

Two examples of gradient flows in continuity equation format

Gradient Flows Face to Face

Granada, 18 September 2025

Georg Heinze based on joint works with Alexander Mielke, Jan-Frederik Pietschmann, André Schlichting, Artur Stephan

Overview

- Gradient systems in continuity equation format
 - · Definition and heuristics
 - EDP convergence with embedding

- Example 1: Gradient flows on metric graphs with reservoirs
 - Model and gradient flow formulation
 - Discussion of analytic results

- Example 2: Reaction-diffusion systems
 - Model and gradient flow formulation
 - Discussion of chain rule inequality
- Summary and outlook

1

Gradient systems in CE format

Peletier-Schlichting '23: Gradient system $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$ in CE format:

- Base spaces X,Y and gradient operator $\nabla: C_c^\infty(X) \to C_c^\infty(Y)$
- Energy $\mathcal{E}: \mathcal{M}_+(X) \to \mathbb{R}$
- Dual dissipation potential $\mathcal{R}^*:\mathcal{M}_+(X)\times \mathcal{C}_c^\infty(Y)\to [0,\infty];$ convex in 2nd argument
- ▶ Gradient flow (GF) equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} \operatorname{D}_2 \mathcal{R}^*(\mu, -\nabla \operatorname{D} \mathcal{E}(\mu))$$

Peletier-Schlichting '23: Gradient system $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$ in CE format:

- Base spaces X,Y and gradient operator $\nabla: C_c^\infty(X) \to C_c^\infty(Y)$
- Energy $\mathcal{E}: \mathcal{M}_+(X) \to \mathbb{R}$
- Dual dissipation potential $\mathcal{R}^*: \mathcal{M}_+(X) \times \mathcal{C}^\infty_c(Y) \to [0, \infty]$; convex in 2nd argument
- ▶ Gradient flow (GF) equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} \operatorname{D}_2 \mathcal{R}^*(\mu, -\nabla \operatorname{D} \mathcal{E}(\mu))$$

Example: The choices

$$\begin{aligned} X &= Y = \mathbb{R} \\ \nabla &= \partial_X \\ \mathcal{E}(\rho) &= \mathcal{H}(\rho|\pi) \coloneqq \int_{\mathbb{R}} \rho \log(\rho/\pi) - \rho + \pi \, \mathrm{d}x \\ \mathcal{R}^*(\rho, \xi) &= \frac{1}{2} \int_{\mathbb{R}} |\xi|^2 \rho \, \mathrm{d}x \end{aligned}$$

give us the Fokker-Planck equation

$$\partial_t \rho = \partial_x [\rho \partial_x \log(\rho/\pi)]$$

Peletier-Schlichting '23: Gradient system $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$ in CE format:

- Base spaces X,Y and gradient operator $\nabla: C_c^\infty(X) \to C_c^\infty(Y)$
- Energy $\mathcal{E}: \mathcal{M}_+(X) \to \mathbb{R}$
- Dual dissipation potential $\mathcal{R}^*: \mathcal{M}_+(X) \times C_c^{\infty}(Y) \to [0, \infty]$; convex in 2nd argument
- ▶ Gradient flow (GF) equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} D_2 \mathcal{R}^*(\mu, -\nabla D\mathcal{E}(\mu))$$

Towards a variational formulation:

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

Peletier-Schlichting '23: Gradient system $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$ in CE format:

- \bullet Base spaces X,Y and gradient operator $\nabla: C_c^\infty(X) \to C_c^\infty(Y)$
- Energy $\mathcal{E}: \mathcal{M}_+(X) \to \mathbb{R}$
- Dual dissipation potential $\mathcal{R}^*: \mathcal{M}_+(X) \times C_c^{\infty}(Y) \to [0, \infty]$; convex in 2nd argument
- ▶ Gradient flow (GF) equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} \operatorname{D}_2 \mathcal{R}^*(\mu, -\nabla \operatorname{D} \mathcal{E}(\mu))$$

Towards a variational formulation:

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• (Primal) dissipation potential $\mathcal{R}: \mathcal{M}_+(X) \times \mathcal{M}(Y) \to [0, \infty]$ given by

$$\mathcal{R}(\mu,j) := \sup_{\varphi \in C_c^{\infty}(Y)} \langle \varphi, j \rangle - \mathcal{R}^*(\mu,\varphi)$$

Peletier-Schlichting '23: Gradient system $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$ in CE format:

- Base spaces X,Y and gradient operator $\nabla: C_c^\infty(X) \to C_c^\infty(Y)$
- Energy $\mathcal{E}: \mathcal{M}_+(X) \to \mathbb{R}$
- Dual dissipation potential $\mathcal{R}^*: \mathcal{M}_+(X) \times C_c^\infty(Y) \to [0, \infty]$; convex in 2nd argument
- ▶ Gradient flow (GF) equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} \mathcal{D}_2 \mathcal{R}^*(\mu, -\nabla \mathcal{D}\mathcal{E}(\mu))$$

Towards a variational formulation:

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• (Primal) dissipation potential $\mathcal{R}: \mathcal{M}_+(X) \times \mathcal{M}(Y) \to [0, \infty]$ given by

$$\mathcal{R}(\mu, j) \coloneqq \sup_{\varphi \in C_c^{\infty}(Y)} \langle \varphi, j \rangle - \mathcal{R}^*(\mu, \varphi)$$

• Dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{D}(\mu,j) \coloneqq \int_0^T \mathcal{R}(\mu,j) + \mathcal{R}^*(\mu,-\nabla \mathrm{D}\mathcal{E}(\mu))\,\mathrm{d}t$$

Peletier-Schlichting '23: Gradient system $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$ in CE format:

- Base spaces X,Y and gradient operator $\nabla: C_c^\infty(X) \to C_c^\infty(Y)$
- Energy $\mathcal{E}: \mathcal{M}_+(X) \to \mathbb{R}$
- Dual dissipation potential $\mathcal{R}^*: \mathcal{M}_+(X) \times C_c^\infty(Y) \to [0, \infty]$; convex in 2nd argument
- ▶ Gradient flow (GF) equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} D_2 \mathcal{R}^*(\mu, -\nabla D\mathcal{E}(\mu))$$

Towards a variational formulation:

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• (Primal) dissipation potential $\mathcal{R}: \mathcal{M}_+(X) \times \mathcal{M}(Y) \to [0, \infty]$ given by

$$\mathcal{R}(\mu, j) := \sup_{\varphi \in C_c^{\infty}(Y)} \langle \varphi, j \rangle - \mathcal{R}^*(\mu, \varphi)$$

• Dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{D}(\mu, j) \coloneqq \int_0^T \mathcal{R}(\mu, j) + \mathcal{R}^*(\mu, -\nabla \mathcal{D}\mathcal{E}(\mu)) \, \mathrm{d}t$$

• Energy dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{L}(\mu,j) \coloneqq \mathcal{E}(\mu(T)) - \mathcal{E}(\mu(0)) + \mathcal{D}(\mu,j)$$

• GF equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} D_2 \mathcal{R}^*(\mu, -\nabla D\mathcal{E}(\mu))$$

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• Dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{D}(\mu,j) \coloneqq \int_0^T \mathcal{R}(\mu,j) + \mathcal{R}^*(\mu,-\nabla \mathrm{D}\mathcal{E}(\mu))\,\mathrm{d}t$$

• Energy dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{L}(\mu,j) \coloneqq \mathcal{E}(\mu(T)) - \mathcal{E}(\mu(0)) + \mathcal{D}(\mu,j)$$

• GF equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} D_2 \mathcal{R}^*(\mu, -\nabla D\mathcal{E}(\mu))$$

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• Dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{D}(\mu,j) \coloneqq \int_0^T \mathcal{R}(\mu,j) + \mathcal{R}^*(\mu,-\nabla \mathcal{D}\mathcal{E}(\mu)) \, \mathrm{d}t$$

• Energy dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{L}(\mu,j) \coloneqq \mathcal{E}(\mu(T)) - \mathcal{E}(\mu(0)) + \mathcal{D}(\mu,j)$$

* Chain rule: $(\mu,j)\in \mathsf{CE}$ s.t. $\mathrm{ess\,sup}_{t\in [0,T]}\,\mathcal{E}(\mu(t))<\infty,\,\,\mathcal{D}(\mu,j)<\infty,\,\, \mathrm{then}$ $\mathcal{L}(\mu,j)\geq 0$

• GF equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} \operatorname{D}_2 \mathcal{R}^*(\mu, -\nabla \operatorname{D} \mathcal{E}(\mu))$$

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• Dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{D}(\mu,j) \coloneqq \int_0^T \mathcal{R}(\mu,j) + \mathcal{R}^*(\mu,-\nabla \mathrm{D}\mathcal{E}(\mu)) \, \mathrm{d}t$$

• Energy dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{L}(\mu,j) \coloneqq \mathcal{E}(\mu(T)) - \mathcal{E}(\mu(0)) + \mathcal{D}(\mu,j)$$

* Chain rule: $(\mu,j)\in \mathsf{CE}$ s.t. $\mathrm{ess\,sup}_{t\in [0,T]}\,\mathcal{E}(\mu(t))<\infty,\,\,\mathcal{D}(\mu,j)<\infty,\,\, \mathrm{then}$ $\mathcal{L}(\mu,j)\geq 0$

Heuristics:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(\mu) &= \langle \mathrm{D}\mathcal{E}(\mu), \partial_t \mu \rangle = \langle \mathrm{D}\mathcal{E}(\mu), -\operatorname{div} j \rangle = -\langle -\nabla \mathrm{D}\mathcal{E}(\mu), j \rangle \\ &\geq -\mathcal{R}(\mu, j) - \mathcal{R}^*(\mu, -\nabla \mathrm{D}\mathcal{E}(\mu)) \end{split}$$

• GF equation induced by $(X, Y, \nabla, \mathcal{E}, \mathcal{R}^*)$:

$$\partial_t \mu = -\operatorname{div} D_2 \mathcal{R}^*(\mu, -\nabla D\mathcal{E}(\mu))$$

• Continuity equation: $(\mu, j) \in CE$ if

$$\partial_t \mu = -\operatorname{div} j$$

• Dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{D}(\mu,j) \coloneqq \int_0^T \mathcal{R}(\mu,j) + \mathcal{R}^*(\mu,-\nabla \mathrm{D}\mathcal{E}(\mu))\,\mathrm{d}t$$

• Energy dissipation functional (for $(\mu, j) \in CE$):

$$\mathcal{L}(\mu, j) \coloneqq \mathcal{E}(\mu(T)) - \mathcal{E}(\mu(0)) + \mathcal{D}(\mu, j)$$

* Chain rule: $(\mu,j) \in \mathsf{CE}$ s.t. $\mathsf{ess}\,\mathsf{sup}_{t \in [0,T]} \, \mathcal{E}(\mu(t)) < \infty, \, \mathcal{D}(\mu,j) < \infty$, then $\mathcal{L}(\mu,j) > 0$

Energy dissipation principle (EDP):

$$\mathcal{L}(\mu, j) = 0 \iff \begin{cases} (\mu, j) \in \mathsf{CE} \\ j = D_2 \mathcal{R}^*(\mu, -\nabla D\mathcal{E}(\mu)) \end{cases}$$

i.e. $\mathcal{L}(\mu, j) = 0$ if and only if μ is solution of the GF equation

 $\bullet \ \ \mathsf{Next goal: Study limits} \ (X_{\mathcal{E}},Y_{\mathcal{E}},\nabla_{\mathcal{E}},\mathcal{E}_{\mathcal{E}},\mathcal{R}_{\mathcal{E}}^*) \to (X_0,Y_0,\nabla_0,\mathcal{E}_0,\mathcal{R}_0^*)$

- $\bullet \ \ \mathsf{Next goal: Study limits} \ (X_{\mathcal{E}},Y_{\mathcal{E}},\nabla_{\mathcal{E}},\mathcal{E}_{\mathcal{E}},\mathcal{R}_{\mathcal{E}}^*) \to (X_0,Y_0,\nabla_0,\mathcal{E}_0,\mathcal{R}_0^*)$
- \bullet Strategy: Compactness of prelimit solutions + Lower limit inequality for $\mathcal{L}_{\mathcal{E}}$

- Next goal: Study limits $(X_{\mathcal{E}}, Y_{\mathcal{E}}, \nabla_{\mathcal{E}}, \mathcal{E}_{\mathcal{E}}, \mathcal{R}_{\mathcal{E}}^*) \to (X_0, Y_0, \nabla_0, \mathcal{E}_0, \mathcal{R}_0^*)$
- \bullet Strategy: Compactness of prelimit solutions + Lower limit inequality for $\mathcal{L}_{\varepsilon}$
- \bullet Problem: Different base spaces \implies No unified space for compactness

- Next goal: Study limits $(X_{\mathcal{E}}, Y_{\mathcal{E}}, \nabla_{\mathcal{E}}, \mathcal{E}_{\mathcal{E}}, \mathcal{R}_{\mathcal{E}}^*) \to (X_0, Y_0, \nabla_0, \mathcal{E}_0, \mathcal{R}_0^*)$
- ullet Strategy: Compactness of prelimit solutions + Lower limit inequality for $\mathcal{L}_{arepsilon}$
- ullet Problem: Different base spaces \Longrightarrow No unified space for compactness
- Idea: Embed curves satisfying continuity equation in shared space (cf. Disser-Liero '15, Hraivoronska-Tse '23, Hraivoronska-Schlichting-Tse '24, Esposito-H-Schlichting '24, H-Mielke-Stephan '25)

- Next goal: Study limits $(X_{\mathcal{E}}, Y_{\mathcal{E}}, \nabla_{\mathcal{E}}, \mathcal{E}_{\mathcal{E}}, \mathcal{R}_{\mathcal{E}}^*) \to (X_0, Y_0, \nabla_0, \mathcal{E}_0, \mathcal{R}_0^*)$
- ullet Strategy: Compactness of prelimit solutions + Lower limit inequality for $\mathcal{L}_{\mathcal{E}}$
- ullet Problem: Different base spaces \Longrightarrow No unified space for compactness
- Idea: Embed curves satisfying continuity equation in shared space (cf. Disser-Liero '15, Hraivoronska-Tse '23, Hraivoronska-Schlichting-Tse '24, Esposito-H-Schlichting '24, H-Mielke-Stephan '25)

Main steps:

* Compactness: \exists embeddings $\Pi_{\mathcal{E}}: \mathsf{CE}_{\mathcal{E}} \to \mathsf{CE}_0$ s.t. for all $(\mu_{\mathcal{E}}, j_{\mathcal{E}})_{\mathcal{E}>0}$ satisfying

$$(\mu_{\mathcal{E}},j_{\mathcal{E}}) \in \mathsf{CE}_{\mathcal{E}}, \qquad \sup_{\varepsilon > 0} \underset{t \in [0,T]}{\operatorname{sup}} \, \mathcal{E}_{\mathcal{E}}(\mu_{\mathcal{E}}(t) < \infty, \qquad \sup_{\varepsilon > 0} \mathcal{D}_{\mathcal{E}}(\mu_{\mathcal{E}},j_{\mathcal{E}}) < \infty$$

the family $(\Pi_{\mathcal{E}}(\mu_{\mathcal{E}},j_{\mathcal{E}}))_{\mathcal{E}>0}$ is precompact in CE₀

- Next goal: Study limits $(X_{\mathcal{E}}, Y_{\mathcal{E}}, \nabla_{\mathcal{E}}, \mathcal{E}_{\mathcal{E}}, \mathcal{R}_{\mathcal{E}}^*) \to (X_0, Y_0, \nabla_0, \mathcal{E}_0, \mathcal{R}_0^*)$
- ullet Strategy: Compactness of prelimit solutions + Lower limit inequality for $\mathcal{L}_{\mathcal{E}}$
- ullet Problem: Different base spaces \Longrightarrow No unified space for compactness
- Idea: Embed curves satisfying continuity equation in shared space (cf. Disser-Liero '15, Hraivoronska-Tse '23, Hraivoronska-Schlichting-Tse '24, Esposito-H-Schlichting '24, H-Mielke-Stephan '25)

Main steps:

* Compactness: \exists embeddings $\Pi_{\mathcal{E}}: \mathsf{CE}_{\mathcal{E}} \to \mathsf{CE}_0$ s.t. for all $(\mu_{\mathcal{E}}, j_{\mathcal{E}})_{\mathcal{E} > 0}$ satisfying

$$(\mu_{\mathcal{E}},j_{\mathcal{E}}) \in \mathsf{CE}_{\mathcal{E}}, \qquad \sup_{\varepsilon > 0} \operatorname{ess\,sup} \mathcal{E}_{\mathcal{E}}(\mu_{\mathcal{E}}(t) < \infty, \qquad \sup_{\varepsilon > 0} \mathcal{D}_{\mathcal{E}}(\mu_{\mathcal{E}},j_{\mathcal{E}}) < \infty$$

the family $(\Pi_{\varepsilon}(\mu_{\varepsilon},j_{\varepsilon}))_{\varepsilon>0}$ is precompact in CE₀

* Lower limit inequality: It holds

$$\liminf_{\varepsilon \to 0} \mathscr{L}_{\varepsilon}(\mu_{\varepsilon}, j_{\varepsilon}) \geq \mathscr{L}_{0}(\mu_{0}, j_{0})$$

4

- Next goal: Study limits $(X_{\mathcal{E}}, Y_{\mathcal{E}}, \nabla_{\mathcal{E}}, \mathcal{E}_{\mathcal{E}}, \mathcal{R}_{\mathcal{E}}^*) \to (X_0, Y_0, \nabla_0, \mathcal{E}_0, \mathcal{R}_0^*)$
- ullet Strategy: Compactness of prelimit solutions + Lower limit inequality for $\mathcal{L}_{\mathcal{E}}$
- ullet Problem: Different base spaces \Longrightarrow No unified space for compactness
- Idea: Embed curves satisfying continuity equation in shared space (cf. Disser-Liero '15, Hraivoronska-Tse '23, Hraivoronska-Schlichting-Tse '24, Esposito-H-Schlichting '24, H-Mielke-Stephan '25)

Main steps:

* Compactness: \exists embeddings $\Pi_{\mathcal{E}}: \mathsf{CE}_{\mathcal{E}} \to \mathsf{CE}_0$ s.t. for all $(\mu_{\mathcal{E}}, j_{\mathcal{E}})_{\mathcal{E}>0}$ satisfying

$$(\mu_{\mathcal{E}},j_{\mathcal{E}}) \in \mathsf{CE}_{\mathcal{E}}, \qquad \sup_{\varepsilon > 0} \underset{t \in [0,T]}{\operatorname{ess}} \sup \, \mathcal{E}_{\mathcal{E}}(\mu_{\mathcal{E}}(t) < \infty, \qquad \sup_{\varepsilon > 0} \mathcal{D}_{\mathcal{E}}(\mu_{\mathcal{E}},j_{\mathcal{E}}) < \infty$$

the family $(\Pi_{\mathcal{E}}(\mu_{\mathcal{E}}, j_{\mathcal{E}}))_{{\mathcal{E}}>0}$ is precompact in CE₀

* Lower limit inequality: It holds

$$\liminf_{\varepsilon \to 0} \mathscr{L}_{\varepsilon}(\mu_{\varepsilon}, j_{\varepsilon}) \geq \mathscr{L}_{0}(\mu_{0}, j_{0})$$

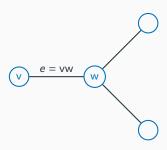
Immediate consequence: Solutions converge to solutions, i.e., if $\mathscr{L}_{\mathcal{E}}(\mu_{\mathcal{E}},j_{\mathcal{E}})=0$ and $\mathscr{L}_0\geq 0$, then $\mathscr{L}_0(\mu_0,j_0)=0$

Metric graphs with reservoirs (GH, J-F Pietschmann, A Schlichting)

Setup

Undirected irreducible simple finite graph:

- Finite set of vertices V
- \bullet Set of edges $E \subset V \times V$



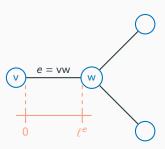
Setup

Undirected irreducible simple finite graph:

- Finite set of vertices V
- $\bullet \ \ \mathsf{Set} \ \mathsf{of} \ \mathsf{edges} \ \mathsf{E} \subset \mathsf{V} \times \mathsf{V}$

Metric Graph:

- Orientation: e = vw ∈ E has starting vertex v and end vertex w
- Associate to each $e \in E$ an intervall $[0, \ell^e]$

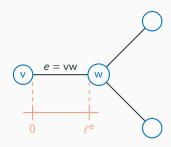


Undirected irreducible simple finite graph:

- Finite set of vertices V
- Set of edges $E \subset V \times V$

Metric Graph:

- Orientation: e = vw ∈ E has starting vertex v and end vertex w
- Associate to each $e \in E$ an intervall $[0, \ell^e]$



Dynamics:

Drift-diffusion along metric edges coupled with reservoirs on vertices

$$\begin{split} \partial_t \rho^e &= d^e \partial_X \big(\partial_X \rho^e + \rho^e \partial_X V^e \big) \\ - d^e \big[\partial_X \rho^e + \rho^e \partial_X V^e \big]_v n_v^e &= r(e, v) \rho^e |_v - r(v, e) \gamma_v \\ \partial_t \gamma_v &= \sum_{e \in \mathsf{E}(\mathsf{v})} \big(r(e, \mathsf{v}) \rho^e |_v - r(\mathsf{v}, e) \gamma_v \big) \end{split}$$

for potentials $V^e \in \text{Lip}$, diffusivity constants $d^e > 0$, and jump rates r > 0

Some selective literature

- Freidlin-Wentzell '93: Diffusion on metric intervall obtained as vanishing-diameter limit of diffusion narrow tube using probabilistic approach
- Erbar-Forkert-Maas-Mugnolo '22: McKean-Vlasov-type equations on metric graphs with Kirchhoff-type conditions at vertices identified as GFs w.r.t. suitable dynamic Wasserstein distance
- Fazeny-Burger-Pietschmann '25: "Overdamped isothermal model 3" for gas transport in networks formally understood as dynamic 3-Wasserstein GF
- Burger-Humpert-Pietschmann '23: Dynamic Wasserstein-type distance defined on metric graphs with mass reservoirs at vertices exchanging mass with edges
- Mugnolo-Romanelli '07: Asymptotic behaviour and regularity of solutions studied for similar model to ours using semigroup techniques

Detailed balance

$$\begin{split} \partial_t \rho^e &= d^e \partial_X \big(\partial_X \rho^e + \rho^e \partial_X V^e \big) \\ - d^e \big[\partial_X \rho^e + \rho^e \partial_X V^e \big]_v \mathsf{n}_v^e &= r(e, \mathsf{v}) \rho^e |_\mathsf{v} - r(\mathsf{v}, e) \gamma_\mathsf{v} \\ \partial_t \gamma_\mathsf{v} &= \sum_{e \in \mathsf{E}(\mathsf{v})} \big(r(e, \mathsf{v}) \rho^e |_\mathsf{v} - r(\mathsf{v}, e) \gamma_\mathsf{v} \big) \end{split}$$

- Introduce edge reference measures $d\pi^e := \exp(-V^e) dx$ (abuse notation to also write π^e for its density)
- Assume detailed balance condition: $\exists \omega = (\omega_{V})_{V \in V} \in \mathcal{M}_{\geq 0}(V)$ s.t.

$$r(e, v)\pi^{e}|_{V} = r(v, e)\omega_{V} \qquad \forall e \in E, v \in V$$

Detailed balance

$$\begin{split} \partial_{t}\rho^{e} &= d^{e}\partial_{X}\left(\partial_{X}\rho^{e} + \rho^{e}\partial_{X}V^{e}\right) \\ -d^{e}\left[\partial_{X}\rho^{e} + \rho^{e}\partial_{X}V^{e}\right]_{v}n_{v}^{e} &= r(e,v)\rho^{e}|_{v} - r(v,e)\gamma_{v} \\ \partial_{t}\gamma_{v} &= \sum_{e \in E(v)} \left(r(e,v)\rho^{e}|_{v} - r(v,e)\gamma_{v}\right) \end{split}$$

- Introduce edge reference measures $d\pi^e := \exp(-V^e) dx$ (abuse notation to also write π^e for its density)
- Assume detailed balance condition: $\exists \omega = (\omega_V)_{V \in V} \in \mathcal{M}_{\geq 0}(V)$ s.t.

$$r(e, v)\pi^{e}|_{V} = r(v, e)\omega_{V} \quad \forall e \in E, v \in V$$

- Denote $\mathcal{R}_{\vee}^{e} := r(e, \mathsf{v}) \sqrt{\frac{\pi^{e}|_{\mathsf{v}}}{\omega_{\mathsf{v}}}} = r(\mathsf{v}, e) \sqrt{\frac{\omega_{\mathsf{v}}}{\pi^{e}|_{\mathsf{v}}}}$
- ► Equations rewritten:

$$\begin{split} \partial_t \rho^e &= d^e \partial_x \left(\rho^e \partial_x \log \frac{\rho^e}{\pi^e} \right) \\ - d^e &\left[\rho^e \partial_x \log \frac{\rho^e}{\pi^e} \right]_v n_v^e = \mathcal{R}_v^e \sqrt{\pi^e} |_v \omega_v \left(\frac{\rho^e}{\pi^e} \Big|_v - \frac{\gamma_v}{\omega_v} \right) \\ \partial_t \gamma_v &= \sum_{e \in \mathsf{E}(v)} \mathcal{R}_v^e \sqrt{\pi^e} |_v \omega_v \left(\frac{\rho^e}{\pi^e} \Big|_v - \frac{\gamma_v}{\omega_v} \right) \end{split}$$

7

Contents of the paper

$$\begin{split} \partial_{t}\rho^{e} &= d^{e}\partial_{x}\bigg(\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\bigg)\\ -d^{e}\bigg[\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\bigg]_{v}n_{v}^{e} &= \&_{v}^{e}\sqrt{\pi^{e}|_{v}\omega_{v}}\bigg(\frac{\rho^{e}}{\pi^{e}}\bigg|_{v} - \frac{\gamma_{v}}{\omega_{v}}\bigg)\\ \partial_{t}\gamma_{v} &= \sum_{e\in E(v)}\&_{v}^{e}\sqrt{\pi^{e}|_{v}\omega_{v}}\bigg(\frac{\rho^{e}}{\pi^{e}}\bigg|_{v} - \frac{\gamma_{v}}{\omega_{v}}\bigg) \end{split}$$

Analytic results:

- Well-posedness
- Kirchhoff-type limit: Vanishing reservoirs without cutting dynamics (cf. Erbar-Forkert-Maas-Mugnolo '22)
- * Fast-diffusion limit: Acceleration of edge dynamics (combinatorial graph)

Contents of the paper

$$\begin{split} \partial_{t}\rho^{e} &= d^{e}\partial_{x}\bigg(\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\bigg)\\ -d^{e}\bigg[\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\bigg]_{v}n_{v}^{e} &= \mathcal{R}_{v}^{e}\sqrt{\pi^{e}|_{v}\omega_{v}}\bigg(\frac{\rho^{e}}{\pi^{e}}\bigg|_{v} - \frac{\gamma_{v}}{\omega_{v}}\bigg)\\ \partial_{t}\gamma_{v} &= \sum_{e\in E(v)}\mathcal{R}_{v}^{e}\sqrt{\pi^{e}|_{v}\omega_{v}}\bigg(\frac{\rho^{e}}{\pi^{e}}\bigg|_{v} - \frac{\gamma_{v}}{\omega_{v}}\bigg) \end{split}$$

Analytic results:

- * Well-posedness
- Kirchhoff-type limit: Vanishing reservoirs without cutting dynamics (cf. Erbar-Forkert-Maas-Mugnolo '22)
- Fast-diffusion limit: Acceleration of edge dynamics (combinatorial graph)
 Strategy:
- Write as gradient flow in CE format
- EDP convergence with embedding

Contents of the paper

$$\begin{split} \partial_{t}\rho^{e} &= d^{e}\partial_{x}\bigg(\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\bigg)\\ -d^{e}\bigg[\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\bigg]_{v}n_{v}^{e} &= \&_{v}^{e}\sqrt{\pi^{e}|_{v}\omega_{v}}\bigg(\frac{\rho^{e}}{\pi^{e}}\bigg|_{v} - \frac{\gamma_{v}}{\omega_{v}}\bigg)\\ \partial_{t}\gamma_{v} &= \sum_{e\in E(v)}\&_{v}^{e}\sqrt{\pi^{e}|_{v}\omega_{v}}\bigg(\frac{\rho^{e}}{\pi^{e}}\bigg|_{v} - \frac{\gamma_{v}}{\omega_{v}}\bigg) \end{split}$$

Analytic results:

- * Well-posedness
- Kirchhoff-type limit: Vanishing reservoirs without cutting dynamics (cf. Erbar-Forkert-Maas-Mugnolo '22)
- * Fast-diffusion limit: Acceleration of edge dynamics (combinatorial graph)

Strategy:

- Write as gradient flow in CE format
- EDP convergence with embedding

Numerical simulations:

- Based on finite volume discretization
- Comparison to analytic results
- Highlighting further aspects beyond analysis

Gradient flow formulation

Gradient flow formulation - drift-diffusion terms

Drift-diffusion terms:

$$d^e \partial_x \left(\rho^e \partial_x \log \frac{\rho^e}{\pi^e} \right)$$

Gradient flow formulation - drift-diffusion terms

Drift-diffusion terms:

$$d^{e}\partial_{x}\left(\rho^{e}\partial_{x}\log\frac{\rho^{e}}{\pi^{e}}\right)$$

Free energy:

$$\mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{\mathsf{e}} | \pi^{\mathsf{e}}) \coloneqq \sum_{e \in \mathsf{E}} \int_0^{\ell^{\mathsf{e}}} \rho^{\mathsf{e}} \log(\rho^{\mathsf{e}} / \pi^{\mathsf{e}}) - \rho^{\mathsf{e}} + \pi^{\mathsf{e}} \, \mathsf{d} x$$

with variational derivatives $D\mathcal{E}_{E}(\rho)|_{e} = \log(\rho^{e}/\pi^{e})$

Gradient and divergence: For $\varphi: L \to \mathbb{R}$ (L disjoint union of metric edges)

$$\nabla \varphi|_e = \partial_{\times} \varphi^e \qquad \qquad \mathrm{div} \, j|_e = \partial_{\times} j^e$$

Dual dissipation potential:

$$\mathcal{R}_{\mathsf{E}}^*(\rho,\xi) \coloneqq \sum_{e \in \mathsf{E}} \frac{1}{2} d^e \int_0^{\ell^e} |\xi_e|^2 \, \mathrm{d}\rho^e$$

9

Gradient flow formulation – drift-diffusion terms

Drift-diffusion terms:

$$d^e \partial_x \left(\rho^e \partial_x \log \frac{\rho^e}{\pi^e} \right)$$

Free energy:

$$\mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{\mathsf{e}} | \pi^{\mathsf{e}}) \coloneqq \sum_{e \in \mathsf{E}} \int_0^{\ell^{\mathsf{e}}} \rho^{\mathsf{e}} \log(\rho^{\mathsf{e}} / \pi^{\mathsf{e}}) - \rho^{\mathsf{e}} + \pi^{\mathsf{e}} \, \mathsf{d} x$$

with variational derivatives $D\mathcal{E}_{E}(\rho)|_{e} = \log(\rho^{e}/\pi^{e})$

Gradient and divergence: For $\varphi: L \to \mathbb{R}$ (L disjoint union of metric edges)

$$\nabla \varphi|_e = \partial_x \varphi^e \qquad \qquad \text{div } j|_e = \partial_x j^e$$

Dual dissipation potential:

$$\mathcal{R}_{\mathsf{E}}^*(\rho,\xi) \coloneqq \sum_{e \in \mathsf{E}} \frac{1}{2} d^e \int_0^{\ell^e} |\xi_e|^2 \, \mathrm{d}\rho^e$$

▶ Drift-diffusion terms rewritten:

$$-\operatorname{div} D_{\xi} \mathcal{R}_{\mathsf{E}}^*(\rho, -\nabla D\mathcal{E}_{\mathsf{E}}(\rho))|_{\mathsf{e}}$$

Gradient flow formulation - jump terms

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathcal{R}_\mathsf{v}^e \sqrt{\pi^e} |_\mathsf{v} \omega_\mathsf{v} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e}|\pi^{e})$$

Gradient flow formulation - jump terms

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathcal{R}_\mathsf{v}^e \sqrt{\pi^e} |_\mathsf{v} \omega_\mathsf{v} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})}\overline{\jmath}_{\mathsf{v}}^{e}$$

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathcal{R}_\mathsf{v}^e \sqrt{\pi^e} |_\mathsf{v} \omega_\mathsf{v} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e}|\pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{\mathsf{e}}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_{\mathsf{v}}^{e}$$

$$\sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \mathsf{div} \, j^e \mathsf{dx} + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \overline{\mathsf{div}} \bar{\jmath}_\mathsf{v} = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \partial_\mathsf{x} j^e \mathsf{dx} + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \Biggl(-\sum_{e \in \mathsf{E}(\mathsf{v})} \bar{\jmath}_\mathsf{v}^e \Biggr)$$

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathcal{R}_\mathsf{v}^e \sqrt{\pi^e} |_\mathsf{v} \omega_\mathsf{v} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e}|\pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{V},e} = \phi_{\mathsf{V}} - \varphi^{e}|_{\mathsf{V}} \qquad \overline{\operatorname{div}}\,\overline{j}|_{\mathsf{V}} = -\sum_{e \in \mathsf{F}(\mathsf{V})} \overline{j}_{\mathsf{V}}^{e}$$

$$\begin{split} \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \mathsf{div} \, j^e \mathsf{d} x + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \overline{\mathsf{div}} \overline{\jmath}_\mathsf{v} &= \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \partial_\mathsf{x} j^e \mathsf{d} x + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \bigg(- \sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_\mathsf{v}^e \bigg) \\ &= - \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_\mathsf{x} \varphi^e j^e \mathsf{d} x + \sum_{e \in \mathsf{E}} \sum_{\mathsf{v} \in \mathsf{V}(e)} \varphi^e |_\mathsf{v} j^e |_\mathsf{v} n_\mathsf{v}^e - \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \phi_\mathsf{v} \overline{\jmath}_\mathsf{v}^e \end{split}$$

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathcal{R}_\mathsf{v}^e \sqrt{\pi^e|_\mathsf{v} \omega_\mathsf{v}} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{V},e} = \phi_{\mathsf{V}} - \varphi^{e}|_{\mathsf{V}} \qquad \overline{\operatorname{div}}\,\overline{j}|_{\mathsf{V}} = -\sum_{e \in \mathsf{F}(\mathsf{V})} \overline{j}_{\mathsf{V}}^{e}$$

$$\begin{split} \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \mathsf{div} \, j^e \mathsf{d} x + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \overline{\mathsf{div}} \overline{\jmath}_\mathsf{v} &= \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \partial_\mathsf{x} j^e \mathsf{d} x + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \left(-\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_\mathsf{v}^e \right) \\ &= -\sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_\mathsf{x} \varphi^e j^e \mathsf{d} x + \sum_{e \in \mathsf{E}} \sum_{\mathsf{v} \in \mathsf{V}(e)} \varphi^e |_\mathsf{v} j^e |_\mathsf{v} n^e_\mathsf{v} - \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \phi_\mathsf{v} \overline{\jmath}_\mathsf{v}^e \\ &= -\sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_\mathsf{x} \varphi^e j^e \mathsf{d} x - \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_\mathsf{v} \overline{\jmath}_\mathsf{v}^e - \varphi^e |_\mathsf{v} j^e |_\mathsf{v} n^e_\mathsf{v}) \end{split}$$

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathscr{R}_\mathsf{v}^e \sqrt{\pi^e|_\mathsf{v} \omega_\mathsf{v}} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{\mathsf{e} \in \mathsf{E}} \mathcal{H}(\rho^{\mathsf{e}}|\pi^{\mathsf{e}})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{V},e} = \phi_{\mathsf{V}} - \varphi^{e}|_{\mathsf{V}} \qquad \overline{\operatorname{div}}\,\overline{j}|_{\mathsf{V}} = -\sum_{e \in \mathsf{F}(\mathsf{V})} \overline{j}_{\mathsf{V}}^{e}$$

$$\begin{split} \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \mathsf{div} \, j^e \mathsf{d} x + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \overline{\mathsf{div}} \bar{\jmath}_\mathsf{v} &= \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \partial_\mathsf{x} j^e \mathsf{d} x + \sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \left(-\sum_{e \in \mathsf{E}(\mathsf{v})} \bar{\jmath}_\mathsf{v}^e \right) \\ &= -\sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_\mathsf{x} \varphi^e j^e \mathsf{d} x + \sum_{e \in \mathsf{E}} \sum_{\mathsf{v} \in \mathsf{V}(e)} \varphi^e |_\mathsf{v} j^e |_\mathsf{v} n_\mathsf{v}^e - \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \phi_\mathsf{v} \bar{\jmath}_\mathsf{v}^e \\ &= -\sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_\mathsf{x} \varphi^e j^e \mathsf{d} x - \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_\mathsf{v} \bar{\jmath}_\mathsf{v}^e - \varphi^e |_\mathsf{v} j^e |_\mathsf{v} n_\mathsf{v}^e) \\ &= -\sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_\mathsf{x} \varphi^e j^e \mathsf{d} x - \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_\mathsf{v} - \varphi^e |_\mathsf{v}) \bar{\jmath}_\mathsf{v}^e \end{split}$$

Jump terms:

$$\sum_{e \in E(v)} \mathcal{R}_v^e \sqrt{\pi^e}|_v \omega_v \bigg(\frac{\rho^e}{\pi^e}\bigg|_v - \frac{\gamma_v}{\omega_v}\bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{\mathsf{e} \in \mathsf{E}} \mathcal{H}(\rho^{\mathsf{e}} | \pi^{\mathsf{e}})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e\in\mathsf{E}(\mathsf{v})}\overline{\jmath}_{\mathsf{v}}^{e}$$

Problem: Missing logarithms to rewrite in terms of energy

Jump terms:

$$\sum_{e \in E(v)} \mathcal{R}_v^e \sqrt{\pi^e}|_v \omega_v \bigg(\frac{\rho^e}{\pi^e}\bigg|_v - \frac{\gamma_v}{\omega_v}\bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_{\mathsf{v}}^{e}$$

Nonlinear transformation: $C^*(r) := 4(\cosh(r/2) - 1)$ has derivative $(C^*)'(r) = 2\sinh(r/2)$ which satisfies

$$r - s = \sqrt{rs} (\mathsf{C}^*)' (\log r - \log s)$$

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathbb{A}_\mathsf{v}^e \sqrt{\pi^e} |_\mathsf{v} \omega_\mathsf{v} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{\mathsf{e} \in \mathsf{E}} \mathcal{H}(\rho^{\mathsf{e}}|\pi^{\mathsf{e}})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_{\mathsf{v}}^{e}$$

Nonlinear transformation: $C^*(r) := 4(\cosh(r/2) - 1)$ has derivative $(C^*)'(r) = 2\sinh(r/2)$ which satisfies

$$r - s = \sqrt{rs} (\mathsf{C}^*)' (\log r - \log s)$$

$$\sum_{e \in E(v)} \mathcal{R}_{v}^{e} \sqrt{\rho^{e}|_{v} \gamma_{v}} (\mathsf{C}^{*})' \bigg(\log \frac{\rho^{e}}{\pi^{e}} \bigg|_{v} - \log \frac{\gamma_{v}}{\omega_{v}} \bigg)$$

Jump terms:

$$\sum_{e \in E(v)} \mathcal{R}_v^e \sqrt{\pi^e}|_v \omega_v \bigg(\frac{\rho^e}{\pi^e}\bigg|_v - \frac{\gamma_v}{\omega_v}\bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_{\mathsf{v}}^{e}$$

Nonlinear transformation: $C^*(r) := 4(\cosh(r/2) - 1)$ has derivative $(C^*)'(r) = 2\sinh(r/2)$ which satisfies

$$r - s = \sqrt{rs} (C^*)' (\log r - \log s)$$

$$\sum_{e \in \mathrm{E}(\mathrm{v})} \mathcal{R}_{\mathrm{v}}^{e} \sqrt{\rho^{e}|_{\mathrm{v}} \gamma_{\mathrm{v}}} (\mathrm{C}^{*})' \big(- \overline{\nabla} \mathrm{D} \mathcal{E}(\mu)|_{\mathsf{v},e} \big)$$

Jump terms:

$$\sum_{e \in E(v)} \cancel{R}_v^e \sqrt{\pi^e}|_v \omega_v \bigg(\frac{\rho^e}{\pi^e}\bigg|_v - \frac{\gamma_v}{\omega_v}\bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e}|\pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{\jmath}_{\mathsf{v}}^{e}$$

Nonlinear transformation: $C^*(r) := 4(\cosh(r/2) - 1)$ has derivative $(C^*)'(r) = 2\sinh(r/2)$ which satisfies

$$r - s = \sqrt{rs} (\mathsf{C}^*)' (\log r - \log s)$$

Dual dissipation potential:

$$\mathcal{R}_{\mathsf{V},\mathsf{E}}^*(\mu,\zeta) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \mathcal{R}_{\mathsf{v}}^e \sqrt{\rho^e} |_{\mathsf{v}} \gamma_{\mathsf{v}} \mathsf{C}^*(\zeta_{\mathsf{v}}^e)$$

$$\sum_{e \in \mathrm{E}(\mathrm{v})} \mathcal{R}_{\mathrm{v}}^{e} \sqrt{\rho^{e}|_{\mathrm{v}} \gamma_{\mathrm{v}}} (\mathrm{C}^{*})' \big(- \overline{\nabla} \mathrm{D} \mathcal{E}(\mu)|_{\mathsf{v},e} \big)$$

Jump terms:

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathbb{A}_\mathsf{v}^e \sqrt{\pi^e} |_\mathsf{v} \omega_\mathsf{v} \bigg(\frac{\rho^e}{\pi^e} \bigg|_\mathsf{v} - \frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}} \bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}}|\omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e}|\pi^{e})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e\in\mathsf{E}(\mathsf{v})}\overline{\jmath}_{\mathsf{v}}^{e}$$

Nonlinear transformation: $C^*(r) := 4(\cosh(r/2) - 1)$ has derivative $(C^*)'(r) = 2\sinh(r/2)$ which satisfies

$$r - s = \sqrt{rs} (\mathsf{C}^*)' (\log r - \log s)$$

Dual dissipation potential:

$$\mathcal{R}_{\mathsf{V},\mathsf{E}}^*(\mu,\zeta)\coloneqq\sum_{\mathsf{v}\in\mathsf{V}}\sum_{e\in\mathsf{E}(\mathsf{v})}\mathcal{R}_\mathsf{v}^e\sqrt{\rho^e|_\mathsf{v}\gamma_\mathsf{v}}\mathsf{C}^*(\zeta_\mathsf{v}^e)$$

$$\sum_{e \in \mathsf{E}(\mathsf{v})} \mathrm{D}_{\zeta} \mathcal{R}_{\mathsf{V},\mathsf{E}}^*(\mu,-\overline{\mathsf{V}} \mathrm{D} \mathcal{E}(\mu))|_{\mathsf{e},\mathsf{v}}$$

Jump terms:

$$\sum_{e \in E(v)} \cancel{R}_v^e \sqrt{\pi^e}|_v \omega_v \bigg(\frac{\rho^e}{\pi^e}\bigg|_v - \frac{\gamma_v}{\omega_v}\bigg)$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \mathcal{E}_{\mathsf{V}}(\gamma) + \mathcal{E}_{\mathsf{E}}(\rho) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{\mathsf{e} \in \mathsf{E}} \mathcal{H}(\rho^{\mathsf{e}} | \pi^{\mathsf{e}})$$

Gradient and divergence: For $\Phi = (\phi, \varphi) : V \times L \to \mathbb{R}$

$$\overline{\nabla}\Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \overline{\operatorname{div}}\,\overline{\jmath}|_{\mathsf{v}} = -\sum_{e\in\mathsf{E}(\mathsf{v})}\overline{\jmath}_{\mathsf{v}}^{e}$$

Nonlinear transformation: $C^*(r) := 4(\cosh(r/2) - 1)$ has derivative $(C^*)'(r) = 2\sinh(r/2)$ which satisfies

$$r - s = \sqrt{rs}(C^*)'(\log r - \log s)$$

Dual dissipation potential:

$$\mathcal{R}_{\mathsf{V},\mathsf{E}}^*(\mu,\zeta) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \mathscr{R}_\mathsf{v}^e \sqrt{\rho^e|_\mathsf{v} \gamma_\mathsf{v}} \mathsf{C}^*(\zeta_\mathsf{v}^e)$$

$$-\overline{\operatorname{div}}\mathrm{D}_{\zeta}\mathcal{R}_{\mathsf{V},\mathsf{E}}^*(\mu,-\overline{\nabla}\mathrm{D}\mathcal{E}(\mu))|_{\mathsf{v}}$$

Gradient flow formulation - full system

System in gradient flow form:

$$\begin{split} \partial_t \rho^e &= -\operatorname{div} \mathbf{D}_\xi \mathcal{R}_\mathsf{E}^*(\rho, -\nabla \mathbf{D} \mathcal{E}_\mathsf{E}(\rho))|_e \\ \mathbf{D}_\xi \mathcal{R}_\mathsf{E}^*(\rho, -\nabla \mathbf{D} \mathcal{E}_\mathsf{E}(\rho))|_{e, \mathsf{v}} n_\mathsf{v}^e &= \mathbf{D}_\zeta \mathcal{R}_\mathsf{V, E}^*(\mu, -\overline{\nabla} \mathbf{D} \mathcal{E}(\mu))|_{e, \mathsf{v}} \\ \partial_t \gamma_\mathsf{v} &= -\overline{\operatorname{div}} \, \mathbf{D}_\zeta \mathcal{R}_\mathsf{V, E}^*(\mu, -\overline{\nabla} \mathbf{D} \mathcal{E}(\mu))|_\mathsf{v} \end{split}$$

Free energy (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) := \sum_{\mathbf{v} \in \mathbf{V}} \gamma_{\mathbf{v}} \log \left(\frac{\gamma_{\mathbf{v}}}{\omega_{\mathbf{v}}} \right) - \gamma_{\mathbf{v}} + \omega_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \rho^{e} \log \left(\frac{\rho^{e}}{\pi^{e}} \right) - \rho^{e} + \pi^{e} \, dx$$

Dual dissipation potential:

$$\begin{split} \mathcal{R}_{\mathsf{E}}^*(\rho,\xi) &\coloneqq \sum_{e \in \mathsf{E}} \frac{1}{2} d^e \int_0^{\ell^e} |\xi_e|^2 \, \mathrm{d} \rho^e \\ \mathcal{R}_{\mathsf{V},\mathsf{E}}^*(\mu,\zeta) &\coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} 4 \mathcal{R}_\mathsf{v}^e \sqrt{\rho^e} |_{\mathsf{v}} \gamma_\mathsf{v}(\cosh(\zeta_\mathsf{v}^e/2) - 1) \end{split}$$

Gradient and divergence:

$$\nabla \varphi|_{e} = \partial_{X} \varphi^{e} \qquad \qquad \operatorname{div} j|_{e} = \partial_{X} j^{e}$$

$$\overline{\nabla} \Phi|_{\mathsf{v},e} = \phi_{\mathsf{v}} - \varphi^{e}|_{\mathsf{v}} \qquad \qquad \overline{\operatorname{div}} \, \overline{j}|_{\mathsf{v}} = -\sum_{e \in \mathsf{E}(\mathsf{v})} \overline{j}_{\mathsf{v}}^{e}$$

Gradient system

• Free energy functional (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

Gradient system

• Free energy functional (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

• Dissipation functional (denoting $j := (\bar{\jmath}, \underline{\jmath}) \in \mathcal{M}((V \times E) \times L)$):

$$\begin{split} \mathcal{D}(\mu,\mathbf{j}) &= \sum_{e \in \mathsf{E}} \int_0^T \frac{1}{2d^e} \int_0^{\ell^e} \frac{|j^e|^2}{\rho^e} \, \mathrm{d}x \, \mathrm{d}t \\ &+ \sum_{e \in \mathsf{E}} \int_0^T \int_0^{\ell^e} 2d^e \bigg| \partial_x \sqrt{\frac{\rho^e}{\pi^e}} \bigg|^2 \pi^e \, \mathrm{d}x \, \mathrm{d}t \\ &+ \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \int_0^T \mathcal{R}^e_\mathsf{v} \sqrt{\rho^e|_\mathsf{v}, \gamma_\mathsf{v}} \mathsf{C}\big(\bar{\jmath}^e_\mathsf{v}/\mathcal{R}^e_\mathsf{v} \sqrt{\rho^e|_\mathsf{v}, \gamma_\mathsf{v}}\big) \, \mathrm{d}t \\ &+ \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \int_0^T 2\mathcal{R}^e_\mathsf{v} \sqrt{\pi^e|_\mathsf{v}, \omega_\mathsf{v}} \bigg| \sqrt{\frac{\rho^e}{\pi^e}} \bigg|_\mathsf{v} - \sqrt{\frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}}} \bigg|^2 \, \mathrm{d}t \end{split}$$

Gradient system

• Free energy functional (denoting $\mu := (\gamma, \rho) \in \mathcal{P}(V \times L)$):

$$\mathcal{E}(\mu) \coloneqq \sum_{\mathsf{v} \in \mathsf{V}} \mathcal{H}(\gamma_{\mathsf{v}} | \omega_{\mathsf{v}}) + \sum_{e \in \mathsf{E}} \mathcal{H}(\rho^{e} | \pi^{e})$$

• Dissipation functional (denoting $j := (\bar{\jmath}, j) \in \mathcal{M}((V \times E) \times L))$:

$$\begin{split} \mathcal{D}(\mu,\mathbf{j}) &= \sum_{e \in \mathsf{E}} \int_0^T \frac{1}{2d^e} \int_0^{\ell^e} \frac{|\mathbf{j}^e|^2}{\rho^e} \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &+ \sum_{e \in \mathsf{E}} \int_0^T \int_0^{\ell^e} 2d^e \bigg| \partial_{\mathsf{X}} \sqrt{\frac{\rho^e}{\pi^e}} \bigg|^2 \pi^e \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &+ \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \int_0^T \mathcal{R}_\mathsf{v}^e \sqrt{\rho^e|_{\mathsf{v}}, \gamma_\mathsf{v}} \mathsf{C} \big(J_\mathsf{v}^e / \mathcal{R}_\mathsf{v}^e \sqrt{\rho^e|_{\mathsf{v}}, \gamma_\mathsf{v}} \big) \, \mathrm{d}t \\ &+ \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} \int_0^T 2\mathcal{R}_\mathsf{v}^e \sqrt{\pi^e|_{\mathsf{v}}, \omega_\mathsf{v}} \bigg| \sqrt{\frac{\rho^e}{\pi^e}} \bigg|_{\mathsf{v}} - \sqrt{\frac{\gamma_\mathsf{v}}{\omega_\mathsf{v}}} \bigg|^2 \, \mathrm{d}t \end{split}$$

• Continuity equation: $(\mu, j) \in CE$ if for all $\Phi = (\phi, \varphi) \in C^1(V \times L)$ and a.e. time

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \sum_{e \in \mathbf{E}(\mathbf{v})} \left(\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}} \right) \bar{J}_{\mathbf{v}}^{e}$$

* Chain rule identity:

$$\mathcal{E}(\mu(t)) - \mathcal{E}(\mu(s)) = \int_{s}^{t} \left[\langle \nabla \mathsf{D} \mathcal{E}_{\mathsf{E}}(\rho(\tau)), j(\tau) \rangle + \langle \overline{\nabla} \mathsf{D} \mathcal{E}(\mu(\tau)), \overline{\jmath}(\tau) \rangle \right] d\tau$$

- Metric edge terms: Special case of Erbar-Forkert-Maas-Mugnolo '22
- Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23

* Chain rule identity:

$$\mathcal{E}(\mu(t)) - \mathcal{E}(\mu(s)) = \int_{s}^{t} \left[\langle \nabla \mathsf{D} \mathcal{E}_{\mathsf{E}}(\rho(\tau)), j(\tau) \rangle + \langle \overline{\nabla} \mathsf{D} \mathcal{E}(\mu(\tau)), \overline{\jmath}(\tau) \rangle \right] d\tau$$

- Metric edge terms: Special case of Erbar-Forkert-Maas-Mugnolo '22
- Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23
- ▶ Chain rule inequality: $\mathcal{L}(\mu, j) = \mathcal{E}(\mu(T)) \mathcal{E}(\mu(0)) + \mathcal{D}(\mu, j) \ge 0$

* Chain rule identity:

$$\mathcal{E}(\mu(t)) - \mathcal{E}(\mu(s)) = \int_{s}^{t} \left[\langle \nabla \mathsf{D} \mathcal{E}_{\mathsf{E}}(\rho(\tau)), j(\tau) \rangle + \langle \overline{\nabla} \mathsf{D} \mathcal{E}(\mu(\tau)), \overline{\jmath}(\tau) \rangle \right] d\tau$$

- Metric edge terms: Special case of Erbar-Forkert-Maas-Mugnolo '22
- Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23
- ► Chain rule inequality: $\mathcal{L}(\mu, j) = \mathcal{E}(\mu(T)) \mathcal{E}(\mu(0)) + \mathcal{D}(\mu, j) \ge 0$
- ► Energy-dissipation principle: $\mathcal{L}(\mu, j) = 0 \iff$ for all $(\phi, \varphi) \in C^1(V \times L)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \sum_{e \in \mathbf{E}(\mathbf{v})} (\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}}) \overline{J}_{\mathbf{v}}^{e}$$

$$for \quad :_{e} = d^{e} \circ_{e} \partial_{\mathbf{v}} \log \rho^{e} \quad \text{and} \quad :_{e} = d^{e} \circ_{\mathbf{v}} \partial_{\mathbf{v}} \sqrt{|\mathbf{v}|_{\mathbf{v}}} \left[\rho^{e} |_{\mathbf{v}} \gamma_{\mathbf{v}} \right]$$

$$\text{for} \quad j^e = d^e \rho^e \partial_X \log \frac{\rho^e}{\pi^e} \quad \text{and} \quad \bar{\jmath}^e_{\text{v}} = \mathcal{R}^e_{\text{v}} \sqrt{\pi^e} |_{\text{v}} \omega_{\text{v}} \bigg[\frac{\rho^e}{\pi^e} \bigg|_{\text{v}} - \frac{\gamma_{\text{v}}}{\omega_{\text{v}}} \bigg]$$

* Chain rule identity:

$$\mathcal{E}(\mu(t)) - \mathcal{E}(\mu(s)) = \int_{s}^{t} \left[\langle \nabla \mathsf{D} \mathcal{E}_{\mathsf{E}}(\rho(\tau)), j(\tau) \rangle + \langle \overline{\nabla} \mathsf{D} \mathcal{E}(\mu(\tau)), \overline{\jmath}(\tau) \rangle \right] d\tau$$

Proof: Exploit decoupling due to CE format

- Metric edge terms: Special case of Erbar-Forkert-Maas-Mugnolo '22
- Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23
- ► Chain rule inequality: $\mathcal{L}(\mu, j) = \mathcal{E}(\mu(T)) \mathcal{E}(\mu(0)) + \mathcal{D}(\mu, j) \ge 0$
- ► Energy-dissipation principle: $\mathcal{L}(\mu, j) = 0 \iff$ for all $(\phi, \varphi) \in C^1(V \times L)$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \bigg[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \bigg] &= \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \sum_{e \in \mathbf{E}(\mathbf{v})} \left(\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}} \right) \overline{J}_{\mathbf{v}}^{e} \\ & \text{for} \quad j^{e} = d^{e} \rho^{e} \partial_{\mathbf{x}} \log \frac{\rho^{e}}{\pi^{e}} \quad \text{and} \quad \overline{J}_{\mathbf{v}}^{e} = \mathscr{R}_{\mathbf{v}}^{e} \sqrt{\pi^{e}|_{\mathbf{v}} \omega_{\mathbf{v}}} \bigg[\frac{\rho^{e}}{\pi^{e}} \bigg|_{\mathbf{v}} - \frac{\gamma_{\mathbf{v}}}{\omega_{\mathbf{v}}} \bigg] \end{split}$$

* Existence of solutions:

Proof: Abstract EDP convergence applied with finite volume approximation (similar to Hraivoronska-Tse '23)

* Chain rule identity:

$$\mathcal{E}(\mu(t)) - \mathcal{E}(\mu(s)) = \int_{s}^{t} \left[\langle \nabla \mathsf{D} \mathcal{E}_{\mathsf{E}}(\rho(\tau)), j(\tau) \rangle + \langle \overline{\nabla} \mathsf{D} \mathcal{E}(\mu(\tau)), \overline{\jmath}(\tau) \rangle \right] d\tau$$

- Metric edge terms: Special case of Erbar-Forkert-Maas-Mugnolo '22
- Transition terms: Special case of Peletier-Rossi-Savaré-Tse '23
- ► Chain rule inequality: $\mathcal{L}(\mu, j) = \mathcal{E}(\mu(T)) \mathcal{E}(\mu(0)) + \mathcal{D}(\mu, j) \ge 0$
- ► Energy-dissipation principle: $\mathcal{L}(\mu, j) = 0 \iff$ for all $(\phi, \varphi) \in C^1(V \times L)$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \bigg[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \bigg] &= \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \sum_{e \in \mathbf{E}(\mathbf{v})} \left(\phi_{\mathbf{v}} - \varphi^{e} |_{\mathbf{v}} \right) \overline{j}_{\mathbf{v}}^{e} \\ & \text{for} \quad j^{e} = d^{e} \rho^{e} \partial_{\mathbf{x}} \log \frac{\rho^{e}}{\pi^{e}} \quad \text{and} \quad \overline{j}_{\mathbf{v}}^{e} = \mathscr{R}_{\mathbf{v}}^{e} \sqrt{\pi^{e} |_{\mathbf{v}} \omega_{\mathbf{v}}} \bigg[\frac{\rho^{e}}{\pi^{e}} \Big|_{\mathbf{v}} - \frac{\gamma_{\mathbf{v}}}{\omega_{\mathbf{v}}} \bigg] \end{split}$$

- * Existence of solutions:
 - Proof: Abstract EDP convergence applied with finite volume approximation (similar to Hraivoronska-Tse '23)
- * Uniqueness of solutions: Proof: Use that $(\mu,j)\mapsto \mathcal{L}(\mu,j)$ is strictly convex w.r.t. affine interpolations

- Kirchhoff means no mass exchange with vertex reservoirs
- ► Remove mass from reservoirs

$$\pi^{\varepsilon} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$$
 and $\omega^{\varepsilon} \coloneqq \frac{\varepsilon\omega}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$

► Accelerate jump rates to retain non-trivial fluxes

$$\mathscr{R}_{\mathsf{v}}^{\mathsf{e},\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathscr{R}_{\mathsf{v}}^{\mathsf{e}}$$

- Kirchhoff means no mass exchange with vertex reservoirs
- ► Remove mass from reservoirs

$$\pi^{\mathcal{E}} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})} \qquad \text{and} \qquad \omega^{\mathcal{E}} \coloneqq \frac{\varepsilon\omega}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$$

► Accelerate jump rates to retain non-trivial fluxes

$$\mathcal{R}_{\mathsf{v}}^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathcal{R}_{\mathsf{v}}^{e}$$

 \blacktriangleright Challenge: Lose control over $\bar{\jmath}^e_{\rm V} \implies$ Lose control over $\frac{\rm d}{{\rm d}t}\gamma_{\rm V}$

- Kirchhoff means no mass exchange with vertex reservoirs
- ▶ Remove mass from reservoirs

$$\pi^{\mathcal{E}} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})} \qquad \text{and} \qquad \omega^{\mathcal{E}} \coloneqq \frac{\varepsilon\omega}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$$

► Accelerate jump rates to retain non-trivial fluxes

$$\mathscr{R}_{\mathsf{v}}^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathscr{R}_{\mathsf{v}}^{e}$$

- ► Challenge: Lose control over \bar{J}_{V}^{e} \Longrightarrow Lose control over $\frac{d}{dt}\gamma_{V}$
- Continuity equation: $(\mu, j) \in CE$ if for all $(\phi, \varphi) \in C^1(V \times L)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \sum_{e \in \mathbf{E}(\mathbf{v})} \left(\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}} \right) \overline{J}_{\mathbf{v}}^{e}$$

- Kirchhoff means no mass exchange with vertex reservoirs
- ▶ Remove mass from reservoirs

$$\pi^{\mathcal{E}} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})} \qquad \text{and} \qquad \omega^{\mathcal{E}} \coloneqq \frac{\varepsilon\omega}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$$

► Accelerate jump rates to retain non-trivial fluxes

$$\mathscr{R}_{\mathsf{v}}^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathscr{R}_{\mathsf{v}}^{e}$$

- ► Challenge: Lose control over \bar{J}_{V}^{e} \Longrightarrow Lose control over $\frac{d}{dt}\gamma_{V}$
- Continuity equation: $(\mu, j) \in \widetilde{CE}$ if for all $(\phi, \varphi) \in C^1(V \times L)$ s.t. $\phi_V = \varphi^e|_V$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \underbrace{(\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}})J_{\mathbf{v}}^{e}}_{J_{\mathbf{v}}}$$

• Embedding: Drop jump fluxes $\bar{\jmath}_{v}^{e}$

- Kirchhoff means no mass exchange with vertex reservoirs
- ► Remove mass from reservoirs

$$\pi^{\varepsilon} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon \omega(\mathsf{V})} \qquad \text{and} \qquad \omega^{\varepsilon} \coloneqq \frac{\varepsilon \omega}{\pi(\mathsf{L}) + \varepsilon \omega(\mathsf{V})}$$

Accelerate jump rates to retain non-trivial fluxes

$$\mathscr{R}_{\mathsf{v}}^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathscr{R}_{\mathsf{v}}^{e}$$

- ► Challenge: Lose control over \bar{J}_{V}^{e} \Longrightarrow Lose control over $\frac{d}{dt}\gamma_{V}$
- Continuity equation: $(\mu, \mathbf{j}) \in \widetilde{\mathsf{CE}}$ if for all $(\phi, \varphi) \in C^1(\mathsf{V} \times \mathsf{L})$ s.t. $\phi_\mathsf{V} = \varphi^e|_\mathsf{V}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{i} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} (\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}}) \overline{J}_{\mathbf{v}}^{e}$$

- Embedding: Drop jump fluxes \bar{J}_{V}^{e}
- * Steps to EDP limit:
 - Energy bound: $\gamma_{\mathsf{v}}^{\mathcal{E}} \to 0$ strongly in $L^1(0,T)$

- Kirchhoff means no mass exchange with vertex reservoirs
- ► Remove mass from reservoirs

$$\pi^{\mathcal{E}} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})} \qquad \text{and} \qquad \omega^{\mathcal{E}} \coloneqq \frac{\varepsilon\omega}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$$

► Accelerate jump rates to retain non-trivial fluxes

$$\mathcal{R}_{\mathsf{v}}^{\mathsf{e},\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathcal{R}_{\mathsf{v}}^{\mathsf{e}}$$

- ► Challenge: Lose control over \bar{J}_{v}^{e} \Longrightarrow Lose control over $\frac{d}{dt}\gamma_{v}$
- Continuity equation: $(\mu, \mathbf{j}) \in \widetilde{\mathsf{CE}}$ if for all $(\phi, \varphi) \in C^1(\mathsf{V} \times \mathsf{L})$ s.t. $\phi_\mathsf{V} = \varphi^e|_\mathsf{V}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathbf{v} \in V} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in E} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in E} \int_{0}^{\ell^{e}} \partial_{x} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in V} (\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}}) \overline{J}_{\mathbf{v}}^{e}$$

- Embedding: Drop jump fluxes \bar{J}_{V}^{e}
- * Steps to EDP limit:
 - Energy bound: $\gamma_{\mathsf{v}}^{\mathcal{E}} \to 0$ strongly in $L^1(0,T)$
 - Slope term for jumps: $\left|\sqrt{\frac{\rho^{e,\varepsilon}}{\pi^{e,\varepsilon}}}\right|_{v} \sqrt{\frac{\gamma_{v}^{\varepsilon}}{\omega_{v}^{\varepsilon}}}\right| \to 0$ weakly in $L^{2}(0,T)$

- Kirchhoff means no mass exchange with vertex reservoirs
- ► Remove mass from reservoirs

$$\pi^{\varepsilon} \coloneqq \frac{\pi}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})} \qquad \text{and} \qquad \omega^{\varepsilon} \coloneqq \frac{\varepsilon\omega}{\pi(\mathsf{L}) + \varepsilon\omega(\mathsf{V})}$$

Accelerate jump rates to retain non-trivial fluxes

$$\mathcal{R}_{\mathsf{v}}^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} \mathcal{R}_{\mathsf{v}}^{e}$$

- lacktriangleright Challenge: Lose control over $ar{\it J}_{\rm V}^{\it e}$ \Longrightarrow Lose control over ${d\over dt}\gamma_{\rm V}$
- Continuity equation: $(\mu, \mathbf{j}) \in \widetilde{\mathsf{CE}}$ if for all $(\phi, \varphi) \in C^1(\mathsf{V} \times \mathsf{L})$ s.t. $\phi_\mathsf{V} = \varphi^e|_\mathsf{V}$

$$\frac{\mathsf{d}}{\mathsf{d}t} \left[\sum_{\mathbf{v} \in \mathbf{V}} \phi_{\mathbf{v}} \gamma_{\mathbf{v}} + \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathbf{E}} \int_{0}^{\ell^{e}} \partial_{\mathbf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathbf{v} \in \mathbf{V}} \underbrace{(\phi_{\mathbf{v}} - \varphi^{e}|_{\mathbf{v}})J_{\mathbf{v}}^{e}}_{\mathbf{v}}$$

- Embedding: Drop jump fluxes \(\bar{j}_{\nu}^e \)
- * Steps to EDP limit:
 - Energy bound: $\gamma_{v}^{\varepsilon} \to 0$ strongly in $L^{1}(0, T)$
 - Slope term for jumps: $\left|\sqrt{\frac{\rho^{e,\varepsilon}}{\pi^{e,\varepsilon}}}\right|_{\mathbf{v}} \sqrt{\frac{\gamma_{\mathbf{v}}^{\varepsilon}}{\omega_{\mathbf{v}}^{\varepsilon}}} \to 0$ weakly in $L^2(0,T)$
- Limit model coincides with model in Erbar-Forkert-Maas-Mugnolo '23
- ► Limit model is gradient flow

• Rescale diffusivity constant:

$$d^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} d^e$$

 \bullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t}\rho^e$

Rescale diffusivity constant:

$$d^{e,\varepsilon} := \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t}
 ho^e$
- \bullet Heuristics: ρ^e averaged out \Longrightarrow Metric edge becomes new vertex \Longrightarrow Jump fluxes suffice to control time derivatives

Rescale diffusivity constant:

$$d^{e,\varepsilon} := \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t}
 ho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$

• Rescale diffusivity constant:

$$d^{e,\varepsilon} := \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t} \rho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ▶ Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation:

$$\frac{\mathsf{d}}{\mathsf{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_{\mathsf{v}} \gamma_{\mathsf{v}}(t) + \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \, \mathrm{d} \rho^e \right] = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_{\mathsf{x}} \varphi^e \, \mathrm{d} j^e + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_{\mathsf{v}} - \hat{\varphi}^e) \bar{J}^e_{\mathsf{v}}(t)$$

• Rescale diffusivity constant:

$$d^{e,\varepsilon} := \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t} \rho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation: Test with constant-in-space edge test functions, i.e.,

$$\bar{\Phi} = (\phi, \hat{\varphi}) \in C(\hat{\mathsf{V}})$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_{\mathsf{v}} \gamma_{\mathsf{v}}(t) + \sum_{e \in \mathsf{E}} \int_{0}^{\ell^{e}} \varphi^{e} \, \mathrm{d}\rho^{e} \right] = \sum_{e \in \mathsf{E}} \int_{0}^{\ell^{e}} \partial_{\mathsf{x}} \varphi^{e} \, \mathrm{d}j^{e} + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_{\mathsf{v}} - \hat{\varphi}^{e}) \bar{J}_{\mathsf{v}}^{e}(t)$$

• Rescale diffusivity constant:

$$d^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} d^e$$

- \bullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t}\rho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation: Test with constant-in-space edge test functions, i.e.,

$$\bar{\Phi} = (\phi, \hat{\varphi}) \in C(\hat{\mathsf{V}})$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_{\mathsf{v}} \gamma_{\mathsf{v}}(t) + \sum_{e \in \mathsf{E}} \hat{\varphi}^e \rho(t, [0, \ell^e]) \right] = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_{\mathsf{x}} \varphi^e \, \mathrm{d}j^e + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_{\mathsf{v}} - \hat{\varphi}^e) \bar{J}_{\mathsf{v}}^e(t)$$

• Rescale diffusivity constant:

$$d^{e,\varepsilon} := \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t}
 ho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation: Test with constant-in-space edge test functions, i.e.,

$$\bar{\Phi} = (\phi, \hat{\varphi}) \in C(\hat{\mathsf{V}})$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_{\mathsf{v}} \gamma_{\mathsf{v}}(t) + \sum_{e \in \mathsf{E}} \hat{\varphi}^e \rho(t, [0, \ell^e]) \right] = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \partial_{\mathsf{x}} \varphi^e \, \mathrm{d}j^e + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_{\mathsf{v}} - \hat{\varphi}^e) \bar{J}^e_{\mathsf{v}}(t)$$

• Rescale diffusivity constant:

$$d^{e,\varepsilon} := \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t} \rho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation: Test with constant-in-space edge test functions, i.e., $(\mu, \bar{\jmath}) \in \overline{\mathsf{CE}}_{\hat{\mathsf{V}}}$ if for $\bar{\Phi} = (\phi, \hat{\varphi}) \in C(\hat{\mathsf{V}})$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_\mathsf{v} \gamma_\mathsf{v}(t) + \sum_{e \in \mathsf{E}} \hat{\varphi}^e \rho(t, [0, \ell^e]) \right] = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \, \mathrm{d}j^e + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_\mathsf{v} - \hat{\varphi}^e) \bar{\jmath}_\mathsf{v}^e(t)$$

• Embedding: Drop diffusive fluxes j^e

• Rescale diffusivity constant:

$$d^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t} \rho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation: Test with constant-in-space edge test functions, i.e., $(\mu, \bar{\jmath}) \in \overline{\mathsf{CE}}_{\hat{\mathsf{V}}}$ if for $\bar{\Phi} = (\phi, \hat{\varphi}) \in C(\hat{\mathsf{V}})$

$$\frac{\mathsf{d}}{\mathsf{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_{\mathsf{v}} \gamma_{\mathsf{v}}(t) + \sum_{e \in \mathsf{E}} \hat{\varphi}^e \rho(t, [0, \ell^e]) \right] = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \, \mathsf{d}j^e + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_{\mathsf{v}} - \hat{\varphi}^e) \bar{J}^e_{\mathsf{v}}(t)$$

- Embedding: Drop diffusive fluxes j^e
- * Slope term: $\exists \zeta : [0, T] \to \mathsf{E} \text{ s.t. } \rho \to \zeta \pi \text{ strongly in } L^1(0, T; L^1(\mathsf{L}))$

• Rescale diffusivity constant:

$$d^{e,\varepsilon} \coloneqq \frac{1}{\varepsilon} d^e$$

- ullet Challenge: Lose control over $j^e \implies$ Lose control over $\frac{\mathrm{d}}{\mathrm{d}t} \rho^e$
- Heuristics: ρ^e averaged out \implies Metric edge becomes new vertex \implies Jump fluxes suffice to control time derivatives
- ► Extended graph: $\hat{V} = V \cup E$ and $\hat{E} = \{ev : v \in V, e \in E(v)\}$
- Continuity equation: Test with constant-in-space edge test functions, i.e., $(\mu, \bar{\jmath}) \in \overline{\mathsf{CE}}_{\hat{\mathsf{V}}}$ if for $\bar{\Phi} = (\phi, \hat{\varphi}) \in C(\hat{\mathsf{V}})$

$$\frac{\mathsf{d}}{\mathsf{d}t} \left[\sum_{\mathsf{v} \in \mathsf{V}} \phi_{\mathsf{v}} \gamma_{\mathsf{v}}(t) + \sum_{e \in \mathsf{E}} \hat{\varphi}^e \rho(t, [0, \ell^e]) \right] = \sum_{e \in \mathsf{E}} \int_0^{\ell^e} \varphi^e \, \mathsf{d}j^e + \sum_{\mathsf{v} \in \mathsf{V}} \sum_{e \in \mathsf{E}(\mathsf{v})} (\phi_{\mathsf{v}} - \hat{\varphi}^e) \bar{J}^e_{\mathsf{v}}(t)$$

- Embedding: Drop diffusive fluxes j^e
- * Slope term: $\exists \zeta : [0, T] \to E$ s.t. $\rho \to \zeta \pi$ strongly in $L^1(0, T; L^1(L))$
- Limit model is graph gradient flow on extended graph (\hat{V}, \hat{E})
- * Can be further reduced to graph gradient flow on (V, E) by sending $\pi^e \to 0$ and $\mathcal{R}^e_{\vee} \to \infty$ s.t. $\mathcal{R}^e_{\vee} \sqrt{\pi^e|_{\vee}\omega_{\vee}} \in O(1)$ (cf. also Peletier-Schlichting '23)

Reaction-diffusion systems
(GH, A Mielke, A Stephan)

- Finitely many species $i \in I$ with concentrations $\rho = (\rho_i)_{i \in I} \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$
- Each species drift-diffuses with diffusion constant $d_i > 0$
- Reactions $r \in R$ with rates $\kappa_r > 0$ and stoichiometric coefficients $\alpha_i^r, \beta_i^r \in [0, \infty)$

- Finitely many species $i \in I$ with concentrations $\rho = (\rho_i)_{i \in I} \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$
- Each species drift-diffuses with diffusion constant $d_i > 0$
- Reactions $r \in R$ with rates $\kappa_r > 0$ and stoichiometric coefficients $\alpha_i^r, \beta_i^r \in [0, \infty)$
- Consider mass-action kinetics with detailed balance
- ► Reaction-diffusion system (RDS):

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

where $\rho^{\lambda} = \prod_{\tilde{i} \in I} \rho_{\tilde{i}}^{\lambda_{\tilde{i}}}$ and $\pi \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$ are reference concentrations

- Finitely many species $i \in I$ with concentrations $\rho = (\rho_i)_{i \in I} \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$
- Each species drift-diffuses with diffusion constant $d_i > 0$
- Reactions $r \in R$ with rates $\kappa_r > 0$ and stoichiometric coefficients $\alpha_i^r, \beta_i^r \in [0, \infty)$
- Consider mass-action kinetics with detailed balance
- ► Reaction-diffusion system (RDS):

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

where $\rho^{\lambda} = \prod_{\tilde{i} \in I} \rho_{\tilde{i}}^{\lambda_{\tilde{i}}}$ and $\pi \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$ are reference concentrations

• Gradient system for diffusive part similar to before

- Finitely many species $i \in I$ with concentrations $\rho = (\rho_i)_{i \in I} \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$
- Each species drift-diffuses with diffusion constant $d_i > 0$
- Reactions $r \in R$ with rates $\kappa_r > 0$ and stoichiometric coefficients $\alpha_i^r, \beta_i^r \in [0, \infty)$
- Consider mass-action kinetics with detailed balance
- ► Reaction-diffusion system (RDS):

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

where $\rho^{\lambda} = \prod_{\tilde{i} \in I} \rho_{\tilde{i}}^{\lambda_{\tilde{i}}}$ and $\pi \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$ are reference concentrations

- Gradient system for diffusive part similar to before
- Reaction "gradient" $\Gamma: \mathbb{R}^I \to \mathbb{R}^R$ defined by $\Gamma_{ir} \coloneqq \gamma_i^r \coloneqq \alpha_i^r \beta_i^r$
- Dual dissipation potential: $\mathcal{R}^*_{\mathrm{react}}(\rho,\zeta) \coloneqq \int_{\mathbb{T}^d} \sum_{r \in P} \kappa_r \sqrt{\rho^{\alpha^r} \rho^{\beta^r}} \mathsf{C}^*(\zeta_r) \, \mathrm{d}x$
- ▶ Contains "mobility" $\rho^{\alpha^r + \beta^r/2}$, which is not concave if $|\alpha^r + \beta^r|_1 > 2$

- Finitely many species $i \in I$ with concentrations $\rho = (\rho_i)_{i \in I} \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$
- Each species drift-diffuses with diffusion constant $d_i > 0$
- Reactions $r \in R$ with rates $\kappa_r > 0$ and stoichiometric coefficients $\alpha_i^r, \beta_i^r \in [0, \infty)$
- Consider mass-action kinetics with detailed balance
- ► Reaction-diffusion system (RDS):

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

where $\rho^{\lambda} = \prod_{\tilde{i} \in I} \rho_{\tilde{i}}^{\lambda_{\tilde{i}}}$ and $\pi \in \mathcal{M}_{\geq 0}(\mathbb{T}^d; \mathbb{R}^I)$ are reference concentrations

- Gradient system for diffusive part similar to before
- Reaction "gradient" $\Gamma: \mathbb{R}^I \to \mathbb{R}^R$ defined by $\Gamma_{ir} \coloneqq \gamma_i^r \coloneqq \alpha_i^r \beta_i^r$
- Dual dissipation potential:

$$\mathcal{R}_{\text{react}}^*(\rho,\zeta) \coloneqq \int_{\mathbb{T}^d} \sum_{r \in R} \kappa_r \sqrt{\rho^{\alpha^r} \rho^{\beta^r}} \mathsf{C}^*(\zeta_r) \, \mathsf{d} x$$

- ▶ Contains "mobility" $\rho^{\alpha^r + \beta^r/2}$, which is not concave if $|\alpha^r + \beta^r|_1 > 2$
- ▶ RDS written as GF in CE format:

$$\partial_t \rho = -\operatorname{div} \operatorname{D}_{\xi} \mathcal{R}^*_{\operatorname{diff}} \left(\rho, - \nabla \operatorname{D} \mathcal{E}(\rho) \right) + \Gamma^* \operatorname{D}_{\zeta} \mathcal{R}^*_{\operatorname{react}} (\rho, - \Gamma \operatorname{D} \mathcal{E}(\rho))$$

Reaction-diffusion system (RDS):

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

* Goal: Existence of EDP solutions

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

- * Goal: Existence of EDP solutions
- Steps:
 - Discretize in space
 - Existence and energy dissipation principle for discrete system
 - Compactness (of embedded curves) + lower limit inequality
 - Chain rule inequality for limit system

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

- * Goal: Existence of EDP solutions
- Steps:
 - Discretize in space
 - Existence and energy dissipation principle for discrete system
 - Compactness (of embedded curves) + lower limit inequality
 - Chain rule inequality for limit system
- \bullet Challenge: Non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$ if $|\alpha^r+\beta^r|>2$

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

- * Goal: Existence of EDP solutions
- Steps:
 - Discretize in space
 - Existence and energy dissipation principle for discrete system
 - Compactness (of embedded curves) + lower limit inequality
 - Chain rule inequality for limit system
- Challenge: Non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$ if $|\alpha^r+\beta^r|>2$
- Spatial discretization:
 - Again EDP limit for finite volume scheme with cosh gradient structure
 - * Additional step: Obtain uniform bounds on $ho^{(\alpha^r+\beta^r)/2}$ extracting regularity from the diffusive part
 - ► Requires $|\alpha^r + \beta^r| \le 2 + 4/d =: 2p_{crit}$

$$\partial_t \rho_i = d_i \operatorname{div} \left(\rho_i \nabla \log \left(\frac{\rho_i}{\pi_i} \right) \right) + \sum_{r \in R} \kappa_r \pi^{\frac{\alpha^r + \beta^r}{2}} \left(\left(\frac{\rho}{\pi} \right)^{\alpha^r} - \left(\frac{\rho}{\pi} \right)^{\beta^r} \right) (\beta_i^r - \alpha_i^r)$$

- * Goal: Existence of EDP solutions
- Steps:
 - Discretize in space
 - Existence and energy dissipation principle for discrete system
 - Compactness (of embedded curves) + lower limit inequality
 - Chain rule inequality for limit system
- \bullet Challenge: Non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$ if $|\alpha^r+\beta^r|>2$
- Spatial discretization:
 - Again EDP limit for finite volume scheme with cosh gradient structure
 - * Additional step: Obtain uniform bounds on $ho^{(\alpha^r+\beta^r)/2}$ extracting regularity from the diffusive part
 - ► Requires $|\alpha^r + \beta^r| \le 2 + 4/d =: 2p_{crit}$
- * Remaining step: Chain rule inequality

- \bullet Idea: Test CE with $\mathrm{D}\mathcal{E}(\rho),$ use Fenchel's inequality for pair $(\mathcal{R},\mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$

- Idea: Test CE with $D\mathcal{E}(\rho)$, use Fenchel's inequality for pair $(\mathcal{R}, \mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$
- ullet A priori bounds: Energy ${\mathcal E}$ and dissipation ${\mathcal D}$ finite
- ullet Standard strategy: Truncate and mollify, then control errors using ${\mathcal D}$ and ${\mathcal E}$
- Convexity: Mollified dissipations bounded by unmollified of dissipations
- ► Works well for drift-diffusion terms

- Idea: Test CE with $D\mathcal{E}(\rho)$, use Fenchel's inequality for pair $(\mathcal{R}, \mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$
- ullet A priori bounds: Energy ${\mathcal E}$ and dissipation ${\mathcal D}$ finite
- ullet Standard strategy: Truncate and mollify, then control errors using ${\mathcal D}$ and ${\mathcal E}$
- Convexity: Mollified dissipations bounded by unmollified of dissipations
- ► Works well for drift-diffusion terms
- Reactive rate terms $\mathcal{R}_{\mathrm{react}}(\rho,j)$: Contain non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$
- $\blacktriangleright \ \, \mathsf{Commutator} \ \, \mathsf{estimate:} \ \, \big\| \big(\nu_{\mathcal{E}} * j \big) \big[\big(\nu_{\mathcal{E}} * \rho \big)^{\big(\alpha' + \beta')/2} \nu_{\mathcal{E}} * \rho^{\big(\alpha' + \beta')/2} \big] \big\|_{L^1} \to 0$

- Idea: Test CE with $D\mathcal{E}(\rho)$, use Fenchel's inequality for pair $(\mathcal{R}, \mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$
- ullet A priori bounds: Energy ${\mathcal E}$ and dissipation ${\mathcal D}$ finite
- ullet Standard strategy: Truncate and mollify, then control errors using ${\mathcal D}$ and ${\mathcal E}$
- Convexity: Mollified dissipations bounded by unmollified of dissipations
- ► Works well for drift-diffusion terms
- Reactive rate terms $\mathcal{R}_{\mathrm{react}}(\rho,j)$: Contain non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$
- $\blacktriangleright \ \, \mathsf{Commutator} \ \, \mathsf{estimate:} \ \, \big\| \big(\nu_{\mathcal{E}} * j \big) \big[\big(\nu_{\mathcal{E}} * \rho \big)^{(\alpha^r + \beta^r)/2} \nu_{\mathcal{E}} * \rho^{(\alpha^r + \beta^r)/2} \big] \big\|_{L^1} \to 0$
- Key tools:
 - \bullet Use the truncation to obtain weak-* convergence in L^{∞} of differences

- Idea: Test CE with $D\mathcal{E}(\rho)$, use Fenchel's inequality for pair $(\mathcal{R}, \mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$
- ullet A priori bounds: Energy ${\mathcal E}$ and dissipation ${\mathcal D}$ finite
- ullet Standard strategy: Truncate and mollify, then control errors using ${\mathcal D}$ and ${\mathcal E}$
- Convexity: Mollified dissipations bounded by unmollified of dissipations
- ► Works well for drift-diffusion terms
- Reactive rate terms $\mathcal{R}_{\mathrm{react}}(\rho,j)$: Contain non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$
- $\blacktriangleright \ \, \mathsf{Commutator} \ \, \mathsf{estimate:} \ \, \big\| \big(\nu_{\mathcal{E}} * j \big) \big[\big(\nu_{\mathcal{E}} * \rho \big)^{\big(\alpha' + \beta'')/2} \nu_{\mathcal{E}} * \rho^{\big(\alpha' + \beta'')/2} \big] \big\|_{L^1} \to 0$
- Key tools:
 - \bullet Use the truncation to obtain weak-* convergence in L^{∞} of differences
 - Hardy-Littlewood maximal function: Pointwise bound $|\nu_{\varepsilon}*j| \leq Mj$ and integrability $Mj \in L^1$ iff $j \in L \log L$
 - Fischer-Hopf-Kniely-Mielke '22: $j \log j \approx \mathsf{C}(j) \le \frac{q}{q-1} \mathsf{C}(j|a) + \frac{4}{q-1} a^q$, $\forall q > 1$

- Idea: Test CE with $D\mathcal{E}(\rho)$, use Fenchel's inequality for pair $(\mathcal{R}, \mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$
- ullet A priori bounds: Energy ${\mathcal E}$ and dissipation ${\mathcal D}$ finite
- ullet Standard strategy: Truncate and mollify, then control errors using ${\mathcal D}$ and ${\mathcal E}$
- Convexity: Mollified dissipations bounded by unmollified of dissipations
- ► Works well for drift-diffusion terms
- Reactive rate terms $\mathcal{R}_{\mathrm{react}}(\rho,j)$: Contain non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$
- $\blacktriangleright \ \, \mathsf{Commutator} \ \, \mathsf{estimate:} \ \, \big\| \big(\nu_{\mathcal{E}} * j \big) \big[\big(\nu_{\mathcal{E}} * \rho \big)^{\big(\alpha' + \beta')/2} \nu_{\mathcal{E}} * \rho^{\big(\alpha' + \beta')/2} \big] \big\|_{L^1} \to 0$
- Key tools:
 - \bullet Use the truncation to obtain weak-* convergence in L^{∞} of differences
 - Hardy-Littlewood maximal function: Pointwise bound $|\nu_{\varepsilon}*j| \leq Mj$ and integrability $Mj \in L^1$ iff $j \in L \log L$
 - Fischer-Hopf-Kniely-Mielke '22: $j \log j \approx \mathsf{C}(j) \leq \frac{q}{q-1} \mathsf{C}(j|a) + \frac{4}{q-1} a^q$, $\forall q > 1$
 - Can control exponent via diffusion if $|\alpha^r + \beta^r|_1 < 2p_{crit}$

- Idea: Test CE with $D\mathcal{E}(\rho)$, use Fenchel's inequality for pair $(\mathcal{R}, \mathcal{R}^*)$
- Obstruction: Lack of regularity of $D\mathcal{E}(\rho)_i = \log(\rho_i/\pi_i)$
- ullet A priori bounds: Energy ${\mathcal E}$ and dissipation ${\mathcal D}$ finite
- ullet Standard strategy: Truncate and mollify, then control errors using ${\mathcal D}$ and ${\mathcal E}$
- Convexity: Mollified dissipations bounded by unmollified of dissipations
- ► Works well for drift-diffusion terms
- Reactive rate terms $\mathcal{R}_{\mathrm{react}}(\rho,j)$: Contain non-concave terms $\rho^{(\alpha^r+\beta^r)/2}$
- ► Commutator estimate: $\|(\nu_{\varepsilon} * j)[(\nu_{\varepsilon} * \rho)^{(\alpha' + \beta')/2} \nu_{\varepsilon} * \rho^{(\alpha' + \beta')/2}]\|_{L^{1}} \to 0$
- Key tools:
 - ullet Use the truncation to obtain weak-* convergence in L^∞ of differences
 - Hardy-Littlewood maximal function: Pointwise bound $|\nu_{\varepsilon}*j| \leq Mj$ and integrability $Mj \in L^1$ iff $j \in L \log L$
 - Fischer-Hopf-Kniely-Mielke '22: $j \log j \approx C(j) \le \frac{q}{q-1}C(j|a) + \frac{4}{q-1}a^q$, $\forall q > 1$
 - Can control exponent via diffusion if $|\alpha^r + \beta^r|_1 < 2p_{crit}$
- Reactive slope terms $\mathcal{R}^*_{\text{react}}(\rho, -\Gamma D\mathcal{E}(\rho))$: Continuous if $|\alpha^r|_1, |\beta^r|_1 \leq p_{\text{crit}}$

H-Pietschmann-Schlichting: GF on metric graph with vertex reservoirs

- GF in CE format clearly separates mechanisms
- Well-posedness via spatial discretization
- Kirchhoff- and fast-diffusion limits
- Preprint: arXiv:2412.16775

H-Pietschmann-Schlichting: GF on metric graph with vertex reservoirs

- GF in CE format clearly separates mechanisms
- Well-posedness via spatial discretization
- Kirchhoff- and fast-diffusion limits
- Preprint: arXiv:2412.16775

H-Mielke-Stephan: Reaction-diffusion system on torus

- GF in CE format clearly separates mechanisms
- Chain rule inequality for non-convex rate term
- Existence via spatial discretization
- Preprint: arXiv:2504.06837

H-Pietschmann-Schlichting: GF on metric graph with vertex reservoirs

- GF in CE format clearly separates mechanisms
- Well-posedness via spatial discretization
- Kirchhoff- and fast-diffusion limits
- Preprint: arXiv:2412.16775

- GF in CE format clearly separates mechanisms
- Chain rule inequality for non-convex rate term
- Existence via spatial discretization
- Preprint: arXiv:2504.06837

Some future perspectives:

- Coupling of metric graph model with dynamics on domains (with J Krautz, J-F Pietschmann)
- GF with other boundary conditions as limits (with A Schlichting)
- PME as GF of Boltzmann entropy: Approximation by spatially discrete reaction systems (with A Mielke, A Stephan)
- Rigorous GF formulation for nonlinear cross-diffusion with exclusion

