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Peletier-Schlichting '23: Gradient system (X, Y,V,&,R*) in CE format:
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e (Primal) dissipation potential R : M4(X) x M(Y) — [0, o] given by

R(p.j) = sup (@, j) =R (1, )
PeC(Y)

e Dissipation functional (for (y,j) € CE):

)
D(u.j) = /0 R(u.j) + R* (11, ~VDE()) dt
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Energy dissipation principle (EDP)

e GF equation induced by (X, Y,V,&,R"):
Orp = —div DoR*(u, =VDE(u))
Continuity equation: (u,j) € CE if

8t/u == divj
e Dissipation functional (for (u,j) € CE):
T
D) = [ R(uj)+R (1 ~VDEw) de

Energy dissipation functional (for (u,j) € CE):
Ly, j) =8EW(T)) - E(u(0) + D(u, j)

*

Chain rule: (u,)) € CE s.t. esssupeo, 7] E(1(t)) < 00, D(u,j) < oo, then
L(u.j) 20
Heuristics:
%S(u) = (D&E(u), dtp) = (DE(w), — div j) = ~(=VDE(w). j)
= —R(u,j) = R*(u, —~VDE(u))



Energy dissipation principle (EDP)

e GF equation induced by (X, Y,V,&,R"):
det = — div DaR* (1, ~VDE (1)
e Continuity equation: (u,j) € CE if
Orpu = —divj
e Dissipation functional (for (u,j) € CE):

)
D(u.j) = /0 R(u.j) +R* (4, ~VDE (1)) dt

e Energy dissipation functional (for (y,j) € CE):
Ly, j) =8EW(T)) - E(u(0) + D(u, j)

* Chain rule: (u,j) € CE s.t. esssupiepo, 71 E(u(t)) < 00, D(u,j) < o, then
L(p,j) 20
= Energy dissipation principle (EDP):

J =D2R*(u, ~VDE(u))
i.e. L(u,j)=0if and only if u is solution of the GF equation

Luj)=0 = {(”’j)ECE
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e Next goal: Study limits (X¢, Ye, Ve, 8e.RE) — (X0, Yo. Vo, E0. RY)
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Main steps:
* Compactness: 3 embeddings 1z : CE; — CEg s.t. for all (ug,je)e>0 satisfying

(1e.je) € CEg, sup esssup Eg(ug(t) < oo, sup De(ple,je) < 00
£>0te[0,T] &>0

the family (Ilg (e, je))e>0 is precompact in CEg
* Lower limit inequality: It holds
liminf Ze(1e.je) 2 Zo(uo. o)

» Immediate consequence: Solutions converge to solutions, i.e.,
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Metric graphs with reservoirs
(GH, J-F Pietschmann, A Schlichting)
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Undirected irreducible simple finite graph:
e Finite set of vertices V
e Set of edges EC V xV

Metric Graph: e-v
e Orientation: e = vw € E has starting vertex v
and end vertex w
e Associate to each e € E an
Dynamics:
° reservoirs on vertices

Otyy = Z (r(e,v)pCly = r(v, e)yy)
ecE(v)

for potentials , diffusivity constants , and jump rates



Some selective literature

e Freidlin-Wentzell '93: Diffusion on metric intervall obtained as
vanishing-diameter limit of diffusion narrow tube using probabilistic approach

e Erbar-Forkert-Maas-Mugnolo '22: McKean-Vlasov-type equations on metric
graphs with Kirchhoff-type conditions at vertices identified as GFs w.r.t.
suitable dynamic Wasserstein distance

e Fazeny-Burger-Pietschmann '25: “Overdamped isothermal model 3" for gas
transport in networks formally understood as dynamic 3-Wasserstein GF

e Burger-Humpert-Pietschmann '23: Dynamic Wasserstein-type distance defined
on metric graphs with mass reservoirs at vertices exchanging mass with edges

e Mugnolo-Romanelli '07: Asymptotic behaviour and regularity of solutions
studied for similar model to ours using semigroup techniques
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derv= ). (r(e,v)peh —r(v,e)w)
ecE(v)

e Introduce edge reference measures
(abuse notation to also write 7€ for its density)
e Assume detailed balance condition: Jw = (wy)yev € M>o(V) s.t.

VeeE,veV

e
e Denote /5 = r(e,v) 7;,—‘ =r(v,e) ,fiT
v v

» Equations rewritten:

e
Otyy = Z ﬁ/s ”e|vwv(%
ecE(v)

_&)
\ Wy
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Contents of the paper

e
Otyv = Z /35 V”e|vwv(%

ecE(v)
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Analytic results:
* Well-posedness
* Kirchhoff-type limit: Vanishing reservoirs without cutting dynamics

(cf. Erbar-Forkert-Maas-Mugnolo '22)
* Fast-diffusion limit: Acceleration of edge dynamics (combinatorial graph)

Strategy:
e Write as gradient flow in CE format
e EDP convergence with embedding

Numerical simulations:
e Based on finite volume discretization
e Comparison to analytic results
e Highlighting further aspects beyond analysis 8
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Gradient flow formulation — drift-diffusion terms

Drift-diffusion terms:

Free energy:

with variational derivatives
Gradient and divergence: For ¢ : L — R (L disjoint union of metric edges)

Dual dissipation potential:

» Drift-diffusion terms rewritten:



Gradient flow formulation — jump terms

Jump terms: (

Z és\/”ﬂvwv L

€} _&)
v Wy

€

ecE(v)
Free energy (denoting u = (y, ) € P(V x L)):

E(u) = Ev(y) + =D Hnlo) +
veV

10
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Gradient flow formulation — jump terms

Jump terms:
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Gradient flow formulation — full system

System in gradient flow form:

dryy = —div DRy ¢ (1, ~VDEW)
Free energy (denoting u = (y, ) € P(V x L)):
Yv
= vI —Yv v
E(p) § b2 og(wv) Yty +

veV
Dual dissipation potential:

Gradient and divergence:

= ¢y - divily=-)
ecE(v)
11
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E(1) = ) Hiwlow) +

veV
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Gradient system

e Free energy functional (denoting = (y, ) € P(V x L)):
E(1) = ) Hiwlow) +

e Dissipation functional (denot;/r:/j =(7,/) € M( x1)):
D(u,j) =
+
+
+

e Continuity equation: (u,j) € CE if for all ® = (¢, +) € C1(V x ) and a.e. time

|
T2t = +
&k vev
12
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% Chain rule identity:
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Bu(0) - 8o = [ | . J dr
g
Proof: Exploit decoupling due to CE format

e Metric edge terms: Special case of Erbar-Forkert-Maas-Mugnolo '22
e Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23
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(similar to Hraivoronska-Tse '23)
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e Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23
» Chain rule inequality: L(u,j) =&(u(T)) —EW(0)) + D(u,j) =0
» Energy-dissipation principle: £(u,j) =0 & for all (¢, ) € CL(V x 1)

D dr+ = +

veV

d
dt

for and
* Existence of solutions:

Proof: Abstract EDP convergence applied with finite volume approximation
(similar to Hraivoronska-Tse '23)

* Uniqueness of solutions:

Proof: Use that (u,j) — L(u,]) is strictly convex w.r.t. affine interpolations
13
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» Remove mass from reservoirs
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and W= ea (V)

» Accelerate jump rates to retain non-trivial fluxes
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Kirchhoff limit

e Kirchhoff means no mass exchange with vertex reservoirs

» Remove mass from reservoirs
EwW

(L) + ew(V)

and w?® =

» Accelerate jump rates to retain non-trivial fluxes

» Challenge: — Lose control over dd—tyv

e Continuity equation: (u, /) € CE if for all (¢,0) € CL(Vx L) s.t.
d
£ [ o
v

e Embedding:

% Steps to EDP limit:
e Energy bound: y& — 0 strongly in L0, T)

e Slope term for jumps:

e Limit model coincides with model in Erbar-Forkert-Maas-Mugnolo '23

» Limit model is gradient flow 14
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Fast edge-diffusion limit

e Rescale diffusivity constant:

e Challenge: SN

e Heuristics: -
=

» Extended graph: V=VUE and

e Continuity equation: Test with , e,
(1. 7) € CEy if for & = (¢, ¢) € C(V)

d ~e p€ —
|20 e+ Y @t 0.6])| = +
veV ecE
e Embedding:

* Slope term:
e Limit model is graph gradient flow on extended graph (\7, )
% Can be further reduced to graph gradient flow on (V, &) by sending

and s.t. (cf. also Peletier-Schlichting '23) 5



Reaction-diffusion systems
(GH, A Mielke, A Stephan)




Setup and gradient system

e Finitely many species i € | with concentrations p = (p;)jc; € Mso(T%; R)
e Each species with

e Reactions r € R with rates k, > 0 and stoichiometric coefficients (xl.’,ﬂlf € [0, )
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Setup and gradient system

e Finitely many species i € | with concentrations p = (p;)jc; € Mso(T%; R)

e Each species with

e Reactions r € R with rates k, > 0 and stoichiometric coefficients al.’,ﬂlf € [0, )
e Consider mass-action kinetics with detailed balance

» Reaction-diffusion system (RDS):

upi = e 3w () - () ey -ap

rerR

where pt = H;E,plfli and 7 € Mzo(Td;R’) are reference concentrations
e Gradient system for similar to before
e Reaction “gradient” I' : R/ — RF defined by I, = v, =a; - f]

e Dual dissipation potential:

Rreact (P {) = /Td Z KrWC*(de

rerR
» Contains “mobility” p@ *#'/2 which is not concave if |a” + 8|1 > 2
» RDS written as GF in CE format:
atp SES alx F*D(Rjem:t (p, —FDS(p))
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e Reaction-diffusion system (RDS):
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Goal: Existence of EDP solutions

*

Steps:
e Discretize in space
e Existence and energy dissipation principle for discrete system
e Compactness (of embedded curves) + lower limit inequality
e Chain rule inequality for limit system

Challenge: Non-concave terms p(@ /2 if |o" + pr| > 2

Spatial discretization:
e Again EDP limit for finite volume scheme with cosh gradient structure
% Additional step: Obtain uniform bounds on p(”r+ﬁr)/2 extracting
regularity from the diffusive part
» Requires |a" +B"| < 2+4/d = 2pyit
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Towards existence

e Reaction-diffusion system (RDS):

a’+p" a” N\B"
epi = I (M T

rerR

*

Goal: Existence of EDP solutions

Steps:
e Discretize in space
e Existence and energy dissipation principle for discrete system
e Compactness (of embedded curves) + lower limit inequality
e Chain rule inequality for limit system

Challenge: Non-concave terms p(@ /2 if |o" + pr| > 2

Spatial discretization:

e Again EDP limit for finite volume scheme with cosh gradient structure

% Additional step: Obtain uniform bounds on p(”r+ﬁr)/2 extracting
regularity from the diffusive part

» Requires |a" +B"| < 2+4/d = 2pyit

* Remaining step: Chain rule inequality .



Chain rule inequality for RDS

e Idea: Test CE with DE(p), use Fenchel's inequality for pair (R, R*)
e Obstruction: Lack of regularity of DE(p); = log(p;/7;)
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e Idea: Test CE with DE(p), use Fenchel's inequality for pair (R, R*)

e Obstruction: Lack of regularity of DE(p); = log(p;/7;)

e A priori bounds: Energy & and dissipation D finite

e Standard strategy: Truncate and mollify, then control errors using D and &
e Convexity: Mollified dissipations bounded by unmollified of dissipations

» Works well for

e Reactive rate terms Ryeact (0,/): Contain non-concave terms p("‘ufﬁr)/2

(ve *J) [(Vs * p)(ar+ﬁr)/2 — Vg * P(ar+ﬁr)/2”|L1 -

» Commutator estimate:
e Key tools:
e Use the truncation to obtain weak-* convergence in L™ of differences
e Hardy-Littlewood maximal function: Pointwise bound |v. * j| < Mj
and integrability Mj € L' iff j € LlogL
e Fischer-Hopf-Kniely-Mielke '22: jlogj ~ C(j) < =5 C(J|a) == =52, Vg>1
e Can control exponent via diffusion if [ + B"|; < 2p(.m

e Reactive slope terms R . (0,—-I'DE(p)): Continuous if [a"[1, [8"[1 < perit s
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H-Pietschmann-Schlichting: GF on metric graph with vertex reservoirs

e GF in CE format clearly separates mechanisms E.'r. E
e Well-posedness via spatial discretization .
e Kirchhoff- and fast-diffusion limits ﬂ
. .

Preprint: arXiv:2412.16775 E
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Summary and outlook

H-Pietschmann-Schlichting: GF on metric graph with vertex reservoirs

e GF in CE format clearly separates mechanisms E.'r. E
e Well-posedness via spatial discretization .

e Kirchhoff- and fast-diffusion limits ﬂ

e Preprint: arXiv:2412.16775 E

H-Mielke-Stephan: Reaction-diffusion system on torus
e GF in CE format clearly separates mechanisms
e Chain rule inequality for non-convex rate term
e Existence via spatial discretization
e Preprint: arXiv:2504.06837

Some future perspectives:

e Coupling of metric graph model with dynamics on domains
(with J Krautz, J-F Pietschmann)

e GF with other boundary conditions as limits (with A Schlichting)

e PME as GF of Boltzmann entropy: Approximation by spatially discrete
reaction systems (with A Mielke, A Stephan)

e Rigorous GF formulation for nonlinear cross-diffusion with exclusion -


https://arxiv.org/abs/2412.16775
https://arxiv.org/abs/2504.06837
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