Uniqueness results
for local and non-local
Dirichlet problems

Isabella lanni

SAPIENZA

UNIVERSITA DI ROMA

IMAG Granada
June 28, 2023



Positive solutions for the problem

u=20

—Au+ \u=uP
u>0

in Q
on 0f2
in Q



Positive solutions for the problem

—Au+ \u=uP in Q
u=0 on 09 (%)
u>0 in Q

where

Q C RN, N > 2, smooth bounded domain
1<p<

P pe = if N >3
Pe=\ +o0 if N =2

A > —A(Q)



Positive solutions for the problem

—Au+ \u=uP in Q
u=20 on 0f2
u>0 in Q
where
Q c RN, N > 2, smooth bounded domain
1<p<
P pe = ifN >3
Pe =1 F0 N =2
2> A(Q)

e there exists a (least energy) solution




Positive solutions for the problem

—Au+ \u=uP in Q
u=20 on 0f2
u>0 in Q

where
Q c RN N > 2, smooth bounded domain

1<p<
P < Pc . % ifN>3
¢ +00 if N=2

A > —A(Q)

e there exists a (least energy) solution
e multiplicity/uniqueness results depending on Q and p




Positive solutions for the problem

—Au+ \u=uP in Q
u=20 on 0f2
u>0 in Q

where
Q c RN N > 2, smooth bounded domain

1<p<pc

= ifN>3
Pei= 400 if N =2

A > —A(Q)

e there exists a (least energy) solution
e multiplicity/uniqueness results depending on Q and p




Plan of the talk



Plan of the talk

@ outline of the known uniqueness results for this problem



Plan of the talk

@ outline of the known uniqueness results for this problem

o the Lane-Emden equation (A = 0) in convex domains Q C R?

F. De Marchis, M. Grossi, F. Pacella - Sapienza University, Roma (ltaly)



Plan of the talk

@ outline of the known uniqueness results for this problem
o the Lane-Emden equation (A = 0) in convex domains Q C R?
F. De Marchis, M. Grossi, F. Pacella - Sapienza University, Roma (ltaly)

@ Fractional Laplacian case

A. Dieb - Université Abou Bakr Belkaid, Tlemcen (Algeria)
A. Saldafia - UNAM, Mexico City (Mexico)



Uniqueness in the ball if A =10

if Q = B then there is a unique solution to (*)pJ




Uniqueness in the ball if A =10

if Q = B then there is a unique solution to (*)pJ

PROOF: any solution of (x), is radial by @ Gidas, Ni & Nirenberg, CMP 1979

so (), reduces to an ODE problem

=My P =0 in (0, R)
u'(0)=0

and u(R) =0, u > 0in (0, R). If by contradiction v is another solution then

o= - []"

solves the Initial Value Problem (by the homogeneity of u”)

w’' —X1w +wP =0 in(0,%)
w'(0) =0
w(0) = u(0)

and w(g) = 0. So w = u by uniqueness and as a consequence, using the
boundary condition, v = u.



Uniqueness in the ball if A #0

—Au-+ Au=uP in Q
u=20 on 0f)
u>0 in Q

if Q = B then there is a unique solution to (*),,J

B Ni, JDE 1983

Ni & Nussbaum, Comm. Pure Appl. Math. 1985
Kwong & Li, Trans. AMS 1992

Zhang, Comm. PDE 1992

Srikanth, Diff. Int. Eq. 1993

Adimurthi & Yadava, ARMA 1994

=) =) @) (=) [ [

Aftalion & Pacella, JDE 2003



Non-uniqueness: the role of the nonlinearity

—Au=f(u) inB
u=20 on 0B
u>0 in B

An example for which uniqueness fails:

f(u) = pud + uP

€(1,2), q€(0,1) (x> 0 small)

@ Ambrosetti, Brezis & Cerami, JFA 1994



Q#B?

—Au+ \u=uP in Q
u=20 on 0f) (*)p
u>0 in Q

The question of the uniqueness of the solutions of (x), in domains  other then
the ball was raised already in @ Gidas, Ni & Nirenberg, CMP 1979

2.8. Theorem 1 yields a positive response to a question put us by C. Holland. For
p>1, is the positive solution u of

Au+u’=0 in |x|<R, u=0 on |[x|=R (2.8)

unique? (The question is still open for other domains.) According to Theorem 1
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eforQO~B, N>3 A=0 ﬁ Zou, Ann. SNS Pisa 1994

e for 2 symmetric and convex with respect to N orthogonal directions, A =0

ﬁ Dancer, JDE 1988 (€2 ~ B)
N=2vVp>1

ﬁ Damascelli, Grossi & Pacella, AHIP 1999

_ N+42
N>3 p=py35—c¢ ﬁ Grossi, ADE 2000

(uniqueness and nondegeneracy)

e for Q unit square, N =2 p=2,3

B McKenna, Pacella, Plum & Roth, JDE 2009/ Inter. Ser. Numer. Math 2012



Multiplicity results in non-convex domains

annular shaped domains (effect of topology):

=) =) ) ) @) [@) @) (=) &)

dumb-bell shaped domains (contactible, star-shaped, etc):

[
B
B

Brezis & Nirenberg, CPAM 1983 annulus & p= #+2 —¢, N >3

Lin, TAMS 1992 thin annulus, non-radial bifurcation

Y.Y. Li, JDE, 1990 expanding annulus, non-radial bifurcation

Byeon, JDE 1997

Catrina & Wang, JDE 1999

Gladiali, Grossi, Pacella & Srikanth. Calc. Var. 2011 expanding annulus, non-radial bifurcation
Esposito, Musso & Pistoia, JDE 2006 N = 2, not simply connected, p large, 3 multi-spike solutions
Bartsch, Clapp, Grossi & Pacella, Math. Ann. 2012 expanding annular domains, 3 asympt. radial solution

Dancer & Yan, CPDE 2002 expanding annular domains, 3 multi-bump solutions

Dancer, JDE 1988 & JDE 1990
Byeon, Proc. Roy. Soc. Edinburgh A 2001

Esposito, Musso & Pistoia, JDE 2006 N = 2, p large, 3 multi-spike solutions



Multiplicity results in non-convex domains

annular shaped domains (effect of topology):
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dumb-bell shaped domains (contactible, star-shaped, etc):

[
[
B

Brezis & Nirenberg, CPAM 1983 annulus & p = % —e, N>3

Lin, TAMS 1992 thin annulus, non-radial bifurcation

Y.Y. Li, JDE, 1990 expanding annulus, non-radial bifurcation

Byeon, JDE 1997

Catrina & Wang, JDE 1999

Gladiali, Grossi, Pacella & Srikanth. Calc. Var. 2011 expanding annulus, non-radial bifurcation
Esposito, Musso & Pistoia, JDE 2006 N = 2, not simply connected, p large, 3 multi-spike solutions
Bartsch, Clapp, Grossi & Pacella, Math. Ann. 2012 expanding annular domains, 3 asympt. radial solution

Dancer & Yan, CPDE 2002 expanding annular domains, 3 multi-bump solutions

Dancer, JDE 1988 & JDE 1990
Byeon, Proc. Roy. Soc. Edinburgh A 2001

Esposito, Musso & Pistoia, JDE 2006 N = 2, p large, 3 multi-spike solutions

in all these cases the domain is NOT CONVEX!
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The uniqueness conjecture in convex domains
CONJECTURE (Kawohl '85 / Dancer '88)

If Q is convex then there is a unique solution to (),

@ Kawohl, Lect. Notes in Math. 1985

Open problem

ne2
Prove uniqueness of solutions to (3.62) (3.63] for 1 >0, | « g <=5

1f Q is a ball, there (s uniqueness [85]: 1if is an annulus, there

15 no uniqueness [38). A geometric assumption on O which induces

unigueness might be convexity. This problem plays a role in "fast dif-
a Dancer, JDE 1988

Last, we obtain some very simple results on the uniqueness of positive
solutions on certain highly symmetric domains. This problem seems to
require much more work. Indeed, we conjecture that unigueness holds for
f(y)=y? if Q is convex and 1 < p < (m+2)(m—2)~"



The uniqueness conjecture in convex domains
CONJECTURE (Kawohl '85 / Dancer '88)

If Q is convex then there is a unique solution to (),

Very challenging problem, solved only when 2 = B is a ball

Remark. Convexity of € is not necessary for uniqueness



Q2 £ B convex. A partial uniqueness result for the
Lane-Emden problem (i.e. A =0)

—Au=uP in Q
u=0 on 092 (LE)p
u>0 in Q

e for any Q convex, N =2, Vp > 1
uniqueness of least energy solutions @ C.S. Lin, Manuscr. Math. 1994
of (LE),



Our result for the Lane-Emden problem

We consider problem (LE), in dimension N = 2. When Q is convex:

least energy

1 1+96 p



Our result for the Lane-Emden problem

We consider problem (LE), in dimension NV = 2. When Q is convex:

least energy

1 1446

We prove the conjecture for any p large enough:



Our result for the Lane-Emden problem

We consider problem (LE), in dimension V = 2. When Q is convex:

? 7 M

1 144 p p

We prove the conjecture for any p large enough:



Our result for the Lane-Emden problem

We consider problem (LE), in dimension N = 2. When Q is convex:

? 7 M

1 1+6 p* p

We prove the conjecture for any p large enough:
Theorem [De Marchis, Grossi, I., Pacella]

Let Q c R? be a smooth bounded and convex domain, then there exists
p* = p*(2) > 1 such that

(LE), has a unique solution for any p > p*
and it is nondegenerate




One of the main tools of our proof: the Morse index

The Morse index of a solution u, of (LE), is
m(up) =#{keN : Ap <1}

where (0<)Aip<Xp<Azp<... is the sequence of eigenvalues for
the linear problem

—Av =)\ pu;;*1 v inQ .
{ v=0 on 90 (Lin)

o m(up) >1 (YN >2,vQ C R, V1 < p < p)

1
)\17p =—-<1 )\I*P
P 0 1 R’
e problem: computation/a priori bounds for the Morse index
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Uniqueness — non-degeneracy — Morse index
B C.S. Lin, Manuscr. Math. 1994

non-degeneracy Vp = uniqueness (VN >2,vQ C R", V1 < p < p.) J

o

1 1+9 p
If N =2 and Q2 convex then
any Morse index 1-solution is non-degenerate J
_1
AMp = P A2p
0 1 R’

(any least energy solution has Morse index 1, Vp)



Our proof

Key Theorem [De Marchis, Grossi, ., Pacella]
If N =2 and 2 convex then

3 p* = p*(Q) > 1 such that any solution of (LE), has

Morse index=1 if p > p*




Morse index computation for p large

asymptotic analysis as p — +o0
for families v, of solutions to (LE),

I

computation of the Morse index
m(up) for p large




Morse index computation for p large

asymptotic analysis as p — +o0
for families v, of solutions to (LE),

I

computation of the Morse index
m(up) for p large

ALp

—Av=) puttv inQ
v=20 on 0Q 0
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Theorem [De Marchis, I., Pacella]
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Theorem [De Marchis, I., Pacella]

N =2, any Q. Let (up)p, be a family of solutions to (LE),
such that
sup pHVUPHi?(Q) < 400
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@ X =(x1,...,xx) is a critical point of the Kirchoff-Routh function
Ve Q=R k-peaks solution
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U(x)=I 71 v
(x)=log FESRE
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Morse index of k-peaks solutions. N = 2, any Q

Theorem (k > 2: [l., Luo, Yan], k = 1: [De Marchis, Grossi, I., Pacella])
Let N =2, Q any. Let up, be a family of k-peaks solutions to (LE),
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Morse index of k-peaks solutions. N = 2, any Q

Theorem (k > 2: [l., Luo, Yan], k = 1: [De Marchis, Grossi, |., Pacella])

Let N =2, Q any. Let up, be a family of k-peaks solutions to (LE),
concentrating at X := (x1, X2, ..., xx) € QK - which is a critical point of the
Kirchoff-Routh function V.

Then 3 p* > 1 such that

(k <) k+m(x) < m(up) < mo(up) < k+mp(X) (< 3k), for p>p

In particular if X is non-degenerate then

’ m(up) = k+ m(x), for p> p* ‘

and u, is non-degenerate for p > p*

(m(x)/mo(X) is the Morse index/augmented Morse index of X as a critical point of W)




Back to the proof of the uniqueness, for  C R? convex

From this general Morse index formula then one deduces the following:

Key Theorem

If N =2 and Q convex then 3 p* = p*(Q2) > 1 such
that
m(up) =1

for any solution u, of (LE), when p > p*




Uniqueness of positive solutions in convex domains

—Au=uP in Q

u=0 on 90 (LE),
u>0 in Q
Theorem [De Marchis, Grossi, |., Pacella]

Let Q C R? be a smooth bounded and convex domain, then there exists
p* = p*(Q) > 1 such that

(LE), has a unique solution for any p > p*

? 7, /M

1 146 p* p




Uniqueness for the fractional Dirichlet problem

(=AYu+Aru=uvP inQ
u=0 on RN\ Q
u>0 in Q
where
s e (0,1)
Q c RN, N > 2, smooth bounded
N
1<p< s
x> —\(Q)

(=A)u(x) = Cns p.v./ ulx) = uly) dy

o |x — y[Nt2



Uniqueness for the fractional Dirichlet problem

(=AY u+Adu=uP inQ

u=0 on RV\ Q (*)p
u>0 in Q
where
€ (0,1)
Q c RN, N > 2, smooth bounded
1< p< N+2S
A> =)\ (Q)
, u(x) — u(y)
(=) u(x) == Cu,s P'V-/RN m dy
e existence

ﬁ Servadei, & Valdinoci, J. Math. Anal. Appl. 2012, DCDS 2013

e multiplicity results

may be deduced for instance for A = 0 and p = N+2‘S — € from the one bubble solutions in

ﬁ Davila, Lopez Rios & Sire, Rev. Mat. Iberoam. 2017




Uniqueness for the fractional Dirichlet problem

u=0 on RV\ Q

(=AYu+Adu=uvP inQ
u>0 in Q

NO RESULTS IN THE LITERATURE



Some uniqueness results for fractional problems in RV

For ground states of fractional Schrodinger equations in RV:
@ Fall & Valdinoci, Comm. Math. Phys. 2014

@ Frank & Lenzmann, Acta Math. 2013

@ Frank, Lenzmann & Silvestre, Comm. Pure Appl. Math. 2016

For radial ground states of the fractional plasma equation in RV and of the
fractional critical and supercritical Lane-Emden equation in RV:

@ Chan, del Mar Gonzalez, Huang, Mainini & Volzone, Calc. Var. 2020

For radial ground states of the critical fractional Henon equation in RV:
@ Alarcon, Barrios & Quaas, DCDS 2023



Uniqueness for the fractional Dirichlet problem
(=AYu+Aru=uvP inQ
u=20 on RN\ Q
u>0 in Q

NO RESULTS IN THE LITERATURE

Even for A = 0 and 2 = B uniqueness is still an open problem!

@ Jarohs & Weth, DCDS 2014 radial and decreasing

Main issues:

no ODE techniques
@ Ao, Chan, DelaTorre, Fontelos, del Mar Gonzalez & Wei, J. Math. St. 2020

no Hopf Lemma for sign-changing solutions

no Courant’s nodal theorem

no monotonicity formulas in bounded domains



Our first result: uniqueness in the asymptotically local case
(s~1)

(A)Yu+Au=uvP InQ
u=0 on RN\ Q (F)
u>0 in Q

Theorem [Dieb, I., Saldafa]

If uniqueness and nondegeneracy hold for
—Au+dIu=uvP inQ
u=0 on 9 (L)
u>0 in Q

then there exists o = o (2, A, p) € (0,1) such that

uniqueness and nondegeneracy hold for problem (F), if s € (o, 1]




Some corollaries

(=AYu+Adu=uvP inQ
u=20 on RV\ Q (F)
u>0 in Q

Corollary

Ny2 e N >3
_ _ o J Wem W=
If Q=B A>—-X\(B) and 1 <p<p.: {+ N =2

then there exists o = o(N, A, p) € (0,1) such that

uniqueness and nondegeneracy hold for problem (F), if s€(o,1]

local:
Gidas, Ni & Nirenberg, Comm. Math. Phys. 1979

Kwong & Li, TAMS 1992
Ni & Nussbaum, Comm. Pure Appl. Math. 1985

Srikanth, Diff. Int. Egs. 1993

=) =) =) =) =

Zhang, Comm. Part. PDEs, 1992



Some corollaries

(“AYu+Au=uvP InQ
u=0 on RV\ Q (F)
u>0 in Q

Corollary

If @ c RN symmetric and convex with respect to N orthogonal directions, A =0
and

p>1if N=2
pE (N2 —c, ME2), e > 0small, if N >3

then there exists o = o(, p) € (0,1) such that

uniqueness and nondegeneracy hold for problem (F), if s€ (o, 1]

@ Dancer, JDE 1988 (2 ~ B)
local: N=2Vp>1

ﬁ Damascelli, Grossi & Pacella, AHIP 1999

N+2 N+2
N=>3 pe (g5 —e y3) [3 Grossi, ADE 2000



Some corollaries

(=A)Yu+Au=uvP InQ
u=0 on RV\ Q
u>0 in Q

Corollary
If @ c R? convex, A\=0and p>1
then there exists o = o(Q, p) € (0,1) such that

problem (F) admits a unique least energy solution
if s€(o,1], and it is nondegenerate

local: ﬁ C.-S. Lin, Manuscr. Math 1994



Some corollaries

(=AYu+Au=uvP inQ
u=0 on RV \ Q (F)

u>0 in Q

Corollary
Let 2 ¢ R? convex and A = 0. There exists p* = p*(Q2) > 1
such that for any p > p* there is 0 = 0(2, p) € (0, 1)
such that
problem (F) admits a unique solution if s€ (o, 1], and it is
nondegenerate

local: @ De Marchis, Grossi, |. & Pacella, J. Math. Pures Appl. 2019



|dea of the proof (uniqueness)

Theorem [Dieb, I., Saldafia]

Assume that uniqueness and nondegeneracy hold for
—Au+du=v” in Q
u=0 on 9 (L)
u>0 in Q
then there exists o = (2, A, p) € (0, 1) such that for s € (o, 1] uniqueness and
nondegeneracy hold for
(=AYu+du=uvP inQ
u=20 on RV\ Q (F)
u>0 in Q

PROOF It follows by a standard contradiction argument, ... with some delicate points
Assume by contradiction that (F) admits 2 nontrivial solutions u, and v,

Un # Vn for s=s,—>1"
@ we show that, up to a subsequence

up—u  inl>®(Q) ass,—1
Va—= Vv inL®(Q) ass,—1

where u, v are nontrivial positive solutions of (L)



@ by assumption U=V = U,
where u, is the unique positive solution of (L)

hence 1
V, = / p(tun 4+ (1 — t)v,)? 'dt — pu?™!
0
@ Define
Wy = T Ve £0
llun — vl
which solve
(=AY "wy = Vow, — Aw, in Q
W, = 0 on RN \ Q
Iwallese =1 in Q

@ we can prove that
w, = w#0 in L7(Q)

which solves
—Aw + 2w = puP'w in Q
w=0 on 092

against the nondegeneracy assumption on u, (I



@ by assumption U=V = U,
where u, is the unique positive solution of (L)

hence 1
V, = / p(tun 4+ (1 — t)v,)? 'dt — pu?™!
0
@ Define
Wy = T Ve £0
llun — vallLoe
which solve
(=AY "wy = Vow, — Aw, in Q
W, = 0 on RN \ Q
Iwallese =1 inQ
@ we can prove that
which solves
—Aw + 2w = puP'w in Q
w=0 on 092

against the nondegeneracy assumption on u, (I



|dea of the proof (uniqueness)
Theorem [Dieb, I., Saldafia]

Assume that uniqueness and nondegeneracy hold for
—Au+ Au=uP in Q
u=0 on 9 (L)
u>0 in Q

then there exists o = o(2, A, p) € (0, 1) such that for s € (o, 1] uniqueness and
nondegeneracy hold for
(=AYu+du=uvP inQ
u=0 on RV\ Q (F)
u>0 in Q

PROOF It follows by a standard contradiction argument, ... with some delicate points
Assume by contradiction that (F) admits 2 nontrivial solutions u, and v,

Un # Vn for s=s,—1"

@ we show that, up to a subsequence

up—u  inl>®(Q) ass,—1

Vo — v in L7(Q) ass,,—>1} l

where u, v are nontrivial positive solutions of (L)




SUBTLE ISSUE in the proof: the nonlocal-to-local transition
(-AYu+AIu=uP inQ
u=20 on RN\ Q
u>0 in Q
Let us be a solution of (F). Then up to a subsequence
us—u in L*(Q) ass— 1"

where u is a (positive) solution of (L)

we need uniform-in-s a-priori bounds, for s ~ 1:

There exists o € (0,1) and C = C(\, p,Q,0) > 0 (independent on s) such
that
[|Us]| oo mry < €

for any s € (0, 1) and any solution us of (F)

Proof It relies on a blow-up argument.
Since the blow-up parameter is the Laplacian’s exponent s, we need to
control (as s — 1) the constants which appear from regularity estimates.



Uniqueness for fractional asymptotically linear problems
(p~1)

u=20 on RV\ Q (F)

(=AY u+Adu=uvP inQ
u>0 in Q

Theorem [Dieb, I., Saldafa]
Let s € (0,1). There exists § = (L2, A, s) such that
uniqueness and nondegeneracy hold for problem (F), if p € (1,1 + 4)

Y

T
1 1+0 P




THE END
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Asymptotic characterization of positive solutions:

@ De Marchis, |. & Pacella, J. Europ. Math. Soc. 2015
@ De Marchis, I. & Pacella, J. Fix Point Th. Appl. 2017
@ De Marchis, Grossi, |. & Pacella, Arch. der Math. 2018

Uniqueness of positive solutions in convex domains & Morse index for 1-peak solutions:

@ De Marchis, Grossi, |. & Pacella, J. Math. Pures Appl. 2019

Local uniqueness, non-degeneracy and Morse index for k-peaks, solutions, Vk > 1

@ Grossi, |., Luo & Yan, J. Math. Pures Appl. 2022
@ I., Luo & Yan, preprint

The fractional case
@ Dieb, I. & Saldana, Nonlinear Analysis, to appear



THE END

Asymptotic characterization of positive solutions:

ﬁ De Marchis, |. & Pacella, J. Europ. Math. Soc. 2015
ﬁ De Marchis, I. & Pacella, J. Fix Point Th. Appl. 2017
ﬁ De Marchis, Grossi, |. & Pacella, Arch. der Math. 2018

Uniqueness of positive solutions in convex domains & Morse index for 1-peak solutions:

ﬁ De Marchis, Grossi, |. & Pacella, J. Math. Pures Appl. 2019

Local uniqueness, non-degeneracy and Morse index for k-peaks, solutions, Vk > 1

ﬁ Grossi, |., Luo & Yan, J. Math. Pures Appl. 2022

ﬁ I., Luo & Yan, preprint

The fractional case
B Dieb, |. & Saldana, Nonlinear Analysis, to appear Tha n k you I






Some open problems:

—Au+ \u=uP in Q ¢ RN convex
u=20 on 0f2
u>0 in Q

e N>3
e thecase A\ # 0 in N =2

epc(l+9,p*), when A=0, N=2

— -

s A,

1 1+90 p* p

no quantitative information about § and p*



Some open problems:

u=20
u>0

{ (—A)u+ Au=uP

e Q =B, forany s € (0,1)

in Q
on RN\ Q
in Q



