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Positive solutions for the problem

8
<

:

��u + �u = up in ⌦
u = 0 on @⌦
u > 0 in ⌦

(⇤)p

where
⌦ ⇢ RN , N � 2, smooth bounded domain

1 < p < pc

� > ��1(⌦)

pc :=

⇢
N+2

N�2
if N � 3

+1 if N = 2
⌦

• there exists a (least energy) solution

• multiplicity/ results depending on ⌦ and p
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Uniqueness in the ball if � = 0

if ⌦ = B then there is a unique solution to (⇤)p
⌦

proof: any solution of (⇤)p is radial by Gidas, Ni & Nirenberg, CMP 1979

so (⇤)p reduces to an ODE problem

⇢
u
00 � N�1

r
u
0
+ u

p
= 0 in (0,R)

u
0
(0) = 0

and u(R) = 0, u > 0 in (0,R). If by contradiction v is another solution then

w(r) := a
2

p�2 v(ar), a :=


u(0)

v(0)

� p�1

2

,

solves the Initial Value Problem (by the homogeneity of u
p
)

8
<

:

w
00 � N�1

r
w

0
+ w

p
= 0 in (0, R

a
)

w
0
(0) = 0

w(0) = u(0)

and w(
R

a
) = 0. So w ⌘ u by uniqueness and as a consequence, using the

boundary condition, v ⌘ u.
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Uniqueness in the ball if � 6= 0

8
<

:

��u + �u = up in ⌦
u = 0 on @⌦
u > 0 in ⌦

(⇤)p

if ⌦ = B then there is a unique solution to (⇤)p ⌦

Ni, JDE 1983

Ni & Nussbaum, Comm. Pure Appl. Math. 1985

Kwong & Li, Trans. AMS 1992

Zhang, Comm. PDE 1992

Srikanth, Di↵. Int. Eq. 1993

Adimurthi & Yadava, ARMA 1994

Aftalion & Pacella, JDE 2003



Non-uniqueness: the role of the nonlinearity

8
<

:

��u = f (u) in B
u = 0 on @B
u > 0 in B

⌦

An example for which uniqueness fails:

f (u) = µuq + up

p 2 (1, N+2

N�2
), q 2 (0, 1) (µ > 0 small)

Ambrosetti, Brezis & Cerami, JFA 1994



⌦ 6= B ?

8
<

:

��u + �u = up in ⌦
u = 0 on @⌦
u > 0 in ⌦

(⇤)p

The question of the uniqueness of the solutions of (⇤)p in domains ⌦ other then
the ball was raised already in Gidas, Ni & Nirenberg, CMP 1979 :



⌦ 6= B . Known uniqueness results

• for any ⌦ when p 2 (1, 1 + �), where � = �(⌦) > 0

p1 + �1

(uniqueness and nondegeneracy)

C.-S. Lin, Manuscr. Math 1994

Damascelli, Grossi & Pacella AIHP 1999

Dancer, Math. Ann. 2003

• for ⌦ ⇠ B , N � 3, � = 0 Zou, Ann. SNS Pisa 1994

• for ⌦ symmetric and convex with respect to N orthogonal directions, � = 0

⌦

N = 2, 8p > 1
Dancer, JDE 1988 (⌦ ⇠ B)

Damascelli, Grossi & Pacella, AHIP 1999

N � 3, p =
N+2

N�2
� "

Grossi, ADE 2000

(uniqueness and nondegeneracy)

• for ⌦ unit square, N = 2 p = 2, 3

McKenna, Pacella, Plum & Roth, JDE 2009/ Inter. Ser. Numer. Math 2012
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Multiplicity results in non-convex domains

annular shaped domains (e↵ect of topology):

Brezis & Nirenberg, CPAM 1983 annulus & p =
N+2

N�2
� ", N � 3

Lin, TAMS 1992 thin annulus, non-radial bifurcation

Y.Y. Li, JDE, 1990 expanding annulus, non-radial bifurcation

Byeon, JDE 1997

Catrina & Wang, JDE 1999

⌦
⌦

Gladiali, Grossi, Pacella & Srikanth. Calc. Var. 2011 expanding annulus, non-radial bifurcation

Esposito, Musso & Pistoia, JDE 2006 N = 2, not simply connected, p large, 9 multi-spike solutions

Bartsch, Clapp, Grossi & Pacella, Math. Ann. 2012 expanding annular domains, 9 asympt. radial solution

Dancer & Yan, CPDE 2002 expanding annular domains, 9 multi-bump solutions

dumb-bell shaped domains (contactible, star-shaped, etc):

Dancer, JDE 1988 & JDE 1990

Byeon, Proc. Roy. Soc. Edinburgh A 2001

Esposito, Musso & Pistoia, JDE 2006 N = 2, p large, 9 multi-spike solutions

⌦

⌦

in all these cases the domain is NOT CONVEX!
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The uniqueness conjecture in convex domains

CONJECTURE (Kawohl ’85 / Dancer ’88)

If ⌦ is convex then there is a unique solution to (⇤)p

⌦

Kawohl, Lect. Notes in Math. 1985

Dancer, JDE 1988
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The uniqueness conjecture in convex domains

CONJECTURE (Kawohl ’85 / Dancer ’88)

If ⌦ is convex then there is a unique solution to (⇤)p

⌦

Kawohl, Lect. Notes in Math. 1985

Dancer, JDE 1988

Very challenging problem, solved only when ⌦ = B is a ball

Remark. Convexity of ⌦ is not necessary for uniqueness



⌦ 6= B convex. A partial uniqueness result for the

Lane-Emden problem (i.e. � = 0)

8
<

:

��u = up in ⌦
u = 0 on @⌦
u > 0 in ⌦

(LE )p

• for any ⌦ convex, N = 2, 8p > 1
uniqueness of least energy solutions
of (LE )p

C.S. Lin, Manuscr. Math. 1994



Our result for the Lane-Emden problem

We consider problem (LE )p in dimension N = 2. When ⌦ is convex:

p1 + �1

?
least energy



Our result for the Lane-Emden problem

We consider problem (LE )p in dimension N = 2. When ⌦ is convex:

p1 + �1

?
least energy

We prove the conjecture for any p large enough:



Our result for the Lane-Emden problem

We consider problem (LE )p in dimension N = 2. When ⌦ is convex:

p1 + �1

?
least energy

p⇤

We prove the conjecture for any p large enough:



Our result for the Lane-Emden problem

We consider problem (LE )p in dimension N = 2. When ⌦ is convex:

p1 + �1

?
least energy

p⇤

We prove the conjecture for any p large enough:

Theorem [De Marchis, Grossi, I., Pacella]

Let ⌦ ⇢ R2 be a smooth bounded and convex domain, then there exists
p? = p?(⌦) > 1 such that

(LE )p has a unique solution for any p � p?

and it is nondegenerate



One of the main tools of our proof: the Morse index

The Morse index of a solution up of (LE )p is

m(up) = #{k 2 N : �k,p < 1}

where (0 <) �1,p < �2,p  �3,p  . . . is the sequence of eigenvalues for
the linear problem

⇢
��v = � pup�1

p
v in ⌦

v = 0 on @⌦
(Lin)p

• m(up) � 1 (8N � 2, 8⌦ ⇢ RN
, 81 < p < pc )

�1,p =
1

p
< 1

0 1 R
�1,p

• problem: computation/a priori bounds for the Morse index



Uniqueness – non-degeneracy – Morse index

C.S. Lin, Manuscr. Math. 1994

non-degeneracy 8p ) uniqueness (8N � 2, 8⌦ ⇢ RN
, 81 < p < pc )

If N = 2 and ⌦ convex then
any Morse index 1-solution is non-degenerate

0 1 R

�1,p =
1
p �2,p

(any least energy solution has Morse index 1, 8p)
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Our proof

Key Theorem [De Marchis, Grossi, I., Pacella]

If N = 2 and ⌦ convex then

9 p? = p?(⌦) > 1 such that any solution of (LE )p has

Morse index 1 if p � p?



Morse index computation for p large

asymptotic analysis as p ! +1
for families up of solutions to (LE )p

+

computation of the Morse index
m(up) for p large

⇢
��v = � pup�1

p
v in ⌦

v = 0 on @⌦ 0 1 R
�1,p
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Asymptotic characterization of the solutions. N = 2, any ⌦

Theorem [De Marchis, I., Pacella]

N = 2, any ⌦. Let (up)p, be a family of solutions to (LE)p

such that

sup
p

pkrupk2L2(⌦) < +1 (EB)

Then 9 x1, x2, . . . xk 2 ⌦ and 9 pn !n +1 such that:

pnupn �!
n

8⇡
p
e
P

k

i=1
G(·, xi ) in C

1

loc(⌦̄ \ {x1, . . . , xk})

kupnkL1(B�(xi ))
⇠ kupnkL1(⌦) �!

n

p
e

x̄ = (x1, . . . , xk ) is a critical point of the Kircho↵-Routh function

 k : ⌦
k ! R
 k (x̄) :=

P
i
[H(xi , xi ) �

P
` 6=i

G(xi , x`)]

suitable scaling of upn around each xi converges to U

U(x)=log
1

(1 +
1

8
|x|2)2

⇢
��U = e

U
in R2

U(0) = 0, U  0,
R
R2 e

U
= 8⇡

pnkrupnk
2

L2(⌦)
�!

n
8⇡e · k (energy quantization)

k-peaks solution

(G is the Green’s function of �� in ⌦ under Dirichlet bnd conditions and H(x, y) = 1

2⇡ log
1

|x�y| � G(x, y))
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Morse index of k-peaks solutions. N = 2, any ⌦

Theorem (k � 2: [I., Luo, Yan], k = 1: [De Marchis, Grossi, I., Pacella])

Let N = 2, ⌦ any. Let up be a family of k-peaks solutions to (LE )p

concentrating at x̄ := (x1, x2, . . . , xk) 2 ⌦k - which is a critical point of the
Kircho↵-Routh function  k .

Then 9 p? > 1 such that

(k ) k+m(x̄)  m(up)  m0(up)  k+m0(x̄) ( 3k), for p � p?

In particular if x̄ is non-degenerate then

m(up) = k +m(x̄), for p � p?

and up is non-degenerate for p � p?

up

x1

x2

x3

(m(x̄)/m0(x̄) is the Morse index/augmented Morse index of x̄ as a critical point of  k)



Morse index of k-peaks solutions. N = 2, any ⌦

Theorem (k � 2: [I., Luo, Yan], k = 1: [De Marchis, Grossi, I., Pacella])

Let N = 2, ⌦ any. Let up be a family of k-peaks solutions to (LE )p
concentrating at x̄ := (x1, x2, . . . , xk) 2 ⌦k - which is a critical point of the
Kircho↵-Routh function  k .

Then 9 p? > 1 such that

(k ) k+m(x̄)  m(up)  m0(up)  k+m0(x̄) ( 3k), for p � p?

In particular if x̄ is non-degenerate then

m(up) = k +m(x̄), for p � p?

and up is non-degenerate for p � p?

up

x1

x2

x3

(m(x̄)/m0(x̄) is the Morse index/augmented Morse index of x̄ as a critical point of  k)



Morse index of k-peaks solutions. N = 2, any ⌦

Theorem (k � 2: [I., Luo, Yan], k = 1: [De Marchis, Grossi, I., Pacella])

Let N = 2, ⌦ any. Let up be a family of k-peaks solutions to (LE )p
concentrating at x̄ := (x1, x2, . . . , xk) 2 ⌦k - which is a critical point of the
Kircho↵-Routh function  k .

Then 9 p? > 1 such that

(k ) k+m(x̄)  m(up)  m0(up)  k+m0(x̄) ( 3k), for p � p?

In particular if x̄ is non-degenerate then

m(up) = k +m(x̄), for p � p?

and up is non-degenerate for p � p?

up

x1

x2

x3

(m(x̄)/m0(x̄) is the Morse index/augmented Morse index of x̄ as a critical point of  k)



Morse index of k-peaks solutions. N = 2, any ⌦

Theorem (k � 2: [I., Luo, Yan], k = 1: [De Marchis, Grossi, I., Pacella])

Let N = 2, ⌦ any. Let up be a family of k-peaks solutions to (LE )p
concentrating at x̄ := (x1, x2, . . . , xk) 2 ⌦k - which is a critical point of the
Kircho↵-Routh function  k .

Then 9 p? > 1 such that

(k ) k+m(x̄)  m(up)  m0(up)  k+m0(x̄) ( 3k), for p � p?

In particular if x̄ is non-degenerate then

m(up) = k +m(x̄), for p � p?

and up is non-degenerate for p � p?

up

x1

x2

x3

(m(x̄)/m0(x̄) is the Morse index/augmented Morse index of x̄ as a critical point of  k)



Back to the proof of the uniqueness, for ⌦ ⇢ R2
convex

From this general Morse index formula then one deduces the following:

Key Theorem

If N = 2 and ⌦ convex then 9 p? = p?(⌦) > 1 such
that

m(up) = 1

for any solution up of (LE )p when p � p
?



Uniqueness of positive solutions in convex domains

8
<

:

��u = up in ⌦
u = 0 on @⌦
u > 0 in ⌦

(LE )p

Theorem [De Marchis, Grossi, I., Pacella]

Let ⌦ ⇢ R2 be a smooth bounded and convex domain, then there exists
p? = p?(⌦) > 1 such that

(LE )p has a unique solution for any p � p?

p1 + �1

?
least energy

p⇤



Uniqueness for the fractional Dirichlet problem

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(⇤)p

where
s 2 (0, 1)

⌦ ⇢ RN , N � 2, smooth bounded

1 < p < N+2s

N�2s

� > ��s

1
(⌦)

(��)su(x) := CN,s p.v .

Z

RN

u(x)� u(y)

|x � y |N+2s
dy

⌦

• existence
Servadei, & Valdinoci, J. Math. Anal. Appl. 2012, DCDS 2013

• multiplicity results
may be deduced for instance for � = 0 and p =

N+2s

N�2s
� " from the one bubble solutions in

D’Avila, Lopez Rios & Sire, Rev. Mat. Iberoam. 2017
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Uniqueness for the fractional Dirichlet problem

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

NO RESULTS IN THE LITERATURE

CANC

J

Main issues:

n

n

n

n

⌦



Some uniqueness results for fractional problems in RN

For ground states of fractional Schrödinger equations in RN :

Fall & Valdinoci, Comm. Math. Phys. 2014

Frank & Lenzmann, Acta Math. 2013

Frank, Lenzmann & Silvestre, Comm. Pure Appl. Math. 2016

For radial ground states of the fractional plasma equation in RN and of the
fractional critical and supercritical Lane-Emden equation in RN :

Chan, del Mar Gonzalez, Huang, Mainini & Volzone, Calc. Var. 2020

For radial ground states of the critical fractional Henon equation in RN :

Alarcon, Barrios & Quaas, DCDS 2023



Uniqueness for the fractional Dirichlet problem

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

NO RESULTS IN THE LITERATURE

Even for � = 0 and ⌦ = B uniqueness is still an open problem!

Jarohs & Weth, DCDS 2014 radial and decreasing

Main issues:

no ODE techniques

Ao, Chan, DelaTorre, Fontelos, del Mar Gonzalez & Wei, J. Math. St. 2020

no Hopf Lemma for sign-changing solutions

no Courant’s nodal theorem

no monotonicity formulas in bounded domains

⌦



Our first result: uniqueness in the asymptotically local case
(s ⇠ 1)

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Theorem [Dieb, I., Saldaña]

If uniqueness and nondegeneracy hold for
8
<

:

��u + �u = up in ⌦
u = 0 on @⌦
u > 0 in ⌦

(L)

then there exists � = �(⌦,�, p) 2 (0, 1) such that

uniqueness and nondegeneracy hold for problem (F ), if s 2 (�, 1]



Some corollaries

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Corollary

If ⌦ = B , � > ��1(B) and 1 < p < pc :=

⇢
N+2

N�2
if N � 3

+1 if N = 2
then there exists � = �(N,�, p) 2 (0, 1) such that

uniqueness and nondegeneracy hold for problem (F ), if s2(�, 1]

⌦

local:

Gidas, Ni & Nirenberg, Comm. Math. Phys. 1979

Kwong & Li, TAMS 1992

Ni & Nussbaum, Comm. Pure Appl. Math. 1985

Srikanth, Di↵. Int. Eqs. 1993

Zhang, Comm. Part. PDEs, 1992



Some corollaries

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Corollary

If ⌦ ⇢ RN symmetric and convex with respect to N orthogonal directions, � = 0
and

⌦
p > 1 if N = 2

p 2 (N+2

N�2
� ", N+2

N�2
), " > 0 small, if N � 3

then there exists � = �(⌦, p) 2 (0, 1) such that

uniqueness and nondegeneracy hold for problem (F ), if s2(�, 1]

local: N = 2, 8p > 1
Dancer, JDE 1988 (⌦ ⇠ B)

Damascelli, Grossi & Pacella, AHIP 1999

N � 3, p 2 (
N+2

N�2
� ", N+2

N�2
)

Grossi, ADE 2000



Some corollaries

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Corollary

If ⌦ ⇢ R2 convex, � = 0 and p > 1
then there exists � = �(⌦, p) 2 (0, 1) such that

problem (F ) admits a unique least energy solution
if s2(�, 1], and it is nondegenerate

⌦

local: C.-S. Lin, Manuscr. Math 1994



Some corollaries

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Corollary

Let ⌦ ⇢ R2 convex and � = 0. There exists p⇤ = p⇤(⌦) > 1
such that for any p > p⇤ there is � = �(⌦, p) 2 (0, 1)
such that

problem (F ) admits a unique solution if s2(�, 1], and it is
nondegenerate

⌦

local: De Marchis, Grossi, I. & Pacella, J. Math. Pures Appl. 2019



Idea of the proof (uniqueness)

Theorem [Dieb, I., Saldaña]

Assume that uniqueness and nondegeneracy hold for8
<

:

��u + �u = u
p

in ⌦

u = 0 on @⌦
u > 0 in ⌦

(L)

then there exists � = �(⌦,�, p) 2 (0, 1) such that for s 2 (�, 1] uniqueness and
nondegeneracy hold for 8

<

:

(��)
s
u + �u = u

p
in ⌦

u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

PROOF It follows by a standard contradiction argument, ... with some delicate points

Assume by contradiction that (F ) admits 2 nontrivial solutions un and vn

un 6= vn for s = sn ! 1
�

we show that, up to a subsequence

un ! u in L
1
(⌦) as sn ! 1

vn ! v in L
1
(⌦) as sn ! 1

where u, v are nontrivial positive solutions of (L)



by assumption u = v = u⇤
where u⇤ is the unique positive solution of (L)

hence

Vn :=

Z
1

0

p(tun + (1� t)vn)
p�1

dt ! pu
p�1

⇤

Define

wn :=
un � vn

kun � vnkL1
6= 0

which solve 8
<

:

(��)
snwn = Vnwn � �wn in ⌦

wn = 0 on RN \ ⌦
kwnkL1 = 1 in ⌦

we can prove that

wn ! w 6= 0 in L
1
(⌦)

which solves ⇢
��w + �w = pu

p�1

⇤ w in ⌦

w = 0 on @⌦

against the nondegeneracy assumption on u⇤
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against the nondegeneracy assumption on u⇤



Idea of the proof (uniqueness)

Theorem [Dieb, I., Saldaña]

Assume that uniqueness and nondegeneracy hold for8
<

:

��u + �u = u
p

in ⌦

u = 0 on @⌦
u > 0 in ⌦

(L)

then there exists � = �(⌦,�, p) 2 (0, 1) such that for s 2 (�, 1] uniqueness and
nondegeneracy hold for 8

<

:

(��)
s
u + �u = u

p
in ⌦

u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

PROOF It follows by a standard contradiction argument, ... with some delicate points

Assume by contradiction that (F ) admits 2 nontrivial solutions un and vn

un 6= vn for s = sn ! 1
�

we show that, up to a subsequence

un ! u in L
1
(⌦) as sn ! 1

vn ! v in L
1
(⌦) as sn ! 1

where u, v are nontrivial positive solutions of (L)



SUBTLE ISSUE in the proof: the nonlocal-to-local transition
8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Let us be a solution of (F ). Then up to a subsequence

us ! u in L1(⌦) as s ! 1�

where u is a (positive) solution of (L)

we need uniform-in-s a-priori bounds, for s ⇠ 1:

There exists � 2 (0, 1) and C = C (�, p,⌦,�) > 0 (independent on s) such
that

kuskL1(RN )  C

for any s 2 (�, 1) and any solution us of (F )

Proof It relies on a blow-up argument.
Since the blow-up parameter is the Laplacian’s exponent s, we need to
control (as s ! 1) the constants which appear from regularity estimates.



Uniqueness for fractional asymptotically linear problems

(p ⇠ 1)

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

Theorem [Dieb, I., Saldaña]

Let s 2 (0, 1). There exists � = �(⌦,�, s) such that

uniqueness and nondegeneracy hold for problem (F ), if p 2 (1, 1 + �)

p1 + �1



the end
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De Marchis, Grossi, I. & Pacella, J. Math. Pures Appl. 2019

Local uniqueness, non-degeneracy and Morse index for k-peaks, solutions, 8k � 1

Grossi, I., Luo & Yan, J. Math. Pures Appl. 2022

I., Luo & Yan, preprint

The fractional case

Dieb, I. & Saldana, Nonlinear Analysis, to appear Thank you!
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Some open problems:

8
<

:

��u + �u = up in ⌦ ⇢ RN convex
u = 0 on @⌦
u > 0 in ⌦

(L)

• N � 3

• the case � 6= 0 in N = 2

• p 2 (1 + �, p?), when � = 0, N = 2

p1 + �1

?
least energy

p⇤

no quantitative information about � and p?



Some open problems:

8
<

:

(��)su + �u = up in ⌦
u = 0 on RN \ ⌦
u > 0 in ⌦

(F )

• ⌦ = B , for any s 2 (0, 1)


