Uniqueness results for local and non-local Dirichlet problems

Isabella Ianni

Sapienza
Unvestrinikoom

IMAG Granada
June 28, 2023

Positive solutions for the problem

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \tag{*}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Positive solutions for the problem

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \tag{*}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

where
$\Omega \subset \mathbb{R}^{N}, N \geq 2$, smooth bounded domain
$1<p<p_{c}$

$$
p_{c}:= \begin{cases}\frac{N+2}{N-2} & \text { if } N \geq 3 \\ +\infty & \text { if } N=2\end{cases}
$$

$\lambda>-\lambda_{1}(\Omega)$

Positive solutions for the problem

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

where
$\Omega \subset \mathbb{R}^{N}, N \geq 2$, smooth bounded domain
$1<p<p_{c}$

$$
p_{c}:= \begin{cases}\frac{N+2}{N-2} & \text { if } N \geq 3 \\ +\infty & \text { if } N=2\end{cases}
$$

$$
\lambda>-\lambda_{1}(\Omega)
$$

- there exists a (least energy) solution

Positive solutions for the problem

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

where
$\Omega \subset \mathbb{R}^{N}, N \geq 2$, smooth bounded domain

$$
1<p<p_{c}
$$

$$
p_{c}:= \begin{cases}\frac{N+2}{N-2} & \text { if } N \geq 3 \\ +\infty & \text { if } N=2\end{cases}
$$

$$
\lambda>-\lambda_{1}(\Omega)
$$

- there exists a (least energy) solution
- multiplicity/uniqueness results depending on Ω and p

Positive solutions for the problem

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

where
$\Omega \subset \mathbb{R}^{N}, N \geq 2$, smooth bounded domain

$$
1<p<p_{c}
$$

$$
p_{c}:= \begin{cases}\frac{N+2}{N-2} & \text { if } N \geq 3 \\ +\infty & \text { if } N=2\end{cases}
$$

$$
\lambda>-\lambda_{1}(\Omega)
$$

- there exists a (least energy) solution
- multiplicity/uniqueness results depending on Ω and p

Plan of the talk

Plan of the talk

- outline of the known uniqueness results for this problem

Plan of the talk

- outline of the known uniqueness results for this problem
- the Lane-Emden equation $(\lambda=0)$ in convex domains $\Omega \subset \mathbb{R}^{2}$
F. De Marchis, M. Grossi, F. Pacella - Sapienza University, Roma (Italy)

Plan of the talk

- outline of the known uniqueness results for this problem
- the Lane-Emden equation $(\lambda=0)$ in convex domains $\Omega \subset \mathbb{R}^{2}$
F. De Marchis, M. Grossi, F. Pacella - Sapienza University, Roma (Italy)
- Fractional Laplacian case
A. Dieb - Université Abou Bakr Belkaïd, Tlemcen (Algeria)
A. Saldaña - UNAM, Mexico City (Mexico)

Uniqueness in the ball if $\lambda=0$

if $\Omega=B$ then there is a unique solution to $(*)_{p}$

Uniqueness in the ball if $\lambda=0$

if $\Omega=B$ then there is a unique solution to $(*)_{p}$

PROOF: any solution of $(*)_{p}$ is radial by
so $(*)_{p}$ reduces to an ODE problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}-\frac{N-1}{r} u^{\prime}+u^{p}=0 \quad \text { in }(0, R) \\
u^{\prime}(0)=0
\end{array}\right.
$$

and $u(R)=0, u>0$ in $(0, R)$. If by contradiction v is another solution then

$$
w(r):=a^{\frac{2}{p-2}} v(a r), \quad a:=\left[\frac{u(0)}{v(0)}\right]^{\frac{p-1}{2}}
$$

solves the Initial Value Problem (by the homogeneity of u^{p})

$$
\left\{\begin{array}{l}
w^{\prime \prime}-\frac{N-1}{r} w^{\prime}+w^{p}=0 \quad \text { in }\left(0, \frac{R}{a}\right) \\
w^{\prime}(0)=0 \\
w(0)=u(0)
\end{array}\right.
$$

and $w\left(\frac{R}{a}\right)=0$. So $w \equiv u$ by uniqueness and as a consequence, using the boundary condition, $v \equiv u$.

Uniqueness in the ball if $\lambda \neq 0$

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \tag{*}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

$$
\text { if } \Omega=B \text { then there is a unique solution to }(*)_{p}
$$

Ni, JDE 1983
Ni \& Nussbaum, Comm. Pure Appl. Math. 1985
R
Kwong \& Li, Trans. AMS 1992
Zhang, Comm. PDE 1992
Srikanth, Diff. Int. Eq. 1993
Adimurthi \& Yadava, ARMA 1994
Aftalion \& Pacella, JDE 2003

Non-uniqueness: the role of the nonlinearity

$$
\begin{cases}-\Delta u=f(u) & \text { in } B \\ u=0 & \text { on } \partial B \\ u>0 & \text { in } B\end{cases}
$$

An example for which uniqueness fails:

$$
f(u)=\mu u^{q}+u^{p}
$$

$$
p \in\left(1, \frac{N+2}{N-2}\right), \quad q \in(0,1) \quad(\mu>0 \text { small })
$$

Ambrosetti, Brezis \& Cerami, JFA 1994

$\Omega \neq B ?$

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

The question of the uniqueness of the solutions of $(*)_{p}$ in domains Ω other then the ball was raised already in

局 Gidas, Ni \& Nirenberg, CMP 1979 :
2.8. Theorem 1 yields a positive response to a question put us by C. Holland. For $p>1$, is the positive solution u of

$$
\begin{equation*}
\Delta u+u^{p}=0 \quad \text { in } \quad|x|<R, \quad u=0 \quad \text { on } \quad|x|=R \tag{2.8}
\end{equation*}
$$

unique? (The question is still open for other domains.) According to Theorem 1

$\Omega \neq B$. Known uniqueness results

$\Omega \neq B$. Known uniqueness results

- for any Ω when $p \in(1,1+\delta)$, where $\delta=\delta(\Omega)>0$

$\Omega \neq B$. Known uniqueness results

- for any Ω when $p \in(1,1+\delta)$, where $\delta=\delta(\Omega)>0$

C.-S. Lin, Manuscr. Math 1994

Damascelli, Grossi \& Pacella AIHP 1999
Dancer, Math. Ann. 2003
(uniqueness and nondegeneracy)

- for $\Omega \sim B, N \geq 3, \lambda=0$

周 Zou, Ann. SNS Pisa 1994

$\Omega \neq B$. Known uniqueness results

- for any Ω when $p \in(1,1+\delta)$, where $\delta=\delta(\Omega)>0$

C.-S. Lin, Manuscr. Math 1994

Damascelli, Grossi \& Pacella AIHP 1999
Dancer, Math. Ann. 2003
(uniqueness and nondegeneracy)

- for $\Omega \sim B, N \geq 3, \lambda=0$

Zou, Ann. SNS Pisa 1994

- for Ω symmetric and convex with respect to N orthogonal directions, $\lambda=0$

$$
\begin{array}{lll}
N=2, \forall p>1 & \text { Damascelli, Grossi } \\
N \geq 3, p=\frac{N+2}{N-2}-\varepsilon & \text { Grossi, ADE } 2000
\end{array}
$$

(uniqueness and nondegeneracy)

$\Omega \neq B$. Known uniqueness results

- for any Ω when $p \in(1,1+\delta)$, where $\delta=\delta(\Omega)>0$

C.-S. Lin, Manuscr. Math 1994

Damascelli, Grossi \& Pacella AIHP 1999
Dancer, Math. Ann. 2003
(uniqueness and nondegeneracy)

- for $\Omega \sim B, N \geq 3, \lambda=0$

Zou, Ann. SNS Pisa 1994

- for Ω symmetric and convex with respect to N orthogonal directions, $\lambda=0$

$$
\begin{array}{lll}
N=2, \forall p>1 & \text { Damascelli, Grossi } \\
N \geq 3, p=\frac{N+2}{N-2}-\varepsilon & \text { Grossi, ADE } 2000
\end{array}
$$

(uniqueness and nondegeneracy)

- for Ω unit square, $N=2 p=2,3$

McKenna, Pacella, Plum \& Roth, JDE 2009/ Inter. Ser. Numer. Math 2012

Multiplicity results in non-convex domains

annular shaped domains (effect of topology):
Brezis \& Nirenberg, CPAM 1983 annulus \& $p=\frac{N+2}{N-2}-\varepsilon, N \geq 3$Lin, TAMS 1992 thin annulus, non-radial bifurcationY.Y. Li, JDE, 1990 expanding annulus, non-radial bifurcation

目 Byeon, JDE 1997
Catrina \& Wang, JDE 1999

Gladiali, Grossi, Pacella \& Srikanth. Calc. Var. 2011 expanding annulus, non-radial bifurcation Esposito, Musso \& Pistoia, JDE $2006 N=2$, not simply connected, p large, \exists multi-spike solutions

Bartsch, Clapp, Grossi \& Pacella, Math. Ann. 2012 expanding annular domains, \exists asympt. radial solutionDancer \& Yan, CPDE 2002 expanding annular domains, \exists multi-bump solutions dumb-bell shaped domains (contactible, star-shaped, etc):

Dancer, JDE 1988 \& JDE 1990
Byeon, Proc. Roy. Soc. Edinburgh A 2001

R
Esposito, Musso \& Pistoia, JDE $2006 N=2, p$ large, \exists multi-spike solutions

Multiplicity results in non－convex domains

annular shaped domains（effect of topology）：
Brezis \＆Nirenberg，CPAM 1983 annulus \＆$p=\frac{N+2}{N-2}-\varepsilon, N \geq 3$Lin，TAMS 1992 thin annulus，non－radial bifurcationY．Y．Li，JDE， 1990 expanding annulus，non－radial bifurcation
目 Byeon，JDE 1997
Catrina \＆Wang，JDE 1999

Gladiali，Grossi，Pacella \＆Srikanth．Calc．Var． 2011 expanding annulus，non－radial bifurcation Esposito，Musso \＆Pistoia，JDE $2006 N=2$ ，not simply connected，p large，\exists multi－spike solutionsBartsch，Clapp，Grossi \＆Pacella，Math．Ann． 2012 expanding annular domains，\exists asympt．radial solutionDancer \＆Yan，CPDE 2002 expanding annular domains，\exists multi－bump solutions dumb－bell shaped domains（contactible，star－shaped，etc）：

Dancer，JDE 1988 \＆JDE 1990
Byeon，Proc．Roy．Soc．Edinburgh A 2001Esposito，Musso \＆Pistoia，JDE $2006 N=2, p$ large，\exists multi－spike solutions

The uniqueness conjecture in convex domains

The uniqueness conjecture in convex domains

CONJECTURE (Kawohl '85 / Dancer '88)

If Ω is convex then there is a unique solution to $(*)_{p}$

Kawohl, Lect. Notes in Math. 1985


```
Open problem
```

Prove uniqueness of solutions to (3.62) (3.63) for $1>0,1<q<\frac{n+2}{n-2}$.
If is is a ball, there is uniqueness [85]; if is is an annulus, there
is no uniqueness [38]. A geometric assumption on o which induces
uniqueness might be convexity. This problem plays a role in "fast dif-

Dancer, JDE 1988
Last, we obtain some very simple results on the uniqueness of positive solutions on certain highly symmetric domains. This problem seems to require much more work. Indeed, we conjecture that uniqueness holds for $f(y)=y^{p}$ if Ω is convex and $1<p<(m+2)(m-2)^{-1}$.

The uniqueness conjecture in convex domains

CONJECTURE (Kawohl '85 / Dancer '88)

 If Ω is convex then there is a unique solution to $(*)_{p}$

Very challenging problem, solved only when $\Omega=B$ is a ball

Remark. Convexity of Ω is not necessary for uniqueness
$\Omega \neq B$ convex. A partial uniqueness result for the Lane-Emden problem (i.e. $\lambda=0$)

$$
\begin{cases}-\Delta u=u^{p} & \text { in } \Omega \tag{LE}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

- for any Ω convex, $N=2, \forall p>1$ uniqueness of least energy solutions C.S. Lin, Manuscr. Math. 1994 of $(L E)_{p}$

Our result for the Lane-Emden problem

We consider problem $(L E)_{p}$ in dimension $N=2$. When Ω is convex:

Our result for the Lane-Emden problem

We consider problem $(L E)_{p}$ in dimension $N=2$. When Ω is convex:

We prove the conjecture for any p large enough:

Our result for the Lane-Emden problem

We consider problem $(L E)_{p}$ in dimension $N=2$. When Ω is convex:

We prove the conjecture for any p large enough:

Our result for the Lane-Emden problem

We consider problem $(L E)_{p}$ in dimension $N=2$. When Ω is convex:

We prove the conjecture for any p large enough:

Theorem [De Marchis, Grossi, I., Pacella]

Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded and convex domain, then there exists $p^{\star}=p^{\star}(\Omega)>1$ such that
$(L E)_{p}$ has a unique solution for any $p \geq p^{\star}$ and it is nondegenerate

One of the main tools of our proof: the Morse index

The Morse index of a solution u_{p} of $(L E)_{p}$ is

$$
m\left(u_{p}\right)=\#\left\{k \in \mathbb{N}: \lambda_{k, p}<1\right\}
$$

where

$$
(0<) \lambda_{1, p}<\lambda_{2, p} \leq \lambda_{3, p} \leq \ldots
$$

is the sequence of eigenvalues for the linear problem

$$
\begin{cases}-\Delta v=\lambda p u_{p}^{p-1} v & \text { in } \Omega \tag{Lin}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

- $m\left(u_{p}\right) \geq 1 \quad\left(\forall N \geq 2, \forall \Omega \subset \mathbb{R}^{N}, \forall 1<p<p_{c}\right)$

$$
\lambda_{1, p}=\frac{1}{p}<1
$$

- problem: computation/a priori bounds for the Morse index

Uniqueness - non-degeneracy - Morse index

圊 C.S. Lin, Manuscr. Math. 1994

Uniqueness - non-degeneracy - Morse index

C.S. Lin, Manuscr. Math. 1994
non-degeneracy $\forall p \Rightarrow$ uniqueness $\quad\left(\forall N \geq 2, \forall \Omega \subset \mathbb{R}^{N}, \forall 1<p<p_{c}\right)$

Uniqueness - non-degeneracy - Morse index

C.S. Lin, Manuscr. Math. 1994

```
non-degeneracy }\forallp=>\mathrm{ uniqueness }\quad(\forallN\geq2,\forall\Omega\subset\mp@subsup{\mathbb{R}}{}{N},\forall1<p<\mp@subsup{p}{c}{}
```


Uniqueness - non-degeneracy - Morse index

C.S. Lin, Manuscr. Math. 1994

```
non-degeneracy }\forallp=>\mathrm{ uniqueness }\quad(\forallN\geq2,\forall\Omega\subset\mp@subsup{\mathbb{R}}{}{N},\forall1<p<\mp@subsup{p}{c}{}
```


Uniqueness - non-degeneracy - Morse index

C.S. Lin, Manuscr. Math. 1994

```
non-degeneracy }\forallp=>\mathrm{ uniqueness }\quad(\forallN\geq2,\forall\Omega\subset\mp@subsup{\mathbb{R}}{}{N},\forall1<p<\mp@subsup{p}{c}{}
```


Uniqueness - non-degeneracy - Morse index

C.S. Lin, Manuscr. Math. 1994

```
non-degeneracy }\forallp=>\mathrm{ uniqueness
(}\forallN\geq2,\forall\Omega\subset\mp@subsup{\mathbb{R}}{}{N},\forall1<p<\mp@subsup{p}{c}{}
```


Uniqueness - non-degeneracy - Morse index

C.S. Lin, Manuscr. Math. 1994

$$
\text { non-degeneracy } \forall p \Rightarrow \text { uniqueness } \quad\left(\forall N \geq 2, \forall \Omega \subset \mathbb{R}^{N}, \forall 1<p<p_{c}\right)
$$

If $\mathrm{N}=2$ and Ω convex then any Morse index 1 -solution is non-degenerate

(any least energy solution has Morse index $1, \forall p$)

Our proof

Key Theorem [De Marchis, Grossi, I., Pacella]
If $N=2$ and Ω convex then
$\exists p^{\star}=p^{\star}(\Omega)>1$ such that any solution of $(L E)_{p}$ has
Morse index=1 if $p \geq p^{\star}$

Morse index computation for p large

asymptotic analysis as $p \rightarrow+\infty$ for families u_{p} of solutions to $(L E)_{p}$

\Downarrow
computation of the Morse index $m\left(u_{p}\right)$ for p large

Morse index computation for p large

$$
\begin{aligned}
& \text { asymptotic analysis as } p \rightarrow+\infty \\
& \text { for families } u_{p} \text { of solutions to }(L E)_{p} \\
& \Downarrow \\
& \text { computation of the Morse index } \\
& m\left(u_{p}\right) \text { for } p \text { large } \\
& \begin{cases}-\Delta v=\lambda p u_{p}^{p-1} v & \text { in } \Omega \\
v=0 & \text { on } \partial \Omega\end{cases}
\end{aligned}
$$

Asymptotic characterization of the solutions. $N=2$, any Ω
Theorem [De Marchis, I., Pacella]

Asymptotic characterization of the solutions. $N=2$, any Ω
Theorem [De Marchis, I., Pacella]
$N=2$, any Ω.

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$

(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- $\left\|u_{p_{n}}\right\|_{L^{\infty}\left(B_{\delta}\left(x_{i}\right)\right)} \sim\left\|u_{p_{n}}\right\|_{L^{\infty}(\Omega)}^{\longrightarrow} \underset{n}{\longrightarrow} \sqrt{e}$

(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- $\left\|u_{p_{n}}\right\|_{L^{\infty}\left(B_{\delta}\left(x_{i}\right)\right)} \sim\left\|u_{p_{n}}\right\|_{L^{\infty}(\Omega)} \underset{n}{\longrightarrow} \sqrt{e}$
- $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ is a critical point of the Kirchoff-Routh function $\Psi_{k}: \Omega^{k} \rightarrow \mathbb{R}$

$$
\Psi_{k}(\bar{x}):=\sum_{i}\left[H\left(x_{i}, x_{i}\right)-\sum_{\ell \neq i} G\left(x_{i}, x_{\ell}\right)\right]
$$

(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- $\left\|u_{p_{n}}\right\|_{L^{\infty}\left(B_{\delta}\left(x_{i}\right)\right)} \sim\left\|u_{p_{n}}\right\|_{L^{\infty}(\Omega)} \underset{n}{\longrightarrow} \sqrt{e}$
- $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ is a critical point of the Kirchoff-Routh function $\Psi_{k}: \Omega^{k} \rightarrow \mathbb{R}$

$$
\Psi_{k}(\bar{x}):=\sum_{i}\left[H\left(x_{i}, x_{i}\right)-\sum_{\ell \neq i} G\left(x_{i}, x_{\ell}\right)\right]
$$

- suitable scaling of $u_{p_{n}}$ around each x_{i} converges to U
(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- $\left\|u_{p_{n}}\right\|_{L^{\infty}\left(B_{\delta}\left(x_{i}\right)\right)} \sim\left\|u_{p_{n}}\right\|_{L^{\infty}(\Omega)} \underset{n}{\longrightarrow} \sqrt{e}$
- $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ is a critical point of the Kirchoff-Routh function $\Psi_{k}: \Omega^{k} \rightarrow \mathbb{R}$

$$
\Psi_{k}(\bar{x}):=\sum_{i}\left[H\left(x_{i}, x_{i}\right)-\sum_{\ell \neq i} G\left(x_{i}, x_{\ell}\right)\right]
$$

- suitable scaling of $u_{p_{n}}$ around each x_{i} converges to U

$$
U(x)=\log \frac{1}{\left(1+\frac{1}{8}|x|^{2}\right)^{2}}
$$

$$
\left\{\begin{array}{l}
-\Delta U=e^{U} \quad \text { in } \mathbb{R}^{2} \\
U(0)=0, U \leq 0, \int_{\mathbb{R}^{2}} e^{U}=8 \pi
\end{array}\right.
$$

(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- $\left\|u_{p_{n}}\right\|_{L^{\infty}\left(B_{\delta}\left(x_{i}\right)\right)} \sim\left\|u_{p_{n}}\right\|_{L^{\infty}(\Omega)} \underset{n}{\longrightarrow} \sqrt{e}$
- $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ is a critical point of the Kirchoff-Routh function $\Psi_{k}: \Omega^{k} \rightarrow \mathbb{R}$

$$
\Psi_{k}(\bar{x}):=\sum_{i}\left[H\left(x_{i}, x_{i}\right)-\sum_{\ell \neq i} G\left(x_{i}, x_{\ell}\right)\right]
$$

- suitable scaling of $u_{p_{n}}$ around each x_{i} converges to U

$$
U(x)=\log \frac{1}{\left(1+\frac{1}{8}|x|^{2}\right)^{2}}
$$

$$
\left\{\begin{array}{l}
-\Delta U=e^{U} \quad \text { in } \mathbb{R}^{2} \\
U(0)=0, U \leq 0, \quad \int_{\mathbb{R}^{2}} e^{U}=8 \pi
\end{array}\right.
$$

- $p_{n}\left\|\nabla u_{p_{n}}\right\|_{L^{2}(\Omega)}^{2} \xrightarrow[n]{\longrightarrow} 8 \pi e \cdot k \quad$ (energy quantization)
(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Asymptotic characterization of the solutions. $N=2$, any Ω

Theorem [De Marchis, I., Pacella]

$N=2$, any Ω. Let $\left(u_{p}\right)_{p}$, be a family of solutions to $(L E)_{p}$ such that

$$
\sup _{p} p\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Then $\exists x_{1}, x_{2}, \ldots x_{k} \in \Omega$ and $\exists p_{n} \rightarrow_{n}+\infty$ such that:

- $p_{n} u_{p_{n}} \underset{n}{\longrightarrow} 8 \pi \sqrt{e} \sum_{i=1}^{k} G\left(\cdot, x_{i}\right)$ in $C_{l o c}^{1}\left(\bar{\Omega} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- $\left\|u_{p_{n}}\right\|_{L^{\infty}\left(B_{\delta}\left(x_{i}\right)\right)} \sim\left\|u_{p_{n}}\right\|_{L^{\infty}(\Omega)} \underset{n}{\longrightarrow} \sqrt{e}$
- $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ is a critical point of the Kirchoff-Routh function $\Psi_{k}: \Omega^{k} \rightarrow \mathbb{R}$

$$
\Psi_{k}(\bar{x}):=\sum_{i}\left[H\left(x_{i}, x_{i}\right)-\sum_{\ell \neq i} G\left(x_{i}, x_{\ell}\right)\right]
$$

- suitable scaling of $u_{p_{n}}$ around each x_{i} converges to U

$$
U(x)=\log \frac{1}{\left(1+\frac{1}{8}|x|^{2}\right)^{2}}
$$

$$
\left\{\begin{array}{l}
-\Delta U=e^{U} \quad \text { in } \mathbb{R}^{2} \\
U(0)=0, U \leq 0, \int_{\mathbb{R}^{2}} e^{U}=8 \pi
\end{array}\right.
$$

- $p_{n}\left\|\nabla u_{p_{n}}\right\|_{L^{2}(\Omega)}^{2} \xrightarrow[n]{\longrightarrow} 8 \pi e \cdot k \quad$ (energy quantization)
(G is the Green's function of $-\Delta$ in Ω under Dirichlet bnd conditions and $H(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-G(x, y)$)

Morse index of k-peaks solutions. $N=2$, any Ω

Theorem ($k \geq 2$: [I., Luo, Yan], $k=1$: [De Marchis, Grossi, I., Pacella])
Let $N=2, \Omega$ any. Let u_{p} be a family of k-peaks solutions to $(L E)_{p}$

Morse index of k-peaks solutions. $N=2$, any Ω

Theorem ($k \geq 2$: [I., Luo, Yan], $k=1$: [De Marchis, Grossi, I., Pacella])
Let $N=2, \Omega$ any. Let u_{p} be a family of k-peaks solutions to $(L E)_{p}$ concentrating at $\bar{x}:=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \Omega^{k}$ - which is a critical point of the Kirchoff-Routh function Ψ_{k}.

Morse index of k-peaks solutions. $N=2$, any Ω

Theorem ($k \geq 2$: [I., Luo, Yan], $k=1$: [De Marchis, Grossi, I., Pacella])

Let $N=2, \Omega$ any. Let u_{p} be a family of k-peaks solutions to $(L E)_{p}$ concentrating at $\bar{x}:=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \Omega^{k}$ - which is a critical point of the Kirchoff-Routh function Ψ_{k}.

Then $\exists p^{\star}>1$ such that
$(k \leq) k+m(\bar{x}) \leq m\left(u_{p}\right) \leq m_{0}\left(u_{p}\right) \leq k+m_{0}(\bar{x})(\leq 3 k)$, for $p \geq p^{*}$ $\left(m(\bar{x}) / m_{0}(\bar{x})\right.$ is the Morse index/augmented Morse index of \bar{x} as a critical point of $\left.\Psi_{k}\right)$

Morse index of k-peaks solutions. $N=2$, any Ω

Theorem ($k \geq 2$: [I., Luo, Yan], $k=1$: [De Marchis, Grossi, I., Pacella])

Let $N=2, \Omega$ any. Let u_{p} be a family of k-peaks solutions to $(L E)_{p}$ concentrating at $\bar{x}:=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \Omega^{k}$ - which is a critical point of the Kirchoff-Routh function Ψ_{k}.

Then $\exists p^{\star}>1$ such that
$(k \leq) k+m(\bar{x}) \leq m\left(u_{p}\right) \leq m_{0}\left(u_{p}\right) \leq k+m_{0}(\bar{x})(\leq 3 k)$, for $p \geq p^{\star}$
In particular if \bar{x} is non-degenerate then

$$
m\left(u_{p}\right)=k+m(\bar{x}), \quad \text { for } p \geq p^{\star}
$$

and u_{p} is non-degenerate for $p \geq p^{\star}$
 $\left(m(\bar{x}) / m_{0}(\bar{x})\right.$ is the Morse index/augmented Morse index of \bar{x} as a critical point of Ψ_{k})

Back to the proof of the uniqueness, for $\Omega \subset \mathbb{R}^{2}$ convex

From this general Morse index formula then one deduces the following:

```
Key Theorem
If N =2 and \Omega convex then \exists p}\mp@subsup{p}{}{\star}=\mp@subsup{p}{}{\star}(\Omega)>1 such
```

that

$$
m\left(u_{p}\right)=1
$$

for any solution u_{p} of $(L E)_{p}$ when $\mathrm{p} \geq \mathrm{p}^{\star}$

Uniqueness of positive solutions in convex domains

$$
\begin{cases}-\Delta u=u^{p} & \text { in } \Omega \tag{LE}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Theorem [De Marchis, Grossi, I., Pacella]

Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded and convex domain, then there exists $p^{\star}=p^{\star}(\Omega)>1$ such that

$$
(L E)_{p} \text { has a unique solution for any } p \geq p^{\star}
$$

Uniqueness for the fractional Dirichlet problem

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{*}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

where

$$
s \in(0,1)
$$

$\Omega \subset \mathbb{R}^{N}, N \geq 2$, smooth bounded
$1<p<\frac{N+2 s}{N-2 s}$
$\lambda>-\lambda_{1}^{s}(\Omega)$
$(-\Delta)^{s} u(x):=C_{N, s} p . v \cdot \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y$

Uniqueness for the fractional Dirichlet problem

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

where

$$
\begin{aligned}
& s \in(0,1) \\
& \Omega \subset \mathbb{R}^{N}, N \geq 2 \text {, smooth bounded } \\
& 1<p<\frac{N+2 s}{N-2 s} \\
& \lambda>-\lambda_{1}^{s}(\Omega) \\
& (-\Delta)^{s} u(x):=C_{N, s} \text { p.v. } \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y
\end{aligned}
$$

- existence

```
Servadei, & Valdinoci, J. Math. Anal. Appl. 2012, DCDS }201
```

- multiplicity results
may be deduced for instance for $\lambda=0$ and $p=\frac{N+2 s}{N-2 s}-\varepsilon$ from the one bubble solutions in
\square Davila, Lopez Rios \& Sire, Rev. Mat. Iberoam. 2017

Uniqueness for the fractional Dirichlet problem

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

NO RESULTS IN THE LITERATURE

Some uniqueness results for fractional problems in \mathbb{R}^{N}

For ground states of fractional Schrödinger equations in \mathbb{R}^{N} :
Fall \& Valdinoci, Comm. Math. Phys. 2014
Frank \& Lenzmann, Acta Math. 2013
國 Frank, Lenzmann \& Silvestre, Comm. Pure Appl. Math. 2016

For radial ground states of the fractional plasma equation in \mathbb{R}^{N} and of the fractional critical and supercritical Lane-Emden equation in \mathbb{R}^{N} :
Chan, del Mar Gonzalez, Huang, Mainini \& Volzone, Calc. Var. 2020

For radial ground states of the critical fractional Henon equation in \mathbb{R}^{N} :
Alarcon, Barrios \& Quaas, DCDS 2023

Uniqueness for the fractional Dirichlet problem

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

NO RESULTS IN THE LITERATURE

Even for $\lambda=0$ and $\Omega=B$ uniqueness is still an open problem!
\square Jarohs \& Weth, DCDS 2014 radial and decreasing

Main issues:

no ODE techniques
Ao, Chan, DelaTorre, Fontelos, del Mar Gonzalez \& Wei, J. Math. St. 2020 no Hopf Lemma for sign-changing solutions no Courant's nodal theorem
no monotonicity formulas in bounded domains

Our first result: uniqueness in the asymptotically local case $(s \sim 1)$

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Theorem [Dieb, I., Saldaña]

If uniqueness and nondegeneracy hold for

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \tag{L}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

then there exists $\sigma=\sigma(\Omega, \lambda, p) \in(0,1)$ such that uniqueness and nondegeneracy hold for problem (F), if $s \in(\sigma, 1]$

Some corollaries

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Corollary

If $\Omega=B, \lambda>-\lambda_{1}(B)$ and $1<p<p_{c}:= \begin{cases}\frac{N+2}{N-2} & \text { if } N \geq 3 \\ +\infty & \text { if } N=2\end{cases}$ then there exists $\sigma=\sigma(N, \lambda, p) \in(0,1)$ such that uniqueness and nondegeneracy hold for problem (F), if $s \in(\sigma, 1]$

local:
Gidas, Ni \& Nirenberg, Comm. Math. Phys. 1979
凮 Kwong \& Li, TAMS 1992
Ni \& Nussbaum, Comm. Pure Appl. Math. 1985
Srikanth, Diff. Int. Eqs. 1993
Zhang, Comm. Part. PDEs, 1992

Some corollaries

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Corollary

If $\Omega \subset \mathbb{R}^{N}$ symmetric and convex with respect to N orthogonal directions, $\lambda=0$ and

$$
\begin{aligned}
& p>1 \text { if } N=2 \\
& p \in\left(\frac{N+2}{N-2}-\varepsilon, \frac{N+2}{N-2}\right), \varepsilon>0 \text { small, if } N \geq 3
\end{aligned}
$$

then there exists $\sigma=\sigma(\Omega, p) \in(0,1)$ such that uniqueness and nondegeneracy hold for problem (F), if $s \in(\sigma, 1]$
local:

$$
N=2, \forall p>1
$$

$$
\text { Dancer, JDE } 1988(\Omega \sim B)
$$

Damascelli, Grossi \& Pacella, AHIP 1999

$$
N \geq 3, p \in\left(\frac{N+2}{N-2}-\varepsilon, \frac{N+2}{N-2}\right) \quad \text { Grossi, ADE } 2000
$$

Some corollaries

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Corollary

If $\Omega \subset \mathbb{R}^{2}$ convex, $\lambda=0$ and $p>1$
then there exists $\sigma=\sigma(\Omega, p) \in(0,1)$ such that problem (F) admits a unique least energy solution if $s \in(\sigma, 1]$, and it is nondegenerate

local:
屋 C.-S. Lin, Manuscr. Math 1994

Some corollaries

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Corollary

Let $\Omega \subset \mathbb{R}^{2}$ convex and $\lambda=0$. There exists $p^{*}=p^{*}(\Omega)>1$ such that for any $p>p^{*}$ there is $\sigma=\sigma(\Omega, p) \in(0,1)$ such that
problem (F) admits a unique solution if $s \in(\sigma, 1]$, and it is nondegenerate

local:
De Marchis, Grossi, I. \& Pacella, J. Math. Pures Appl. 2019

Idea of the proof (uniqueness)

Theorem [Dieb, I., Saldaña]

Assume that uniqueness and nondegeneracy hold for

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \tag{L}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

then there exists $\sigma=\sigma(\Omega, \lambda, p) \in(0,1)$ such that for $s \in(\sigma, 1]$ uniqueness and nondegeneracy hold for

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

PROOF It follows by a standard contradiction argument, ... with some delicate points Assume by contradiction that (F) admits 2 nontrivial solutions u_{n} and v_{n}

$$
u_{n} \neq v_{n} \quad \text { for } \quad s=s_{n} \rightarrow 1^{-}
$$

- we show that, up to a subsequence

$$
\begin{array}{lll}
u_{n} \rightarrow u & \text { in } L^{\infty}(\Omega) & \text { as } s_{n} \rightarrow 1 \\
v_{n} \rightarrow v & \text { in } L^{\infty}(\Omega) & \text { as } s_{n} \rightarrow 1
\end{array}
$$

where u, v are nontrivial positive solutions of (L)

- by assumption $u=v=u_{*}$ where u_{*} is the unique positive solution of (L) hence

$$
V_{n}:=\int_{0}^{1} p\left(t u_{n}+(1-t) v_{n}\right)^{p-1} d t \rightarrow p u_{*}^{p-1}
$$

- Define

$$
w_{n}:=\frac{u_{n}-v_{n}}{\left\|u_{n}-v_{n}\right\|_{L^{\infty}}} \neq 0
$$

which solve

$$
\left\{\begin{array}{lr}
(-\Delta)^{s_{n}} w_{n}=V_{n} w_{n}-\lambda w_{n} & \text { in } \Omega \\
w_{n}=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\
\left\|w_{n}\right\|_{\llcorner\infty}=1 & \text { in } \Omega
\end{array}\right.
$$

- we can prove that

$$
w_{n} \rightarrow w \neq 0 \quad \text { in } L^{\infty}(\Omega)
$$

which solves

$$
\left\{\begin{array}{lr}
-\Delta w+\lambda w=p u_{*}^{p-1} w & \text { in } \Omega \\
w=0 & \text { on } \partial \Omega
\end{array}\right.
$$

against the nondegeneracy assumption on u_{*}

- by assumption $u=v=u_{*}$ where u_{*} is the unique positive solution of (L) hence

$$
V_{n}:=\int_{0}^{1} p\left(t u_{n}+(1-t) v_{n}\right)^{p-1} d t \rightarrow p u_{*}^{p-1}
$$

- Define

$$
w_{n}:=\frac{u_{n}-v_{n}}{\left\|u_{n}-v_{n}\right\|_{L^{\infty}}} \neq 0
$$

which solve

$$
\left\{\begin{array}{lr}
(-\Delta)^{s_{n}} w_{n}=V_{n} w_{n}-\lambda w_{n} & \text { in } \Omega \\
w_{n}=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\
\left\|w_{n}\right\|_{\llcorner\infty}=1 & \text { in } \Omega
\end{array}\right.
$$

- we can prove that

$$
w_{n} \rightarrow w \neq 0 \quad \text { in } L^{\infty}(\Omega)
$$

which solves

$$
\left\{\begin{array}{lr}
-\Delta w+\lambda w=p u_{*}^{p-1} w & \text { in } \Omega \\
w=0 & \text { on } \partial \Omega
\end{array}\right.
$$

against the nondegeneracy assumption on u_{*}

Idea of the proof (uniqueness)

Theorem [Dieb, I., Saldaña]

Assume that uniqueness and nondegeneracy hold for

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \tag{L}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

then there exists $\sigma=\sigma(\Omega, \lambda, p) \in(0,1)$ such that for $s \in(\sigma, 1]$ uniqueness and nondegeneracy hold for

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

PROOF It follows by a standard contradiction argument, ... with some delicate points Assume by contradiction that (F) admits 2 nontrivial solutions u_{n} and v_{n}

$$
u_{n} \neq v_{n} \quad \text { for } \quad s=s_{n} \rightarrow 1^{-}
$$

- we show that, up to a subsequence

$$
\left.\begin{array}{ll}
u_{n} \rightarrow u & \text { in } L^{\infty}(\Omega) \\
v_{n} \rightarrow v & \text { as } s_{n} \rightarrow 1 \\
\text { in } L^{\infty}(\Omega) & \text { as } s_{n} \rightarrow 1
\end{array}\right\}
$$

where u, v are nontrivial positive solutions of (L)

SUBTLE ISSUE in the proof: the nonlocal-to-local transition

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Let u_{s} be a solution of (F). Then up to a subsequence

$$
u_{s} \rightarrow u \quad \text { in } L^{\infty}(\Omega) \quad \text { as } s \rightarrow 1^{-}
$$

where u is a (positive) solution of (L)
we need uniform-in-s a-priori bounds, for $s \sim 1$:
There exists $\sigma \in(0,1)$ and $C=C(\lambda, p, \Omega, \sigma)>0$ (independent on s) such that

$$
\left\|u_{s}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq C
$$

for any $s \in(\sigma, 1)$ and any solution u_{s} of (F)
Proof It relies on a blow-up argument.
Since the blow-up parameter is the Laplacian's exponent s, we need to control (as $s \rightarrow 1$) the constants which appear from regularity estimates.

Uniqueness for fractional asymptotically linear problems ($p \sim 1$)

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Theorem [Dieb, I., Saldaña]

Let $s \in(0,1)$. There exists $\delta=\delta(\Omega, \lambda, s)$ such that uniqueness and nondegeneracy hold for problem (F), if $p \in(1,1+\delta)$

THE END

THE END

Asymptotic characterization of positive solutions:
De Marchis, I. \& Pacella, J. Europ. Math. Soc. 2015
De Marchis, I. \& Pacella, J. Fix Point Th. Appl. 2017
De Marchis, Grossi, I. \& Pacella, Arch. der Math. 2018
Uniqueness of positive solutions in convex domains \& Morse index for 1-peak solutions:
De Marchis, Grossi, I. \& Pacella, J. Math. Pures Appl. 2019
Local uniqueness, non-degeneracy and Morse index for k-peaks, solutions, $\forall k \geq 1$
R Grossi, I., Luo \& Yan, J. Math. Pures Appl. 2022
國 I., Luo \& Yan, preprint
The fractional case
Dieb, I. \& Saldana, Nonlinear Analysis, to appear

THE END

Asymptotic characterization of positive solutions:
De Marchis, I. \& Pacella, J. Europ. Math. Soc. 2015
De Marchis, I. \& Pacella, J. Fix Point Th. Appl. 2017
De Marchis, Grossi, I. \& Pacella, Arch. der Math. 2018
Uniqueness of positive solutions in convex domains \& Morse index for 1-peak solutions:
De Marchis, Grossi, I. \& Pacella, J. Math. Pures Appl. 2019
Local uniqueness, non-degeneracy and Morse index for k-peaks, solutions, $\forall k \geq 1$
R Grossi, I., Luo \& Yan, J. Math. Pures Appl. 2022
國 I., Luo \& Yan, preprint
The fractional case
Dieb, I. \& Saldana, Nonlinear Analysis, to appear

Some open problems:

$$
\begin{cases}-\Delta u+\lambda u=u^{p} & \text { in } \Omega \subset \mathbb{R}^{N} \text { convex } \tag{L}\\ u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

- $N \geq 3$
- the case $\lambda \neq 0$ in $N=2$
- $p \in\left(1+\delta, p^{\star}\right)$, when $\lambda=0, N=2$

no quantitative information about δ and p^{\star}

Some open problems:

$$
\begin{cases}(-\Delta)^{s} u+\lambda u=u^{p} & \text { in } \Omega \tag{F}\\ u=0 & \text { on } \mathbb{R}^{N} \backslash \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

- $\Omega=B$, for any $s \in(0,1)$

