$  and let  $\gamma > 0$ .

Suppose that

$$\frac{\int_{\Omega_i} (e^{|u|^p} - 1) dv_g}{\int_{\Sigma} (e^{|u|^p} - 1) dv_g} \ge \gamma \qquad \forall i \in \{1, \dots, k+1\}.$$



Then for any  $\varepsilon > 0$  there exists  $C = C(\varepsilon, \delta, \gamma) > 0$  (independent of *u*) such that

$$\log \int_{\Sigma} (e^{|u|^p} - 1) dv_g \le \frac{2 - p}{p} \left( \frac{p ||u||_h^2}{8\pi (k+1) - \varepsilon} \right)^{\frac{p}{2-p}} + C$$

э

### How to get existence?

### Proposition (after [Moser,'73], [Aubin,'76], [Chen-Li,'91])

Let  $\Omega_1, \ldots, \Omega_{k+1} \subset \Sigma$  satisfy  $\operatorname{dist}(\Omega_i, \Omega_j) \ge \delta > 0$  and let  $\gamma > 0$ .

Suppose that

$$u_p(u) := \frac{\int_{\Omega_i} (e^{|u|^p} - 1) dv_g}{\int_{\Sigma} (e^{|u|^p} - 1) dv_g} \ge \gamma \qquad \forall i \in \{1, \dots, k+1\}.$$



Then for any  $\varepsilon > 0$  there exists  $C = C(\varepsilon, \delta, \gamma) > 0$  (independent of *u*) such that

$$\log \int_{\Sigma} (e^{|u|^p} - 1) dv_g \le \frac{2 - p}{p} \left( \frac{p ||u||_h^2}{8\pi (k+1) - \varepsilon} \right)^{\frac{p}{2-p}} + C$$

э

### How to get existence?

### Proposition (after [Moser,'73], [Aubin,'76], [Chen-Li,'91])

Let  $\Omega_1, \ldots, \Omega_{k+1} \subset \Sigma$  satisfy  $\operatorname{dist}(\Omega_i, \Omega_j) \ge \delta > 0$  and let  $\gamma > 0$ .

Suppose that

$$u_p(u) := \frac{\int_{\Omega_i} (e^{|u|^p} - 1) dv_g}{\int_{\Sigma} (e^{|u|^p} - 1) dv_g} \ge \gamma \qquad \forall i \in \{1, \dots, k+1\}.$$



Then for any  $\varepsilon > 0$  there exists  $C = C(\varepsilon, \delta, \gamma) > 0$  (independent of *u*) such that

$$\log \int_{\Sigma} (e^{|u|^{p}} - 1) dv_{g} \leq \frac{2 - p}{p} \left( \frac{p ||u||_{h}^{2}}{8\pi (k+1) - \varepsilon} \right)^{\frac{p}{2-p}} + C$$

### Corollary

If  $\Lambda \in (4\pi k, 4\pi (k+1))$  and  $\mu_p(u)$  spreads in (k+1) regions, then

$$J_{p,\Lambda}(u) = \frac{2-p}{2} \left( \frac{p ||u||_h}{2\Lambda} \right)^{\frac{p}{2-p}} - \log \int_{\Sigma} (e^{u_+^p} - 1) \, dv_g > -L.$$

э

Francesca De Marchis

∜

### Lemma 1

Let  $\Lambda \in (4\pi k, 4\pi (k+1))$ . We can define a continuous map

$$\Psi : \{J_{p,\Lambda} \le -L\} \longrightarrow \sum_{k:=1}^{k} \{\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} : \sum_{i=1}^{k} t_i = 1, t_i \ge 0, x_i \in \Sigma\}$$

∜

#### Lemma 1

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . We can define a continuous map

$$\Psi : \{J_{p,\Lambda} \le -L\} \longrightarrow \sum_{k:=1}^{k} \{\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} : \sum_{i=1}^{k} t_i = 1, t_i \ge 0, x_i \in \Sigma\}$$

$$\xrightarrow{(e^{|u|^p}-1)dv_g} \simeq \sigma = \sum_{i=1}^k t_i \delta_{x_i(u)}$$

Francesca De Marchis

и

∜

#### Lemma 1

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . We can define a continuous map

$$\Psi: \{J_{p,\Lambda} \leq -L\} \longrightarrow \sum_{k:=1}^{k} \{\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} : \sum_{i=1}^{k} t_i = 1, t_i \geq 0, x_i \in \Sigma\}$$

$$\begin{array}{c} \longmapsto \\ \frac{(e^{|u|^p} - 1)dv_g}{\int_{\Sigma}(e^{|u|^p} - 1)dv_g} \simeq \sigma = \sum_{i=1}^k t_i \delta_{x_i(u)} \end{array}$$

и

Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

= 990

Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

#### Lemma 2

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . Then for any  $\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} \in \Sigma_k$  there exist test functions  $\varphi_{\mu,\sigma} \ge 0$  (where  $\mu$  is a positive parameter), such that

$$> J_{p,\Lambda}(\varphi_{\mu,\sigma}) \to -\infty$$
$$> \frac{(e^{\varphi_{\mu,\sigma}^p} - 1)dv_g}{\int_{\Sigma} (e^{\varphi_{\mu,\sigma}^p} - 1)dv_g} \rightharpoonup \sigma$$

as  $\mu \to +\infty$  uniformly for  $\sigma \in \Sigma_k$ 

3

Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

#### Lemma 2

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . Then for any  $\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} \in \Sigma_k$  there exist test functions  $\varphi_{\mu,\sigma} \ge 0$  (where  $\mu$  is a positive parameter), such that

### Conclusion

The map  $i \circ \Psi : \Sigma_k \longrightarrow \Sigma_k$  is well defined for  $\mu$  large



Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

#### Lemma 2

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . Then for any  $\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} \in \Sigma_k$  there exist test functions  $\varphi_{\mu,\sigma} \ge 0$  (where  $\mu$  is a positive parameter), such that

$$\begin{array}{l} \triangleright \ J_{p,\Lambda}(\varphi_{\mu,\sigma}) \to -\infty \\ \\ \triangleright \ \frac{(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}}{\int_{\Sigma}(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}} \rightharpoonup \sigma \end{array}$$
 as  $\mu \to +\infty$  uniformly for  $\sigma \in \Sigma$ 

### Conclusion

The map  $i \circ \Psi : \Sigma_k \longrightarrow \Sigma_k$  is well defined for  $\mu$  large



Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

#### Lemma 2

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . Then for any  $\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} \in \Sigma_k$  there exist test functions  $\varphi_{\mu,\sigma} \ge 0$  (where  $\mu$  is a positive parameter), such that

$$\begin{array}{l} \triangleright \ J_{p,\Lambda}(\varphi_{\mu,\sigma}) \to -\infty \\ \\ \triangleright \ \frac{(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}}{\int_{\Sigma}(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}} \rightharpoonup \sigma \end{array}$$
 as  $\mu \to +\infty$  uniformly for  $\sigma \in \Sigma$ 

### Conclusion

The map  $i \circ \Psi : \Sigma_k \longrightarrow \Sigma_k$  is well defined for  $\mu$  large



Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

#### Lemma 2

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . Then for any  $\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} \in \Sigma_k$  there exist test functions  $\varphi_{\mu,\sigma} \ge 0$  (where  $\mu$  is a positive parameter), such that

$$\begin{array}{l} \triangleright \ J_{p,\Lambda}(\varphi_{\mu,\sigma}) \to -\infty \\ \\ \triangleright \ \frac{(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}}{\int_{\Sigma}(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}} \rightharpoonup \sigma \end{array}$$
 as  $\mu \to +\infty$  uniformly for  $\sigma \in \Sigma_{k}$ 

### Conclusion

The map  $i \circ \Psi : \Sigma_k \longrightarrow \Sigma_k$  is well defined for  $\mu$  large



it is continuous and it is homotopically equivalent to the identity on  $\Sigma_k$  (for  $\mu$  large enough).

Viceversa we can map  $\Sigma_k$  into arbitrarily low sublevels of  $J_{p,\Lambda}$ .

#### Lemma 2

Let  $\Lambda \in (4\pi k, 4\pi (k + 1))$ . Then for any  $\sigma = \sum_{i=1}^{k} t_i \delta_{x_i} \in \Sigma_k$  there exist test functions  $\varphi_{\mu,\sigma} \ge 0$  (where  $\mu$  is a positive parameter), such that

$$\begin{array}{l} \triangleright \ J_{p,\Lambda}(\varphi_{\mu,\sigma}) \to -\infty \\ \\ \triangleright \ \frac{(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}}{\int_{\Sigma}(e^{\varphi_{\mu,\sigma}^{p}} - 1)dv_{g}} \rightharpoonup \sigma \end{array}$$
 as  $\mu \to +\infty$  uniformly for  $\sigma \in \Sigma_{\mu}$ 

### Conclusion

The map  $i \circ \Psi : \Sigma_k \longrightarrow \Sigma_k$  is well defined for  $\mu$  large



it is continuous and it is homotopically equivalent to the identity on  $\Sigma_k$  (for  $\mu$  large enough). Hence, being  $\Sigma_k$  non contractible,  $i(\Sigma_k)$  is non contractible in  $\{J_{p,\Lambda} \leq -L\}$ .

Francesca De Marchis

### Step 3. Minmax scheme

 $\mathcal{C}_k := \Sigma_k \times [0, 1]/ \sim \quad ext{ cone over } \Sigma_k$  $\mathcal{A}_k := \{ \gamma \in C^0(\mathcal{C}_k; H^1(\Sigma)) \ : \ \gamma(\sigma, 1) = \varphi_{\mu, \sigma} \}$ 

Using that  $i(\Sigma_k)$  is not contractible in  $\{J_{p,\Lambda} \leq -L\}$ , we prove that  $\gamma(\mathcal{C}_k) \not\subset \{J_{p,\Lambda} \leq -L\}$ 

Francesca De Marchis

June 25, 2023

æ –

### Step 3. Minmax scheme

 $\mathcal{C}_k := \Sigma_k \times [0, 1]/ \sim \quad ext{cone over } \Sigma_k$  $\mathcal{A}_k := \{ \gamma \in C^0(\mathcal{C}_k; H^1(\Sigma)) \ : \ \gamma(\sigma, 1) = \varphi_{\mu, \sigma} \}$ 

Using that  $i(\Sigma_k)$  is not contractible in  $\{J_{p,\Lambda} \leq -L\}$ , we prove that  $\gamma(\mathcal{C}_k) \not\subset \{J_{p,\Lambda} \leq -L\}$ 

$$\max_{\sigma,t)\in\mathcal{C}_k} J_{p,\Lambda}(\gamma(\sigma,t)) > -L \qquad \text{for any } \gamma\in\mathcal{A}_k$$

∜

Then there exists a PS-sequence at level

$$\alpha = \inf_{\gamma \in \mathcal{A}_k} \max_{(\sigma,t) \in \mathcal{C}_k} J_{p,\Lambda}(\gamma(\sigma,t)) \ge -L$$

Ξ.

# Step 3. Minmax scheme

$$\begin{split} \mathcal{C}_k &:= \Sigma_k \times [0,1]/\sim \qquad \text{cone over } \Sigma_k \\ \mathcal{A}_k &:= \{\gamma \in C^0(\mathcal{C}_k; H^1(\Sigma)) \ : \ \gamma(\sigma,1) = \varphi_{\mu,\sigma} \} \end{split}$$

Using that  $i(\Sigma_k)$  is not contractible in  $\{J_{p,\Lambda} \leq -L\}$ , we prove that  $\gamma(\mathcal{C}_k) \not\subset \{J_{p,\Lambda} \leq -L\}$ 

$$\max_{\sigma,t)\in\mathcal{C}_k} J_{p,\Lambda}(\gamma(\sigma,t)) > -L \quad \text{ for any } \gamma \in \mathcal{A}_k$$

1

Then there exists a PS-sequence at level

$$\alpha = \inf_{\gamma \in \mathcal{A}_k} \max_{(\sigma,t) \in \mathcal{C}_k} J_{p,\Lambda}(\gamma(\sigma,t)) \ge -L$$

#### Back to the same problem!

Even for the approximate problem it is not known whether the Palais-Smale condition holds or not. But in the subcritical case, p < 2, it is standard to prove convergence of bounded (in  $H^1$ -norm) Palais-Smale sequences.

э

イロト イポト イヨト イヨト







