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Interacting particle system

As a class of fundamental microscopic models, interacting particle systems (or
many-body systems) play important roles in the fields ranging from physics, biology to
social sciences and data sciences etc.
We focus on first order system of N particles:

dX i,N = b
(
Xi,N) dt+ 1

N → 1

∑

j:j →=i

K
(
Xi,N →Xj,N) dt+

√
2σdW i,N , i = 1, 2, . . . ,N .

(1)
One expects that as the number N of particles goes to infinity the system (1) will
converge to the following Fokker-Plank equation:

∂tρ = →∇ · ((b+K ∗ ρ)ρ) + σ∆ρ. (2)



Random batch method

If one numerically discretizes (1) directly, the computational cost per time step is
O(N2), which is prohibitively expensive for large N . The Random Batch Method1 is a
simple and generic random algorithm to reduce the computation cost per time step
from O(N2) to O(N).

1Shi Jin, Lei Li, and Jian-Guo Liu. “Random batch methods (RBM) for interacting particle systems”. In: Journal of Computational Physics 400
(2020), p. 108877.



Application of RBM

Due to the simplicity and scalability, RBM already has a variety of applications:
• Efficient particle methods for homogeneous Landau equation2 in plasma physics;
• Random batch Monte Carlo method3 for sampling from Gibbs distributions of

interacting particle systems with singular kernels;
• Random batch Ewald method4 for molecular dynamics simulations of particle

systems with long-range Coulomb interactions.
• Reduce the computational cost of calculating the weighted average in the

consensus-based optimization method5 .
2José Antonio Carrillo, Shi Jin, and Yijia Tang. “Random batch particle methods for the homogeneous Landau equation”. In: Communications in

Computational Physics 31 (2021).
3Lei Li, Zhenli Xu, and Yue Zhao. “A Random-Batch Monte Carlo Method for Many-Body Systems with Singular Kernels”. In: SIAM Journal on

Scientific Computing 42.3 (2020), A1486–A1509.
4Shi Jin, Lei Li, Zhenli Xu, et al. “A Random Batch Ewald Method for Particle Systems with Coulomb Interactions”. In: SIAM Journal on

Scientific Computing 43.4 (2021), B937–B960.
5José A Carrillo et al. “A consensus-based global optimization method for high dimensional machine learning problems”. In: ESAIM: Control,

Optimisation and Calculus of Variations 27 (2021), S5.



Theoretical result of RBM



Goal: Mean field error estimate

Denote
ρ̃Nt = Law(X̃1,N

t , · · · , X̃N ,N
t ),

and
ρNt (x1, . . . ,xN ) = ρ⊗N

t .
Propagation of chaos: the k−marginal distribution of the particle system converges to
the tensor product of the limit law ρ⊗k

t as N goes to infinity, given for instance the
i.i.d. initial data:

lim
N→∞

ρ̃N ,k
t = ρ⊗k

t .

Or equivalently (for exchangeable particles), the mean field limit:

µ̃N
t :=

1

N

N∑

i=1

δX̃i,N
t

→ ρt.



Assumption

Assumption
(a) The field b is Lipschitz:

|b(x1)− b(x2)| ≤ r |x1 − x2| .

Moreover, the field b is twice differentiable and its Hessian have at most polynomial growth:
∣∣∇2b(x)

∣∣ ≤ C(1 + |x|)q .

(b) The field b is strongly confining in the sense that there exists two constants α and β such that for any
x1 →= x2, :

(x1 − x2) · (b(x1)− b(x2)) ≤ α− β|x1 − x2|2

for some constant β > 0.
(c) The interaction kernel K is bounded, and Lipschitz:

|K(x)−K(y)| ≤ L|x− y|.

Moreover, the interaction kernel K is twice differentiable and their Hessians have at most polynomial
growth: ∣∣∇2K(x)

∣∣ ≤ C̃(1 + |x|)q .



The Log-Sobolev inequality

Assumption
There exists a constant CLS > 0 such that for any nonnegative smooth functions f ,
one has

Entρt(f) :=
∫

f log fdρt →
(∫

fdρt

)
log
(∫

fdρt

)
≤ CLS

∫ |∇f |2

f
dρt. (3)

Such LSI assumption is a common ingredient in the proof of uniform-in-time
propagation of chaos. One crucial property of the LSI is the tensorization, i.e. if ρt
satisfies a LSI then ρ⊗N

t satisfies the same inequality with the same constant.



Main results

Uniform-in-time relative entropy bound6

Under the previous assumptions, we have

HN

(
ρ̃Nt | ρ⊗N

t

)
≤ ec1tHN

(
ρ̃N0 | ρ⊗N

0

)
+ c2(T )

(
ϱ2 +

1

N

)
, (4)

where the constants c1 and c2(T ) are independent of N and ϱ . Here,

HN

(
ρ̃Nt | ρNt

)
=

1

N

∫

RNd

ρ̃Nt
(
xN
)

log
ρ̃Nt
(
xN
)

ρNt (xN )
dxN ,

is the rescaled relative entropy and xN = (x1, · · · ,xN ) ∈ RNd. Moreover, if β > 2L and
‖K‖2L∞ ≤ σ

8e2CLS
, then c1 < 0 and c2 can be taken to be independent of T so the above

bound is uniform-in-time.
6Zhenyu Huang, Shi Jin, and Lei Li. “Mean field error estimate of the random batch method for large interacting particle system”. In: ESAIM:

Mathematical Modelling and Numerical Analysis 59.1 (2025), pp. 265–289.



Main results

Propagation of chaos
By Csiszár-Kullback-Pinsker inequality and transport inequality, we have

‖ρ̃N ,k
t → ρ⊗k

t ‖L1 +W2

(
ρ̃N ,k
t , ρ⊗k

t

)
≤ C1ϱ +

C2√
N

. (5)

Here we define ρ̃N ,k
t to be the density of the law of the k marginals of the random batch N

particle system,

ρ̃N ,k
t (x1, · · · ,xk) =

∫

RNd

ρ̃Nt (x1, · · · ,xN )dxk+1 · · · dxN .

And we define the usual Wasserstein-2 distance by

W2(µ, ν) =
(

inf
γ∈Π(µ,ν)

∫

Rd×Rd

|x→ y|2dγ
)1/2

.



An analogue of the Liouville equation

An analogue of the Liouville equation
Denote by )̃N ,ξ

t the probability density function of X̃N
t =

(
X̃1,N

t , · · · , X̃N ,N
t

)
defined

in (7) for t ∈ [Tk,Tk+1). Then the following Liouville equation holds:

∂t)̃
N ,ξ
t +

N∑

i=1

divxi

(
)̃N ,ξ
t

(
b̂ξ,i
t

(
xN
)
+ K̂ξ,i

t

(
xN
)))

=
N∑

i=1

σ∆xi )̃
N ,ξ
t , (8)

where
b̂ξ,i
t

(
xN
)
= E

[
b
(
X̃i,N

Tk

)
| X̃N

t = xN , ξ
]

, t ∈ [Tk,Tk+1) , (9)

and
K̂ξ,i

t

(
xN
)
:= E

[
Kξk

(
X̃i,N

Tk

)
| X̃N

t = xN , ξ
]

, t ∈ [Tk,Tk+1) . (10)

Here, ξ := (ξ0, ξ1, · · · , ξk, · · · ) is a given sequence of batches.



An analogue of the Liouville equation

On each time interval, for ξk given, by Markov property, we can define:

ρ̃N ,ξk
t := E

[
)̃N ,ξ
t | ξi, i ≥ k

]
= SN ,ξk

Tk,t ρ̃
N
Tk

, t ∈ [Tk,Tk+1) , (11)

and we have

∂tρ̃
N ,ξk
t +

N∑

i=1

divxi

(
ρ̃N ,ξk
t

(
b̃ξk,i
t

(
xN
)
+ K̃ξk,i

t

(
xN
)))

=
N∑

i=1

σ∆xi ρ̃
N ,ξk
t , ρ̃N ,ξk

Tk
= ρ̃NTk

,

(12)
where

b̃ξk,i
t

(
xN
)
:= E

[
b
(
X̃i,N

Tk

)
| X̃N

t = xN , ξk
]

, t ∈ [Tk,Tk+1) ,

and
K̃ξk,i

t

(
xN
)
:= E

[
Kξk

(
X̃i,N

Tk

)
| X̃N

t = xN , ξk
]

, t ∈ [Tk,Tk+1) .



Time evolution of the relative entropy

d

dt
HN

(
ρ̃Nt | ρ⊗N

t

)
=

1

N

N∑

i=1

∫

RNd

Eξk

(
ρN ,ξk
t

(
b̃ξk,i
t (xN )→ b(xi)

))
·∇xi log ρ̃Nt

ρ⊗N
t

dxN

+
1

N

N∑

i=1

∫

RNd

Eξk

(
ρ̃N ,ξk
t K̃ξk,i

t (xN )→ ρ̃N ,ξk
t Kξk(xi)

)
·∇xi log ρ̃Nt

ρ⊗N
t

dxN

+
1

N

N∑

i=1

∫

RNd

Eξk

(
ρ̃N ,ξk
t Kξk(xi)→ ρ̃Nt FN (xi)

)
·∇xi log ρ̃Nt

ρ⊗N
t

dxN

+
1

N

N∑

i=1

∫

RNd

(
FN (xi)→K ∗ ρt(xi)

)
ρ̃Nt ·∇xi log ρ̃Nt

ρ⊗N
t

dxN

→ σ

N

N∑

i=1

∫

RNd

ρ̃Nt

∣∣∣∣∇xi log ρ̃Nt
ρ⊗N
t

∣∣∣∣
2

dxN :=
1

N

N∑

i=1

(J i
1 + J i

2 + J i
3 + J i

4 + J i
5).

(15)



Introduce another copy of RBM

Intuitively, the term
∣∣∣ρ̃N ,ξk

t Kξk(xi)→ ρ̃Nt FN (xi)
∣∣∣ in J i

3 is of O(1), since
|Kξk → FN (xi) | = O(1), which is not small.
We introduce another copy of RBM X̂N that depends on another batch ξ̃k such that:

• X̂N
Tk

= X̃N
Tk

;
• the Brownian motion are the same in [Tk,Tk+1);
• the batch ξ̃k on [Tk,Tk+1) is independent of ξk.

Consequently, density of the law ρ̃N ,ξ̃k
t for X̂N satisfies both (11) and (12). Then

J i
3 =

∫

RNd
Eξk

[(
Kξk(xi)→ FN (xi)

)(
ρ̃N ,ξk
t → ρ̃Nt

)]
·∇xi log ρ̃

N
t

ρNt
dxN

=

∫

RNd
Eξk,ξ̃k

[(
Kξk(xi)→ FN (xi)

)(
ρ̃N ,ξk
t → ρ̃N ,ξ̃k

t

)]
·∇xi log ρ̃

N
t

ρNt
dxN .

(16)



New local error brought by RBM

Note that
∫

RNd

∣∣∣ρ̃N ,ξ̃k
t → ρ̃N ,ξk

t

∣∣∣
2

ρ̃N ,ξ̃k
t

dxN =

∫

RNd

∣∣∣∣∣
ρ̃N ,ξk
t

ρ̃N ,ξ̃k
t

→ 1

∣∣∣∣∣

2

ρ̃N ,ξ̃k
t dxN .

Making use of the Girsanov transform in the path space:
ρ̃N ,ξk
t

ρ̃N ,ξ̃k
t

(xN ) = E
[
dPX̃N

dPX̂N

| X̂N
t = xN , ξk, ξ̃k

]

=E
[

exp
(√

1

2σ

∫ t

Tk

(
δKN

)
(yN )dWs →

1

4σ

∫ t

Tk

∣∣(δKN
)
(yN )

∣∣2 ds
)

| X̂N
t = xN , ξk, ξ̃k

]
.

Here, we denote
δKN (yN ) :=

1√
2σ

(
KN ,ξ̃k → KN ,ξk

)
(yN ).



Overall estimate
Gathering the previous results, by the Log-Sobolev inequality taking f = ρ̃N

t

ρ⊗N
t

, we have

HN

(
ρ̃Nt | ρ⊗N

t

)
=

1

N
Entρ⊗N

t

(
ρ̃Nt
ρ⊗N
t

)
≤ CLS

N

N∑

i=1

∫

RNd

ρ̃Nt

∣∣∣∣∇xi log ρ̃Nt
ρ⊗N
t

∣∣∣∣
2

dxN = CLSIN (t).

Then we yield the following desired estimate for t ∈ [Tk,Tk+1):

d

dt
HN

(
ρ̃Nt | ρ⊗N

t

)
≤
(
4e2‖K‖2L∞ → σ

2CLS

)
HN

(
ρ̃Nt | ρ⊗N

t

)
+ c1ϱ

2

(
1 +

1

N
I
(
ρ̃NTk

))
+

c2
N

≤C0HN

(
ρ̃Nt | ρ⊗N

t

)
+ C1ϱ

2 +
C2

N
,

here the constants C0, C1 and C2 are independent of N , ϱ and ξk, then by Gronwall’s
inequality, we end the proof. If β > 2L, the constants C1 and C2 can be made independent of
t. Moreover, if ‖K‖2L∞ ≤ σ

8e2CLS
, then the constant C0 becomes negative. Therefore, we have

a uniform-in-time bound for the relative entropy.



Ongoing work

• Random batch method for Biot-Savart Law kernel (vortex method for simulating
2D Navier-Stokes equation);

• Random batch method for homogeneous Landau equation.



Thank you!

Zhenyu Huang
PhD candidate, Institute of Natural Sciences, SJTU

Joint work with Shi Jin and Lei Li · Mean field error estimate of the random batch method
for large interacting particle system
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