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Interacting particle system

As a class of fundamental microscopic models, interacting particle systems (or
many-body systems) play important roles in the fields ranging from physics, biology to
social sciences and data sciences etc.

We focus on first order system of N particles:

. . 1 . . . .
dX"N = b (XN dit+— ZK (XN — X9 dt+v20dW N i=1,2,...,N.
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One expects that as the number N of particles goes to infinity the system (1) will
converge to the following Fokker-Plank equation:

Op=—V-((b+ K xp)p) +cAp. (2)
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If one numerically discretizes (1) directly, the computational cost per time step is
O(N?), which is prohibitively expensive for large N. The Random Batch Method! is a
simple and generic random algorithm to reduce the computation cost per time step
from O(N?) to O(N).

Algorithm 1 The Random Batch Method (RBM)
1: for k=1:[T/7] do
2:  Divide {1,2,..., N} into n = N/p batches randomly.
3. for each batch & do
4: Update XV ’s (i € &) by solving the following stochastic differential equation
(SDE) with ¢t € [tk_l,tk) :

i v 1 i i i
dXN = b (X5N) dt + o1 _EEZ#_K (XN — X3NY dt + V2odW'.  (1.3)
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5: end for
6: end for

1Shi Jin, Lei Li, and Jian-Guo Liu. “Random batch methods (RBM) for interacting particle systems”. In: Journal of Computational Physics 400
(2020), p. 108877.
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Application of RBM

Due to the simplicity and scalability, RBM already has a variety of applications:
e Efficient particle methods for homogeneous Landau equation? in plasma physics;

® Random batch Monte Carlo method3® for sampling from Gibbs distributions of
interacting particle systems with singular kernels;

® Random batch Ewald method* for molecular dynamics simulations of particle
systems with long-range Coulomb interactions.

® Reduce the computational cost of calculating the weighted average in the
consensus-based optimization method® .

2 José Antonio Carrillo, Shi Jin, and Yijia Tang. “Random batch particle methods for the homogeneous Landau equation”. In: Communications in
Computational Physics 31 (2021).

3Lei Li, Zhenli Xu, and Yue Zhao. “A Random-Batch Monte Carlo Method for Many-Body Systems with Singular Kernels”. In: SIAM Journal on
Scientific Computing 42.3 (2020), A1486-A1509.

4Shi Jin, Lei Li, Zhenli Xu, et al. “A Random Batch Ewald Method for Particle Systems with Coulomb Interactions”. In: SIAM Journal on
Scientific Computing 43.4 (2021), B937-B960.

5José A Carrillo et al. “A consensus-based global optimization method for high dimensional machine learning problems”. In: ESAIM: Control,
Optimisation and Calculus of Variations 27 (2021), S5.




Theoretical result of RBM

One marginal of N particle system Nonlinear Fokker-Planck
@) N — o0
py > p=edz p(,t) = S(t)(1)
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One marginal of RBM N — o0 Mean field limit of RBM



Goal: Mean field error estimate

Denote
N = Law(X )N, XN,
and
piv(l‘l,...,l']v) :p§N
Propagation of chaos: the k—marginal distribution of the particle system converges to

the tensor product of the limit law p?k as N goes to infinity, given for instance the

i.i.d. initial data:
Nk _ ok
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(a) The field b is Lipschitz:

[b(z1) — b(z2)| < 7lz1 — @2

Moreover, the field b is twice differentiable and its Hessian have at most polynomial growth:
[V2b(z)| < C(1 + |o])2.

(b) The field b is strongly confining in the sense that there exists two constants e and 3 such that for any
T # T2, :
(z1 —x2) - (b(z1) — b(x2)) < @ — Blz1 — 22|
for some constant 3 > 0.
(c) The interaction kernel K is bounded, and Lipschitz:

|K(z) — K(y)| < Llz — yl.
Moreover, the interaction kernel K is twice differentiable and their Hessians have at most polynomial

growth: _
|V2K (z)] < C(1 + |z])?.



The Log-Sobolev inequality

There exists a constant Crg > 0 such that for any nonnegative smooth functions f,

one has

2
But ()= [ f1og fdp - ( / fdpt) log ( / fdpt) <aus [ 'ij Can. (3)

Such LSI assumption is a common ingredient in the proof of uniform-in-time
propagation of chaos. One crucial property of the LSl is the tensorization, i.e. if p;
satisfies a LSI then pl‘?N satisfies the same inequality with the same constant.




Main results

Uniform-in-time relative entropy bound®

Under the previous assumptions, we have

X . X 1
o (3 1 8%) < e (35 195 4 ea™) (24 ). (@

where the constants ¢; and ¢3(7T') are independent of N and 7. Here,

SN (N
~N ) i (Y)  ~
log ———%d
HN(t |pt N/ ngé\[(XN) X,
is the rescaled relative entropy and xV = (z1,--- ,xx) € RY9. Moreover, if 8 > 2L and
K% < 3e2c, 5 then ¢1 <0 and ¢, can be taken to be independent of T" so the above

bound is uniform-in-time.

6Zhenyu Huang, Shi Jin, and Lei Li. “Mean field error estimate of the random batch method for large interacting particle system”. In: ESAIM:
Mathematical Modelling and Numerical Analysis 59.1 (2025), pp. 265-289.



Main results

Propagation of chaos

By Csiszar-Kullback-Pinsker inequality and transport inequality, we have

: i c
150" — pE¥|| pr + Wo (piv’k,p?'“) <CiT+ —=. (5)

VN

Here we define ﬁiv’k to be the density of the law of the £ marginals of the random batch vV
particle system,
AR RN =/ pr (21, 2N )depgs - dan.

RNd

And we define the usual Wasserstein-2 distance by

1/2
W —( inf — y|2d .
2(p,v) (’YGTIII%MV) /R i |z —yl 7)



An analogue of the Liouville equation

An analogue of the Liouville equation

Denote by Z)iv’g the probability density function of XV = (X'tl’N, e ’ngv,N) defined
n (7) for t € [T, Tk+1). Then the following Liouville equation holds:

8@?’5 S idivmi <§iv’£ (sz (X ) K€Z )) ZUAEth ’5, (8)

i=1
where - » )
b (xN) = [b (X;;V) | XN = xN,g} . te [Tk Torr), 9)
and -
Kp (x") =E [Kﬁk ( lN) | Xy =x 75} t € [Ty, Try1) - (10)

Here, & := (,&1, -+ ,&k, - -+ ) is a given sequence of batches.



An analogue of the Liouville equation

On each time interval, for & given, by Markov property, we can define:

=K [éiv’s | iyi > k] Sﬁikpnv t € [T, T) (11)

and we have
0 Y, (3 (0 () + R () = o =,
=1
(12)

where o i -

B (V) =B (b (RY) 1KY =<6, te T T,
and

K& (xV) = E [Kﬁk (X;kN) | XN = xN,gk} . te [Ty, Tis).



Time evolution of the relative entropy

N ~

d 5N _ 1 N (G6nsi (N A
EHN ( Pt | p ) - N ;/RNd Ee, (pt k (btk (xV) — b(xl))> -V, log p)?N dx
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+N;/ o (PR ) = T (i) ) - Ve log gy dx (15)
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Introduce another copy of RBM

Intuitively, the term ’ﬁiv’f’“ka (z;) — piVFN (2;)| in Ji is of O(1), since

|K&% — FN (2;) | = O(1), which is not small. .

We introduce another copy of RBM X” that depends on another batch &, such that:
® the Brownian motion are the same in [T}, Ti+1);
® the batch &, on [T}, Ti+1) is independent of &.

Consequently, density of the law ﬁN’é’“ for X satisfies both (11) and (12). Then
t

e [ [ (o) b

- ~N
= / Ee e, | (K% (@) = F¥(@) (% = 57%)| - ¥, log Zpax™.
RNd ksSk pt



New local error brought by RBM

Note that
~N £}, ~N Sk

‘P Py
/ dxN = /
RNd ﬁi\f £k RN |

Making use of the Girsanov transform in the path space:

SN Ek

Pt (N dPyn XN (N g £
= E =

pNEk (X ) |:dPXN | t X 7€ka§k:|

=E

exp ([ . (6KN) (yM)dW, — 4i t |(0K™) (yN)}2d3> | XN :xN,gk,gk] .

Here, we denote )

JKN(y") = s

(KN,ék _ KN@) (™).



Overall estimate

~N
Gathering the previous results, by the Log-Sobolev inequality taking f = p@;ﬁ, we have
t

~N QN 1 ~N CLS
Hn (51 | P )ZNEH%;@N 8 Z ova?

Then we yield the following desired estimate for ¢t € [Ty, Tk11):

~N

dXN = C’LSIN(t).

Va, log

d B ~ C
P 2 108Y) < (31 = o5 ) o 1) enr? (14 T 5 ) +

- C
<CoHn (piv \ p?N) +C17% + ﬁ,
here the constants Cy, Cy and Cs are independent of N, 7 and &, then by Gronwall’s
inequality, we end the proof. If 8 > 2L, the constants C; and C5 can be made independent of
t. Moreover, if || K| < 526, then the constant Cy becomes negative. Therefore, we have
a uniform-in-time bound for the relative entropy.



Ongoing work

® Random batch method for Biot-Savart Law kernel (vortex method for simulating
2D Navier-Stokes equation);

® Random batch method for homogeneous Landau equation.
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