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Abstract
We introduce an analogue of the theory of length spaces into the setting of Lorentzian geom-
etry and causality theory. The rôle of the metric is taken over by the time separation function,
in terms of which all basic notions are formulated. In this way, we recover many fundamental
results in greater generality, while at the same time clarifying the minimal requirements for
and the interdependence of the basic building blocks of the theory. A main focus of this
work is the introduction of synthetic curvature bounds, akin to the theory of Alexandrov and
CAT(k)-spaces, based on triangle comparison. Applications include Lorentzian manifolds
with metrics of low regularity, closed cone structures, and certain approaches to quantum
gravity.

Keywords Length spaces · Lorentzian length spaces · Causality theory · Synthetic
curvature bounds · Triangle comparison ·Metric geometry
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1 Introduction

Metric geometry, and in particular the theory of length spaces, is a vast and very active
field of research that has found applications in diverse mathematical disciplines, such as
differential geometry, group theory, dynamical systems and partial differential equations. It
has led to identifying the “metric core” of many results in differential geometry, to clarifying
the interdependence of various concepts, and to generalizations of central notions in the
field to low regularity situations. In particular, the synthetic approach to curvature bounds
in the theory of Alexandrov spaces and CAT(k)-spaces has turned out to be of fundamental
importance (cf., e.g., [3,5,42]).

The purpose of this work is to lay the foundations for a synthetic approach to Lorentzian
geometry that is similar in spirit to the theory of length spaces and that, in particular, allows
one to introduce curvature bounds in this general setting. The motivation for our approach is
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very similar to that ofmetric geometry: ideally, it should identify theminimal requirements for
and the logical dependence among fundamental results of Lorentzian geometry and causality
theory, and in this way separate the essential concepts from various derived notions. Based on
this, one may extend the validity of these results to their natural maximal range, in particular
to settings where the Lorentzian metric is no longer differentiable, or even to situations
where there is only a causal structure not necessarily induced by a metric. Again in parallel
to the case of metric geometry, appropriate notions of synthetic (timelike or causal) curvature
bounds based on triangle comparison occupy a central place in this development, leading
to a minimal framework for Lorentzian comparison geometry. In the smooth case, triangle
comparison methods were pioneered by Harris [24] for the case of timelike triangles in
Lorentzianmanifolds and byAlexander andBishop [1] for the general semi-Riemannian case
and triangles of arbitrary causal character. The notions introduced in this paper are designed
to be compatible with these works, while at the same time introducing curvature bounds
even to settings where there is no curvature tensor available (due to low differentiability of
the metric or even the absence thereof). On the one hand, this makes it possible to establish
well-known results from metric geometry also in the Lorentzian setting (e.g., non-branching
of maximal curves in spaces with timelike curvature bounded below, cf. Theorem 4.12). On
the other hand, it provides a new perspective on genuinely Lorentzian phenomena, like the
push-up principle for causal curves, which in the present context appears as a consequence
of upper causal curvature bounds (see Sect. 4.5).

The rôle of the metric of a length space in the current framework will be played by the time
separation function τ , which will therefore be our main object of study. It is closely linked
to the causal structure of Lorentzian manifolds, and in fact for strongly causal spacetimes
it completely determines the metric by a classical result of Hawking, cf. the beginning of
Sect. 2.3. We will express all fundamental notions of Lorentzian (pre-)length spaces (such as
length and maximality of curves, curvature bounds, etc.) in terms of τ . It turns out that this
provides a satisfactory description of much of standard causality theory and recovers many
fundamental results in greater generality.

Apart from the intrinsic interest in a Lorentzian analogue of metric geometry, a main
motivation for this work is the necessity to consider Lorentzian metrics of low regularity.
This need is apparent both from the PDE point of view on general relativity, i.e., the initial
value problem for the Einstein equations, and from physically relevant models. In fact, the
standard local existence result for the vacuum Einstein equations [47] assumes the metric to
be of Sobolev regularity Hs

loc (with s > 5
2 ). Recently, the regularity of the metric has been

lowered even further (e.g., [28]). In many cases, spacetimes describing physically relevant
situations require certain restrictions on the regularity of the metric. In particular, modeling
different types ofmatter in a spacetimemay lead to a discontinuous energy-momentum tensor,
and thereby via the Einstein equations to metrics of regularity below C2 [34,39]. Prominent
examples are spacetimes thatmodel the inside and outside of a star or shockwaves. Physically
relevant models of even lower regularity include spacetimes with conical singularities and
cosmic strings (e.g., [55,56]), (impulsive) gravitational waves (see, e.g., [43], [23, Ch. 20]
and [45,46,52] for more recent works), and ultrarelativistic black holes (e.g., [2]).

There has in fact recently been a surge in activity in the field of low regularity Lorentzian
geometry and mathematical relativity. Some main trends in this branch of research are the
studies in geometry and causality theory for Lorentzian metrics of low regularity (see [12,48]
for results on continuous metrics and [29,30,36] for the C1,1-setting). Cone structures on
differentiable manifolds are another natural generalization of smooth Lorentzian geometry,
and several recent fundamental works have led to far-reaching extensions of causality theory,
see [10,18,37]. Another line of research concerns the extension of the classical singularity
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theorems of Hawking and Penrose to minimal regularity [19,31,32]. In fact, both spacetimes
withmetrics of low regularity and closed cone structures of certain types provide large natural
classes of examples within the theory of Lorentzian length spaces (cf. Sect. 5). Finally, we
mention the recent breakthroughs concerning the C0-inextendibility of spacetimes, pioneered
by Sbierski [49] in the case of the Schwarzschild solution to the Einstein equations, followed
by further investigations by various authors, cf. [14,21,22]. As we shall point out repeatedly
throughout this work, there are close ties between these works and the theory of Lorentzian
length spaces. More specifically, the follow-up work [20]

• introduces a notion of extendibility for Lorentzian (pre-)length spaces that reduces to
isometric embeddability in the particular case of spacetimes,

• gives a characterization of timelike completeness in terms of the time separation function,
• shows that timelike completeness in this sense implies inextendibility even in this general

setting, and
• for the first time, relates inextendibility to the occurrence of (synthetic) curvature singu-

larities.

This complements and extends the works cited above in several directions. In particular, both
the original spacetime and the extension are now allowed to be of low regularity and indeed
also non-manifold extensions can be considered.

There have been several approaches to give a synthetic or axiomatic description of (parts
of) Lorentzian geometry and causality. However, except the work of Busemann [11] they
were not in the spirit of metric geometry and length spaces. Moreover, triangle comparison
was never used in these settings. In particular, Busemann—a pioneer of length spaces—
introduced so-called timelike spaces in [11], but his approach was too restrictive to even
capture all smooth (globally hyperbolic) Lorentzian manifolds. Another closely related work
is due to Kronheimer and Penrose [27], who studied the properties and interdependences
of the causal relations in complete generality. Similar in spirit, Sorkin and Woolgar [54]
established that using order-theoretic and topological methods one can extend specific results
from causality theory to spacetimes with continuous metrics. On the other hand, Martin and
Panangaden showed in [38] how one recovers a spacetime from just the causality relations
in an order-theoretic manner, thereby indicating applications to quantum gravity. For this
reason, Lorentzian (pre-)length spacesmight provide a fundamental framework to approaches
to quantum gravity, as outlined in Sect. 5.3. In a series of works, Borchers and Sen [7–9]
describe an approach to causality via an axiomatic notion of light rays corresponding to
null geodesics. Finally, and very relevant to the goals of this paper, Sormani and Vega [53]
have recently introduced a metric structure on (smooth) spacetimes via what they call a
null distance function. It is defined as the infimum over null lengths, which in turn are
total variations of a time function along concatenations of (future or past-directed) causal
curves. The null distance provides a conformally invariant pseudo-metric, and under some
natural assumptions on the spacetime even a definite distance function inducing the manifold
topology. This leads to an alternative starting point for studying metric geometry in the
Lorentzian setting.

The plan of the paper is as follows: In the remainder of this section, we fix some
basic notions used throughout this work. Section 2 introduces the fundamental causal and
chronological relations, the definition of Lorentzian pre-length spaces in terms of a lower
semicontinuous time separation function, and the associated topological notions. It also
includes the fundamentals of causal curves. To obtain a satisfying causality theory close to
that of smooth spacetimes, more structure is required. This leads, in Sect. 3, to the notion
of Lorentzian length space. We show that in this setting, most of standard causality theory
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remains intact, including limit curve theorems, push-up principles for causal curves, (a signif-
icant part of) the causal ladder and the Avez–Seifert theorem for globally hyperbolic spaces.
We also introduce a synthetic notion of regularity for Lorentzian pre-length spaces. Section
4 is devoted to synthetic curvature bounds in terms of triangle comparison. Time separa-
tion in timelike and causal geodesic triangles is compared with corresponding quantities in
Lorentzianmodel spaces of constant curvature. In the smooth case, this is compatible with the
Toponogov-type results of Alexander and Bishop [1]. Applications include a non-branching
theorem for timelike curves in spaces with timelike curvature bounded below (Theorem 4.12)
and a new interpretation of length-increasing push-up in terms of upper bounds on causal
curvature (Theorem 4.18). We then go on to defining synthetic curvature singularities and
show that the central singularity of the interior Schwarzschild solution can be detected via
timelike triangle comparison. The final Sect. 5 provides an in-depth study of probably the
most important class of examples, namely continuous Lorentzian metrics. Apart from iden-
tifying Lorentzian length spaces among continuous spacetimes, we also derive several new
results on continuous causality theory in this section. In addition, we consider closed cone
structures following the recent fundamental work of Minguzzi [37] and give a brief outlook
on potential applications in certain approaches to quantum gravity, namely causal Fermion
systems and the theory of causal sets.

To conclude this introduction, we introduce some basic notions and fix notations. For
terminology from or motivated by causality theory, we will follow the standard texts [4,13,
40,41], see also [12] for the case of continuous Lorentzian metrics. We will usually only
formulate the future-directed case of our results, with the understanding that there always is
an analogous past-directed statement.

Among the main applications of the theory developed here will be spacetimes (M, g),
where M is a differentiable manifold and g is a continuous or smooth Lorentzian metric. We
always assume that (M, g) is time-oriented (i.e., there is a continuous timelike vector field
on M) and we fix a smooth (without loss of generality) complete Riemannian metric h on
M , denoting the induced metric by dh .

Recall that for (continuous) Lorentzianmetrics g, ĝ onM , g ≺ ĝ is defined as the property
that the light cones of ĝ are strictly wider than those of g, i.e., if a nonzero vector is causal
for g then it is timelike for ĝ. Additionally, we also use the non-strict version, i.e., we mean
by g � ĝ that every g-causal vector is causal for ĝ.

Causal curves in spacetimes are locally Lipschitz continuous curves γ : I → M with
g(γ̇ , γ̇ ) ≤ 0 almost everywhere. Analogously for timelike and null curves and their time
orientation.

2 Basics

2.1 Causal relations

We start our analysis by introducing a slightly more general notion of causal spaces, as
compared to [27].

Definition 2.1 Let X be a set with a reflexive and transitive relation ≤ (a pre-order) and�
a transitive relation contained in ≤ (i.e., �⊆≤, or more explicitly: If x � y then x ≤ y).
Then, (X ,�,≤) is called a causal space. We write x < y if x ≤ y and x �= y.

Example 2.2 Any spacetime with a continuous metric and the usual causal relations (e.g.,
x � y if there is a future-directed timelike curve from x to y) is a causal space. Contrary
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Fig. 1 Graph for Example 2.5

to [27], we do not require any causality condition to hold. Thus, also the Lorentz cylinder
M = S11 ×R [41, Example 5.35] is an example, and in this case�=≤= M ×M . We will
study spacetimes with continuous metrics in greater detail in Sect. 5.1.

Definition 2.3 (Futures and pasts) For x ∈ X define

(i) I+(x) := {y ∈ X : x � y} and I−(x) := {y ∈ X : y � x},
(ii) J+(x) := {y ∈ X : x ≤ y} and J−(x) := {y ∈ X : y ≤ x}.

2.2 Topologies on causal spaces

On a causal space, one can define two natural topologies as follows. Let (X ,�,≤) be a
causal space. For x, y ∈ X define I (x, y) := I+(x) ∩ I−(y) ⊆ X .

Definition 2.4 (Topologies on (X ,�,≤)) Let (X ,�,≤) be a causal space.

(i) Define a topologyA on X by using S := {I (x, y) : x, y ∈ X} as a subbase. We call this
topology the Alexandrov topology on X with respect to�.

(ii) Define a topology I on X by using P := {I±(x) : x ∈ X} as a subbase. We call this
topology the chronological topology on X .

Example 2.5 (S and P are not bases for topologies) In general, the sets S and P do not form
bases for topologies as this simple example shows. Let X = {1, . . . , 7} and let � be given
via the graph (Fig. 1) (e.g., 1 � 7 etc.). This is a transitive and irreflexive relation.

Then:

(i) The point 1 is not covered by any I (x, y) for x, y ∈ X , thus S does not cover X .
(ii) Although P does cover X , it does not have the second property required for a basis:

I+(1) ∩ I−(2) = {6, 7}, but there is no x ∈ X such that 7 ∈ I±(x) ⊆ {6, 7}.
Remark 2.6 Note that in general the future and past I±(x) is not open with respect to A. As
an example, take X = {1, 2}with�:= {(1, 2)}, then S = {∅} henceA = {∅, X} is the trivial
topology and I+(1) = {2}.
Proposition 2.7 The chronological topology I is finer than the Alexandrov topologyA. Con-
sequently, amap from X into a topological space Y that isA-continuous is also I-continuous.
In particular, for Y = [0,∞] the same holds for semicontinuous maps.
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Proof The Alexandrov topology A is the coarsest topology containing S and thus since I
contains S we have A ⊆ I. �
The example in 2.6 shows that in general I is strictly finer than A. In that case A = {∅, X}
and I is the discrete topology.

In what follows we will not work directly with one of these topologies, but mainly use
them for comparison. Instead, we will assume that the causal space X also comes with the
structure of a metric space.

2.3 Lorentzian pre-length spaces

We now introduce the central object of our study, namely the time separation function τ ,
in terms of which all subsequent concepts will be formulated. While it is evident that in
the smooth setting τ is closely linked to the causal structure, it is worth noting that by a
classical result due to Hawking et al. [25] for strongly causal spacetimes it in fact completely
determines the metric, (cf. [40, Prop. 3.34] or [4, Thm. 4.17]).

Definition 2.8 Let (X ,�,≤) be a causal space and d ametric on X . Let τ : X×X → [0,∞]
be a lower semicontinuous map (with respect to the metric topology induced by d) that
satisfies

τ(x, z) ≥ τ(x, y) + τ(y, z), (1)

for all x, y, z ∈ X with x ≤ y ≤ z. Moreover, suppose that τ(x, y) = 0 if x � y and
τ(x, y) > 0 ⇔ x � y. Then, (X , d,�,≤, τ ) is called a Lorentzian pre-length space, and
τ is called the time separation function.

Since we now use the metric d on X , all topological notions refer to the metric topology D
induced by d , unless specified otherwise.

Remark 2.9 It would be logically possible to introduce Lorentzian pre-length spaces based
only on a set endowed with a pre-order ≤ and then define the timelike relation � via
x � y :⇔ τ(x, y) > 0. However, we prefer to view this condition as a form of com-
patibility between the time separation function and the causal space. For an example where
this compatibility is violated see Example 5.2.

Lemma 2.10 (Push-up) Let (X , d,�,≤, τ ) be a Lorentzian pre-length space and let
x, y, z ∈ X with x ≤ y � z or x � y ≤ z. Then, x � y.

Proof Let x ≤ y � z or x � y ≤ z. Then, τ(x, z) ≥ τ(x, y) + τ(y, z) > 0, which implies
x � z. �
Example 2.11 Let (M, g) be a smooth spacetime with its canonical causal relations� and≤.
Then, by Example 2.2 (M,�,≤) is a causal space. The (classical) time separation function τ

is lower semicontinuous with respect to the manifold topology [41, Lemma 14.17], which is
induced by any Riemannian metric h on M and its associated metric dh . Moreover, τ satisfies
the reverse triangle inequality (1) and τ(p, q) > 0 ⇔ p � q , thus (M, dh,�,≤, τ ) is a
Lorentzian pre-length space. Note that, in general, for a spacetime with a continuous metric
the time separation function τ need not be lower semicontinuous, cf. Example 5.2.

We will establish some basic facts about Lorentzian pre-length spaces below.
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Lemma 2.12 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space and x ∈ X. Then, I±(x)
is open.

Proof We establish this fact only for I+(x), the case for I−(x) works in complete analogy.
Let y ∈ I+(x), so x � y and thus τ(x, y) > 0. By the lower semicontinuity of τ(x, .), there
is a neighborhoodU of y such that τ(x, z) >

τ(x,y)
2 > 0 for all z ∈ U . Consequently, x � z

and thus y ∈ U ⊆ I+(x). �
Proposition 2.13 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space. Then, the relation
� is an open subset of X × X.

Proof Clearly,�= {(x, y) ∈ X × X : τ(x, y) > 0}, which is open by the lower semiconti-
nuity of τ . �
Proposition 2.14 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space. Then, for every x ∈
X either τ(x, x) = 0 or τ(x, x) = ∞. Moreover, if τ(x, y) ∈ (0,∞), then τ(y, x) = 0.

Proof Let x ∈ X with τ(x, x) < ∞. By the reflexivity of ≤, we have x ≤ x ≤ x and
thus by the reverse triangle inequality we have τ(x, x) + τ(x, x) ≤ τ(x, x), which implies
that τ(x, x) ≤ 0 and so τ(x, x) = 0. Finally, let 0 < τ(x, y) < ∞ and suppose that
τ(y, x) > 0. Then, x � y � x , which implies x � x and by the above τ(x, x) = ∞. But
then τ(x, x) + τ(x, y) ≤ τ(x, y) < ∞ gives a contradiction. �
Remark 2.15 The above proposition shows that a set X with a transitive relation � that is
not irreflexive (i.e., x � x for some x) cannot have a finite valued time separation function
with respect to � (and any transitive and reflexive relation ≤ on X containing �). In fact,
x � x implies τ(x, x) > 0, but by the above τ(x, x) ≤ 0, if τ were finite valued.

Example 2.16 A finite directed graph (V , E) can be given the structure of a Lorentzian pre-
length space. Here, X is any finite set, V ⊆ X is the set of vertices, and E ⊆ V × V
is the (directed) set of edges, i.e., (x, y) ∈ E if and only if there is an edge from x to y.
Now define x � y if (x, y) ∈ E and x ≤ y if x � y or x = y. This gives a causal
space (V ,�,≤), where � is irreflexive if and only if (V , E) is a directed acyclic graph.
Define τ(x, y) := sup{|C | : C a directed subgraph from x to y}, if such a subgraph exists
and |C | denotes its (finite) cardinality; otherwise set τ(x, y) := 0. Since the only metrizable
topology on a finite set is the discrete topology, we let d be the discrete metric on V . Thus, τ is
continuous and it satisfies the reverse triangle inequality (1). This yields that (V , d,�,≤, τ )

is a Lorentzian pre-length space.
Note that since the topology is discrete, the space is totally disconnected, and hence, there

are no causal curves (cf. Definition 2.18). Causal curves will be essential in the development
of the theory of Lorentzian length spaces, and it will be a requirement on such spaces that
causally related points can be connected by a (non-constant) continuous causal curve (cf.
Definition 3.1). This rules out finite and, in fact, countable Lorentzian length spaces, as the
only metrizable topology in these cases is totally disconnected. Thus, the situation is the
same as for length spaces—they are path connected and hence cannot be countable.

This example is closely related to the theory of causal sets, an approach to quantum
gravity, see Sect. 5.3.

2.4 Topologies on Lorentzian pre-length spaces

We want to relate the two natural topologies I and A to the given metric topology D.
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One can see from the proof of Lemma 2.12 that the only property used for the topology is
that τ be semicontinuous with respect to it. Thus, if one has a function τ : X × X → [0,∞]
that satisfies the properties of a time separation function (as in Definition 2.8) except that it is
lower semicontinuous with respect toA (and not necessarily with respect to d), then I±(x) is
A-open for every x ∈ X . Consequently, A is finer than I and so by Proposition 2.7 we have
I = A. On the other hand, the metric topology D is finer than both these topologies since
by the extension of Lemma 2.12 mentioned above I±(x) and I+(x)∩ I−(y) areD-open for
every x, y ∈ X . This yields that

(i) in an “A-Lorentzian pre-length space” (i.e., τ lower semicontinuous with respect to A)
we have A = I and thus

(ii) every “A-Lorentzianpre-length space” is also an “I-Lorentzianpre-length space”,which
is also a Lorentzian pre-length space (since if τ is lower semicontinuous with respect to
I, then it is lower semicontinuous with respect to D).

Summing up, by using the additional freedom via the metric d we (possibly) enlarge the
number of Lorentzian pre-length spaces, as can be seen from the example below.

Example 2.17 In light of Remark 2.6 and the above, we know that there cannot be a time
separation function τ on (X = {1, 2},�= {(1, 2)},≤= X×X) that is lower semicontinuous
with respect toA. This can be also seen directly from the fact that a prospective time separation
function τ would need to satisfy τ(1, 1) = τ(2, 2) = τ(2, 1) = 0 and τ(1, 2) > 0. However,
the onlyA-open sets in X × X are ∅ and X × X and thus {(x, y) ∈ X × X : τ(x, y) > 0} =
{(1, 2)} is not A-open (which would be required if τ were A-lower semicontinuous).

2.5 Causal curves

At this point, we introduce timelike, causal and null curves, which will be defined via the
corresponding relations. One has to note that even in the case of a smooth spacetime the class
of timelike or causal curves obtained in this way differs in general from the class of timelike
or causal curves defined in the usual way (via the causal character of the tangent vector). If
one assumes additionally that a smooth spacetime is strongly causal then the classes of causal
curves are the same. On the other hand, the classes of timelike curves are still different in
general. Thiswill be discussed inmore detail in Example 2.20. It will, however, not be an issue
since we are mainly interested in the length of curves and strong causality ensures that the
lengths are unchanged, see Proposition 2.32. A causal curve is non-constant by definition but
it could be constant on some interval, contrary to causal curves in a spacetime. However, even
such curves can be parametrized with respect to d-arclength, see [42, Prop. 1.2.2, Cor. 1.2.6].

Definition 2.18 Let I ⊆ R be an interval. A non-constant curve γ : I → X is called future-
directed causal (timelike) if γ is locally Lipschitz continuous (with respect to d) and for
all t1, t2 ∈ I , t1 < t2 we have that γ (t1) ≤ γ (t2) (γ (t1) � γ (t2)). Furthermore, a future-
directed causal curve is called null if no two points on the curve are related with respect to
�. Analogous notions are introduced for past-directed curves.

Note that if d is the discrete metric on X , then there are no causal curves, since in this case
(X , d) is totally disconnected and any continuous curve is constant.

Lemma 2.19 Let γ : [a, b] → X be a causal curve, then γ is Lipschitz continuous and
d-rectifiable.

123



Annals of Global Analysis and Geometry (2018) 54:399–447 407

Proof Since the domain of γ is compact, local Lipschitz continuity implies Lipschitz conti-
nuity, which in turn implies d-rectifiability. �

Let us now investigate the relationship of the different notions of causal and timelike
curves for the case of continuous or smooth spacetimes.

Example 2.20 Let (M, g) be the Lorentz cylinder (cf. Example 2.2), then since � = ≤ =
M × M , every non-constant, locally Lipschitz continuous curve is timelike and causal in
the sense of Definition 2.18. Consequently, there are no null curves (again in the sense of
Definition 2.18). Thus, this class of timelike and causal curves is larger than the usual class
of timelike and causal curves. We will clarify the precise relationship in Lemma 2.21.

In the following result (and thereafter), when comparing the notions of causal curves in
the present setting with the standard definition in spacetimes, it will always be understood
that parametrizations are chosen in which the respective curves are never locally constant
(cf. [3, Ex. 2.5.3]).

Lemma 2.21 Let (M, g) be a spacetimewith a continuousmetric. For clarity, we call timelike
and causal curves in the sense of Definition 2.18 R-timelike and R-causal, respectively.

(i) A causal/timelike curve is an R-causal/R-timelike curve.
(ii) If (M, g) is a smooth, strongly causal [41, Def. 14.11] spacetime, then the notions of

causal, R-causal and continuous causal curves [57, p. 192f.] coincide.
(iii) If (M, g) is a smooth, strongly causal spacetime, then a locally Lipschitz continuous

curve is an R-timelike curve if and only if it is a continuous timelike curve [57, p. 192f.].
However, in general the tangent vector of such a curve is only causal almost everywhere,
as can be seen from Example 2.22.

Proof Let γ : I → M be a locally Lipschitz continuous curve.

(i) Without loss of generality, let γ be a future-directed causal/timelike curve. Let t1, t2 ∈ I
with t1 < t2, then γ is a future-directed causal/timelike curve from γ (t1) to γ (t2); hence,
γ is R-causal/R-timelike.

(ii) Without loss of generality, let γ be a future-directed R-causal curve and let t0 ∈ I .
Let U be a convex neighborhood of γ (t0), and let V ⊆ U be a neighborhood of γ (t0)
such that every causal curve with endpoints in V is contained in U . Let t1, t2 ∈ I such
that γ (t1), γ (t2) ∈ V ; hence, γ ([t1, t2]) ⊆ U and consequently γ (t2) ∈ J+(γ (t1),U ),
where J+(γ (t1),U ) denotes the set of all points which can be reached from γ (t1) by a
Lipschitz continuous future-directed causal curve contained in U . This is the same set
as constructed via piecewise smooth causal curves (cf. [33, Prop. 2.3], [44, Fig. 44], and
[13, Cor. 2.4.11] for the Lipschitz case). This establishes that γ is a continuous causal

curve. Moreover, by [41, Lemma 14.2(1)],
−−−−−−→
γ (t1)γ (t2) = exp−1

γ (t1)
(γ (t2)) is causal.

Consequently, at any t0 where γ is differentiable,

γ̇ (t0) = lim
h→0

1

h

−−−−−−−−−→
γ (t0)γ (t0 + h)

is causal, so γ is a future-directed causal curve.
(iii) That any R-timelike γ is a future-directed continuous timelike curve again follows as

in point (i) by applying [13, Cor. 2.4.11]. The converse is clear.

�
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In fact, as we shall see in Proposition 5.9, the conclusion of Lemma 2.21 (ii) can be
extended to continuous spacetimes.

Example 2.22 Denote byR
n
1 the n-dimensionalMinkowski spacetime and define γ : R → R

3
1

by γ (t) = (t, cos(t), sin(t)) for t ∈ R. Then, γ is a future-directed null curve, but every
two points on the curve can be joined by a timelike curve, given by the straight line s �→
γ (t1) + sv (s ∈ [0, 1]), where t1 < t2 and v := γ (t2) − γ (t1) is future-directed timelike.
This shows that γ is timelike in the sense of Definition 2.18 and hence by Lemma 2.21 (iii)
it is also a continuous timelike curve. This may be viewed as a caveat concerning the notion
of continuous timelike curves as introduced in [57, p. 192f.].

Remark 2.23 The above considerations exemplify the fact that our notion of timelike curves
corresponds to maps from intervals in R into X that preserve the chronal order, hence could
be called isochronal, while null curves correspond to achronal curves. However, we feel that
the danger of confusion is rather low and have therefore opted for the above, more intuitive,
definitions.

We now introduce the length of a causal curve via the time separation function τ .

Definition 2.24 Let γ : [a, b] → X be a future-directed causal curve, then we define its
τ -length by

Lτ (γ ) := inf

{
N−1∑
i=0

τ(γ (ti ), γ (ti+1)) : N ∈ N, a = t0 < t1 < · · · < tN = b

}
, (2)

and analogously if γ is a past-directed causal curve.

Lemma 2.25 Let γ : [a, b] → X be a future-directed causal curve and c ∈ (a, b). Then,

Lτ (γ ) = Lτ (γ |[a,c]) + Lτ (γ |[c,b]). (3)

Proof A partition of [a, c] and a partition of [c, b] give naturally a partition of [a, b], hence
Lτ (γ ) ≤ Lτ (γ |[a,c]) + Lτ (γ |[c,b]). On the other hand, given a partition a = t0 < t1 <

· · · < tN = b of [a, b], we have to consider two cases. The first case is when there is a
k ∈ {1, . . . , N } such that tk = c. Consequently, (ti )ki=0 is a partition of [a, c], and (ti )Ni=k is
a partition of [c, b]. Thus,

Lτ (γ |[a,c])+ Lτ (γ |[c,b]) ≤
N−1∑
i=0

τ(γ (ti ), γ (ti+1)). (4)

If there is no such k, then define j := max{1 ≤ i ≤ N : ti < c}. Then, (ti )
j
i=0 ∪ {c} is a

partition of [a, c] and {c} ∪ (ti )Ni= j is a partition of [c, b]. Hence,

Lτ (γ |[a,c]) + Lτ (γ |[c,b]) ≤
j−1∑
i=0

(
τ(γ (ti ), γ (ti+1))

)
+ τ(γ (t j ), γ (c))

+ τ(γ (c), γ (t j+1))+
N−1∑
i= j+1

(
τ(γ (ti ), γ (ti+1))

)

≤
N−1∑
i=0

τ(γ (ti ), γ (ti+1)),
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where in the last inequalitywe used the reverse triangle inequality. Taking now the infimum
over all partitions of [a, b], we obtain Lτ (γ |[a,c]) + Lτ (γ |[c,b]) ≤ Lτ (γ ). �
Definition 2.26 By a reparametrization of a future-directed causal curve γ : [a, b] → X , we
mean a future-directed causal curve λ : [c, d] → X with γ = λ◦φ, where φ : [a, b] → [c, d]
is continuous and strictly monotonically increasing.

Note that implicit in this definition is the assumption that λ ◦ φ is Lipschitz continuous and
observe that the inverse of such a φ is also strictly monotonically increasing and continuous.

Lemma 2.27 A reparametrization does not change the causality, i.e., the causal character is
the same (timelike, null, causal).

Proof Let γ = λ ◦ φ : [a, b] → X be a (without loss of generality) future-directed causal
(timelike or null) curve and its reparametrization given via φ : [a, b] → [c, d]. Then, λ is
causal (timelike or null). To see this, let c ≤ s1 < s2 ≤ d . Since φ−1 is strictly monotonically
increasing we have that t1 := φ−1(s1) < φ−1(s2) =: t2 and thus λ(s1) = γ (t1) ≤ γ (t2) =
λ(s2) (λ(s1) � λ(s2) or λ(s1) �� λ(s2)). �
Lemma 2.28 The τ -length is reparametrization invariant.

Proof Let γ : [a, b] → X be a future-directed causal curve and λ : [c, d] → X a
reparametrization of γ given via φ : [a, b] → [c, d] (i.e., γ = λ ◦ φ). Let a = t0 < t1 <

· · · < tN = b be a partition of [a, b]. This yields a partition c = t ′0 < t ′1 < · · · < t ′N = d via
t ′i := φ(ti ). Consequently, we have

Lτ (λ) ≤
N−1∑
i=0

τ(λ(t ′i ), λ(t ′i+1)) =
N−1∑
i=0

τ(λ(φ(ti )), λ(φ(ti+1)))

=
N−1∑
i=0

τ(γ (ti ), γ (ti+1)).

Now taking the infimum over all partitions of [a, b] yields Lτ (λ) ≤ Lτ (γ ) and thus by
symmetry also Lτ (γ ) ≤ Lτ (λ). �
Definition 2.29 A future-directed causal curve γ : [a, b] → X is called rectifiable if
Lτ (γ |[t1,t2]) > 0 for all a ≤ t1 < t2 ≤ b.

Lemma 2.30 A rectifiable causal curve is timelike.

Proof Let γ : [a, b] → X be a future-directed rectifiable causal curve. Then, for a ≤ t1 <

t2 ≤ b we have 0 < Lτ (γ |[t1,t2]) ≤ τ(γ (t1), γ (t2)). Thus, γ (t1) � γ (t2) and γ is timelike.
�

Example 2.31 (A timelike curve with τ -length zero, hence non-rectifiable) Let γ : R → R
3
1,

γ (t) = (t, cos(t), sin(t)) (t ∈ R) be the timelike curve given in Example 2.22. Let t1 < t2
and let t1 = s0 < s1 < · · · < sk = t2 be a partition of [t1, t2]. Then Lτ (γ |[t1,t2]) ≤∑k−1

i=0 τ(γ (si ), γ (si+1)) = ∑k−1
i=0 (−η(vi , vi )), where vi := γ (si+1) − γ (si ) and η is the

Minkowski metric. It is not hard to see that 0 < −η(vi , vi ) = (si+1−si )2−2(1−cos(si+1−
si )) ≤ (si+1−si )4

12 + 2(si+1−si )6

6! → 0, for si+1 − si → 0. Consequently, for ε > 0 one can

choose a partition of [t1, t2]withmesh-size δ sufficiently small such that
∑k−1

i=0 (−η(vi , vi )) ≤
k( δ4

12 + 2δ6
6! ) < ε, which shows that Lτ (γ ) = 0. This is a direct proof for this specific curve

of the general fact that for smooth and strongly causal spacetimes the τ -length agrees with
the length given by the norm, which we establish in the following proposition.
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Proposition 2.32 Let (M, dh,�,≤, τ ) be the Lorentzian pre-length space induced by the
smooth spacetime (M, g), seeExample2.11.Moreover, denote by Lg(γ ) = ∫ b

a

√−g(γ̇ , γ̇ ) dt
the length of a causal curve γ : [a, b] → M with respect to g. If (M, g) is strongly causal,
then Lτ (γ ) = Lg(γ ).

Proof ByLemma2.21 (i)we know that the notions of causal curves coincide. Letγ : [a, b] →
M be a future-directed causal curve. Let a = t0 < t1 < · · · < tN = b be a partition of [a, b],
then

Lg(γ ) =
N−1∑
i=0

Lg(γ |[ti ,ti+1]) ≤
N−1∑
i=0

τ(γ (ti ), γ (ti+1)).

Taking now the infimum over all partitions of [a, b], we obtain Lg(γ ) ≤ Lτ (γ ).
Let t ∈ [a, b] such that γ̇ (t) exists and is future-directed causal and set e :=

expγ (t) : Ũ
∼=−→ U , where U is a convex neighborhood of γ (t) such that e is a diffeo-

morphism from Ũ := e−1(U ) ontoU . Let V ⊆ U be a neighborhood of γ (t) such that every
causal curvewith endpoints inV is contained inU and let δ > 0 be such that γ ([t, t+δ]) ⊆ V .
Then, we obtain for 0 < h < δ

1

h
τ(γ (t), γ (t + h)) = ‖ 1

h
e−1(γ (t + h))‖,

where ‖.‖ = √|g(., .)|. Thus, taking the limit h ↘ 0 we get

lim
h↘0

τ(γ (t), γ (t + h))

h
=

∥∥∥ d

dh

∣∣∣
0
e−1(γ (t + h))

∥∥∥ = ‖(T0expγ (t))
−1(γ̇ (t))‖ = ‖γ̇ (t)‖, (5)

where we used that T0 expγ (t) = id and that e−1 ◦γ is differentiable at t , and so the one-sided
derivative agrees with the derivative. Furthermore,

τ(γ (t), γ (t + h))

h
≥ 1

h
Lτ (γ |[t,t+h]) ≥ 1

h
Lg(γ |[t,t+h]) = 1

h

∫ t+h

t
‖γ̇ (s)‖ds,

where we used the above (Lτ ≥ L). Now the left hand side goes to ‖γ̇ (t)‖ as h ↘ 0 by (5)
and obviously so does the right hand side. Consequently, limh↘0

1
h Lτ (γ |[t,t+h]) = ‖γ̇ (t)‖ as

well. Finally, we obtain for any segment of γ that is contained in such a convex neighborhood
U , say γ ([t0, t1]) ⊆ U and almost all t in [t0, t1] that

D+(t �→ Lτ (γ |[t0,t])) = ‖γ̇ (t)‖, (6)

where D+ denotes the right-sided derivative.
We now establish that φ : [t0, t0+δ] → [0,∞) given by φ(t) := Lτ (γ |[t0,t]) is absolutely

continuous. Let ([ai , bi ])Ni=1 be a collection of non-overlapping intervals in [t0, t0 + δ] with∑N
i=1(bi − ai ) < α, α to be given later. Then, we calculate

N∑
i=1

|φ(bi ) − φ(ai )| =
N∑
i=1

Lτ (γ |[ai ,bi ]) ≤
N∑
i=1

τ(γ (ai ), γ (bi )) =: (∗),

where we used that φ is monotonically increasing (cf. Lemma 3.33) and that Lτ is additive
by Lemma 2.25. In the convex neighborhood U , we know that for p < q with p, q ∈ V ,
the maximal causal curve joining p and q is contained in U and its length is given by
‖
(p, q)‖. Here 
 := E−1 : U × U → T M is a diffeomorphism onto its image and
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E(v) = (π(v), exp(v)) for v ∈ T M in the domain of E , cf. [41, Lemma 5.9]. This implies
that

(∗) ≤
N∑
i=1

‖
(γ (ai ), γ (bi ))‖ ≤ C
N∑
i=1

‖
(γ (ai ), γ (bi ))‖2 =: (∗∗),

for some constant C (depending only on g and U ), where ‖.‖2 denotes the Euclidean
norm in these coordinates. Since 
(p, .) is smooth, it is locally Lipschitz continuous, and
since 
(p, p) = 0 for all p ∈ U we get ‖
(γ (ai ), γ (bi ))‖2 = ‖
(γ (ai ), γ (bi )) −

(γ (ai ), γ (ai ))‖2 ≤ C ′‖γ (ai ) − γ (bi )‖2 ≤ C̃(bi − ai ). In the last inequality, we used
the Lipschitz continuity of γ . Finally, we get for ε > 0 and 0 < α < ε

CC̃
that

(∗∗) ≤ CC̃
N∑
i=1

(bi − ai ) < CC̃α < ε,

establishing the absolute continuity of φ. It follows that there exists a subset of full measure
in [t0, t0+δ] onwhich φ is differentiable andwhere its derivative is given by (6). This enables
us to apply the Fundamental Theorem of Calculus to obtain

Lτ (γ |[t0,t1]) =
∫ t1

t0

d

ds
Lτ (γ |[t0,s])ds =

∫ t1

t0
‖γ̇ (s)‖ds = Lg(γ |[t0,t1]).

Covering γ ([a, b])with finitely many such neighborhoods V and using the additivity of both
Lτ (Lemma 2.25) and L yields Lτ (γ ) = Lg(γ ). �

2.6 Maximal causal curves

Definition 2.33 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space. A future-directed
causal curve γ : [a, b] → X is maximal if Lτ (γ ) = τ(γ (a), γ (b)), and analogously for
past-directed causal curves.

A note on terminology is in order here: According to the above definition, a maximal curve γ

is a time separation realizing curve. Any such γ is also maximal in the following sense: Let
σ be another causal curve connecting p = γ (a) and q = γ (b) with Lτ (σ ) ≥ Lτ (γ ). Then,
Lτ (σ ) = Lτ (γ ): In fact, by the definition of τ -length we have Lτ (σ ) ≤ τ(p, q) = Lτ (γ ).
For Lorentzian length spaces (see Sect. 3) both notions of maximality in fact coincide.

Proposition 2.34 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space.

(i) A null curve is always maximal on any compact interval.
(ii) A maximal curve is maximal on any subinterval.
(iii) If a maximal curve is timelike then it is rectifiable.

Proof Let γ : [a, b] → X be a future-directed causal curve.

(i) Let γ be null. Then, for all a ≤ t1 < t2 ≤ b we have τ(γ (t1), γ (t2)) = 0, which
implies Lτ (γ ) = 0. Thus, Lτ (γ ) = 0 = τ(γ (a), γ (b)) and γ is maximal.

(ii) Let γ be maximal and a ≤ c < d ≤ b a subinterval. Assume that γ is not maximal on
[c, d], i.e., Lτ (γ |[c,d]) < τ(γ (c), γ (d)). Then by Lemma 2.25 and the reverse triangle
inequality, we get

τ(γ (a), γ (b)) = Lτ (γ ) = Lτ (γ |[a,c]) + Lτ (γ |[c,d]) + Lτ (γ |[d,b])
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< Lτ (γ |[a,c]) + τ(γ (c), γ (d)) + Lτ (γ |[d,b])
≤ τ(γ (a), γ (c)) + τ(γ (c), γ (d)) + τ(γ (d), γ (b))

≤ τ(γ (a), γ (b)).

This is a contradiction, thus establishing that γ is maximal on [c, d].
(iii) Let γ be timelike. Then, for all a ≤ t1 < t2 ≤ b we have 0 < τ(γ (t1), γ (t2)) =

Lτ (γ |[t1,t2]). Thus, γ is rectifiable.

�

2.7 Causality conditions

Definition 2.35 A causal space (X ,�,≤) is called

(i) chronological if the relation� is irreflexive, i.e., x �� x for all x ∈ X , and
(ii) causal if the relation ≤ is a partial order, i.e., x ≤ y and y ≤ x implies that x = y for

all x, y ∈ X .

A Lorentzian pre-length space (X , d,�,≤, τ ) is called
(iii) non-totally imprisoning if for every compact set K � X there is a C > 0 such that the

d-arclength of all causal curves contained in K is bounded by C ,
(iv) strongly causal if the Alexandrov topology A agrees with the metric topology D (and

hence also with the chronological topology I), and
(v) globally hyperbolic if (X , d,�,≤, τ ) is non-totally imprisoning and for every x, y ∈ X

the set J+(x) ∩ J−(y) is compact in X .

Remark 2.36 Causality does not imply chronology in general as can be seen from the simple
example: X := {∗}, �:=≤:= {(∗, ∗)}. Clearly, both � and ≤ are transitive and reflexive;
hence, (X ,�,≤) is not chronological, but it is causal.

Definition 2.37 A causal space (X ,�,≤) is called interpolative if for all x, y ∈ X with
x � y there is a z ∈ X such that x � z � y and x �= z �= y.

Lemma 2.38 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space. Then,

(i) if (X , d,�,≤, τ ) is causal and interpolative it is chronological,
(ii) if (X , d,�,≤, τ ) is chronological then the time separation function τ is zero on the

diagonal, i.e., τ(x, x) = 0 for all x ∈ X, and
(iii) if (X , d,�,≤, τ ) is strongly causal, then for all x ∈ X, for every neighborhood U of

x, there is a neighborhood V ⊆ U of x such that for every causal curve γ : [a, b] → X
with γ (a), γ (b) ∈ V one has γ ([a, b]) ⊆ U (i.e., the usual definition of strong causality
for spacetimes).

Proof (i) Assume that there is an x ∈ X such that x � x . Then, since (X , d,�,≤, τ ) is
interpolative there is a z ∈ X such that x � z � x and x �= z. This implies x ≤ z ≤ x
and since ≤ is a partial order x = z—a contradiction.

(ii) This follows from τ(x, x) > 0 ⇔ x � x for all x ∈ X .
(iii) Let x ∈ X and letU be a neighborhood of x . Then, sinceA = D there is a V ∈ A such

that x ∈ V and V ⊆ U . We may assume that V = (I+(x1)∩ I−(y1))∩· · ·∩ (I+(xn)∩
I−(yn)) for some x1, y1, . . . , xn, yn ∈ X . Now let γ : [a, b] → X be a (without loss of
generality) future-directed causal curve with γ (a), γ (b) ∈ V . We claim that  ⊆ V ,
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thus γ ([a, b]) ⊆ U . Let t ∈ [a, b], then γ (t) ∈ J+(γ (a)). For each 1 ≤ i ≤ n, we
have xi � γ (a) ≤ γ (t) and so xi � γ (t) by push-up (Lemma 2.10). This is equivalent
to γ (t) ∈ I+(xi ). Analogously, one shows that γ (t) ∈ I−(yi ).

�

It is not clear at thismoment if strong causality is equivalent to the condition ofLemma2.38
(iii), i.e., the nonexistence of almost closed causal curves, as is the case for smooth spacetimes,
see [40, Thm. 3.27] without further assumptions or more structure on the Lorentzian pre-
length space. However, for Lorentzian length spaces the crucial additional ingredient will be
localizability and for these spaces the conditions will be equivalent, see Theorem 3.26 (iv).

3 Lorentzian length spaces

3.1 Causal connectedness

Definition 3.1 A Lorentzian pre-length space (X , d,�,≤, τ ) is called causally path con-
nected if for all x, y ∈ X with x � y there is a future-directed timelike curve from x to y
and for x < y there is a future-directed causal curve from x to y.

Lemma 3.2 A causally path connected Lorentzian pre-length space is interpolative.

Proof Let x, y ∈ X with x � y, then there is a future-directed timelike curve γ : [a, b] → X
from x to y. Since γ is not constant, there is a t ∈ [a, b] with x = γ (a) �= γ (t) =: z, and
because γ is timelike we have x � z. If x = y we are done, and if x �= y there is a δ > 0
such that B̄d

δ (x) ∩ B̄d
δ (y) = ∅. Then, if γ ([a, b]) ⊆ B̄d

δ (x) ∪ B̄d
δ (y) it would follow that

γ ([a, b]) can be written as a disjoint union of the non-empty closed sets B̄d
δ (x) ∩ γ ([a, b])

and B̄d
δ (y) ∩ γ ([a, b]), contradicting connectedness. Thus, there is a t ′ ∈ [a, b] such that

x �= z = γ (t ′) �= y and by assumption x � z � y. �

Lemma 3.3 Let (X , d,�,≤, τ ) be a causally path connected Lorentzian pre-length space.

(i) (X , d,�,≤, τ ) is chronological if and only if there are no closed timelike curves in X.
(ii) (X , d,�,≤, τ ) is causal if and only if there are no closed causal curves in X.

Proof Let (X , d,�,≤, τ ) be a causally path connected Lorentzian pre-length space, which
for brevity we just denote by X .

(i) (⇒): Let X be chronological and γ a closed timelike curve. Then, for all x in the
image of γ we have x � x—a contradiction.
(⇐): Let X be such that there are no closed timelike curves. Let x ∈ X with x � x ,
then by the causal path-connectedness there is a future-directed timelike curve from
x to x—a contradiction.

(ii) (⇒): Let X be causal and γ a closed causal curve. Since γ is not constant, there are
points x, y on γ with x �= y and by assumption x ≤ y ≤ x—a contradiction.
(⇐): Let X be such that there are no closed causal curves. Let x, y ∈ X with
x < y < x , then by the causal path-connectedness there is a future-directed causal
curve from x to y to x—a contradiction.

�
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3.2 Limit curves

Definition 3.4 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space and let x ∈ X . A neigh-
borhood U of x is called causally closed if ≤ is closed in Ū × Ū , i.e., if pn, qn ∈ U with
pn ≤ qn for all n ∈ N and pn → p ∈ Ū , qn → q ∈ Ū , then p ≤ q . A Lorentzian pre-length
space (X , d,�,≤, τ ) is called locally causally closed if every point has a causally closed
neighborhood.

Proposition 3.5 Strongly causal spacetimes with continuous metrics are locally causally
closed.

Proof Let (M, g) be a strongly causal spacetime with g continuous. Then, (M, g) is non-
totally imprisoning, cf. [48, p. 1437]. Let p ∈ M and U an open, relatively compact
neighborhood of p, then by [48, Lemma 2.7] there is a C > 0 such that Lh(γ ) ≤ C
for all causal curves γ with image contained inU , where h is a complete Riemannian metric
on M . Strong causality implies the existence of a neighborhood V of p, V ⊆ U such that for
all causal curves λ : [a, b] → M with λ(a), λ(b) ∈ V one has λ([a, b]) ⊆ U . Now let (xn)n ,
(yn)n be sequences in V with xn ≤ yn for all n ∈ N and xn → x ∈ V̄ , yn → y ∈ V̄ .
Thus, there is a sequence (γn)n of future-directed causal curves γn : [0, 1] → M with
γn(0) = xn ∈ V , γn(1) = yn ∈ V for all n ∈ N. Hence γn([0, 1]) ⊆ U and so Lh(γn) ≤ C
for all n ∈ N. Finally, the limit curve theorem [48, Thm. 1.5] establishes the existence of a
future-directed causal curve from x to y, if x �= y, thus x < y. �
Lemma 3.6 Let (X , d,�,≤, τ ) be a locally causally closed Lorentzian pre-length space
and let (γn)n be a sequence of future-directed causal curves γn : [a, b] → X converging
pointwise to a non-constant Lipschitz curve γ : [a, b] → X. Then, γ is a future-directed
causal curve.

Proof For every t ∈ [a, b], there is an open, causally closed neighborhood Ut of γ (t). Let
a ≤ t1 < t2 ≤ b such that γ (t1), γ (t2) ∈ Ut . Then, there is an n0 ∈ N such that for all
n ≥ n0 we have γn(t1), γn(t2) ∈ Ut . Since γn(t1) ≤ γn(t2) for all n ∈ N and by assumption
γn(ti ) → γ (ti ) for i = 1, 2, we conclude that γ (t1) ≤ γ (t2). This gives an open cover
of the compact set γ ([a, b]), from which we may extract a finite sub-cover U1, . . . ,UN .
Additionally, this finite cover has a Lebesgue number δ > 0. Let L > 0 be the Lipschitz
constant ofγ , then if |t1−t2| ≤ δ

L , one hasγ (t1), γ (t2) ∈ Ui for some i ∈ {1, . . . , N }.Now let
a ≤ t1 < t2 ≤ b and let t1 =: s0 < s1 < · · · < sk−1 < sk := t2 such that |s j+1−s j | ≤ δ

L for
all j ∈ {0, . . . , k−1}. Thus, by construction γ (s j ), γ (s j+1) ∈ Ul j for all j ∈ {0, . . . , k−1}
and corresponding l j ∈ {1, . . . , N } and so γ (t1) = γ (s0) ≤ γ (s1) ≤ · · · ≤ γ (sk) = γ (t2),
hence γ (t1) ≤ γ (t2). �
Theorem 3.7 (Limit curve theorem) Let (X , d,�,≤, τ ) be a locally causally closed
Lorentzian pre-length space. Let (γn)n be a sequence of future-directed causal curves
γn : [a, b] → X that are uniformly Lipschitz continuous, i.e., there is an L > 0 such that
Lip(γn) ≤ L for all n ∈ N. Suppose that there exists a compact set that contains every
γn([a, b])or that d is proper (i.e., all closed andbounded sets are compact) and that the curves
(γn)n accumulate at some point, i.e., there is a t0 ∈ [a, b] such that γn(t0) → x0 ∈ X. Then,
there exists a subsequence (γnk )k of (γn)n and a Lipschitz continuous curve γ : [a, b] → X
such that γnk → γ uniformly. If γ is non-constant, then γ is a future-directed causal curve.
In particular, if γn(a) = p, γn(b) = q for all n ∈ N, with p �= q, then γ is a future-directed
causal curve connecting p and q.
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Proof The sequence (γn)n is equicontinuous and either the γns are contained in a compact
set by assumption or (X , d) is proper. In the latter case, we have for t ∈ [a, b] and all n ∈ N

d(x0, γn(t)) ≤ d(x0, γn(t0))+ d(γn(t0), γn(t))

≤ C + Lip(γn)|t − t0| ≤ C + L(b − a),

where C > 0 is some constant determined by the convergence of γn(t0) to x0. Thus, in
both cases (γn(t))n is relatively compact for all t ∈ [a, b] and so we can apply the Arzelà-
Ascoli theorem (e.g., [42, Thm. 1.4.9]) to get a uniformly converging subsequence (γnk )k .
The uniform limit γ := limk→∞ γnk is Lipschitz continuous, with Lip(γ ) ≤ L , and thus,
Lemma 3.6 shows that γ is a future-directed causal curve. �
Lemma 3.8 (A sufficient condition that the limit curve is not constant, cf. [35, Thm. 3.1])
Let (γn)n be a sequence of (continuous) curves defined on [a, b] that converge uniformly to
a curve γ : [a, b] → X. If there is a t ∈ [a, b] and a neighborhood U of γ (t) such that only
finitely many γn are contained in U, then γ is not constant.

Proof Let ε > 0 be such that Bd
ε (γ (t)) ⊆ U . The assumptions yield that there is an n0 ∈

N such that for all n ≥ n0 there is an sn ∈ [a, b] with γn(sn) /∈ U , hence 0 < ε ≤
d(γ (t), γn(sn)). Without loss of generality, we can assume that sn → s∗ ∈ [a, b], and thus,
0 < ε ≤ d(γ (t), γ (s∗)). �
Remark 3.9 We do not require (X , d) to be a proper metric space in the definition of a
Lorentzian pre-length space, since in the case where we will apply such results (as the Limit
curve theorem) in the development of the theory, it will be to (relatively) compact subsets.

We now introduce inextendible causal curves.

Definition 3.10 Let−∞ ≤ a < b ≤ ∞ and let γ : [a, b) → X be a future (or past)-directed
causal (or timelike) curve. It is called extendible if there exists a future (past)-directed causal
(timelike) curve γ̃ : [a, b] → X such that γ̃ |[a,b) = γ . The curve γ is called inextendible if
it is not extendible. Analogously for the other endpoint of the interval.

Remark 3.11 An extendible causal curve is Lipschitz continuous on its (open) domain of
definition.

Lemma 3.12 Let (X , d,�,≤, τ ) be a locally causally closed Lorentzian pre-length space;
let −∞ < a < b ≤ ∞ and let γ : [a, b) → X be a (without loss of generality) future-
directed causal curve parametrized with respect to d-arclength. If (X , d) is a proper metric
space or the image of γ is contained in a compact set, then γ is inextendible if and only if
b = ∞. In this case, Ld(γ ) = ∞. Moreover, γ is inextendible if and only if limt↗b γ (t)
does not exist.

Proof We first show the equivalence of γ inextendible and b = ∞.

(⇐): Since γ is parametrized with respect to d-arclength, we have d(γ (a), γ (t)) = t − a
for all t ∈ [a, b). Thus, if γ were extendible we would have b = d(γ (a), γ (b))+a <

∞—a contradiction.
(⇒): Assume that b < ∞. In both cases, we have that γ is contained in a compact set. Either

by assumption or if (X , d) is proper, then γ ([a, b)) ⊆ Bd
b−a(γ (a)), which is relatively

compact. Thus, there exists a sequence (tn)n with tn ↗ b and limn→∞ γ (ti ) =: p.
This is the only limit point of γ as the parameter approaches b. Assume that there is
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another sequence (sn)n such that sn ↗ b and limn→∞ γ (sn) =: q �= p. Then, we
have δ := d(p, q) > 0, and thus, there is an n0 ∈ N such that for all n ≥ n0 we have
(b − tn) < δ

4 , (b − sn) < δ
4 , d(p, γ (tn)) < δ

4 and d(q, γ (sn)) < δ
4 . The curve γ is

1-Lipschitz continuous, and so we obtain

δ = d(p, q) ≤ d(p, γ (tn)) + d(γ (tn), γ (sn))+ d(γ (sn), q)

<
δ

4
+ |tn − sn | + δ

4
≤ δ

2
+ (b − tn) + (b − sn) < δ,

a contradiction. At this point, we show that we can extend γ via γ̃ given by γ̃ |[a,b) :=
γ , γ̃ (b) := p. Clearly, γ̃ is 1-Lipschitz continuous, and so it remains to show that
γ̃ (t) ≤ p for all t ∈ [a, b). LetU be a causally closed neighborhood of p. Then, there
is a t∗ ∈ [a, b) such that for all t ∈ (t∗, b), γ̃ (t) = γ (t) ∈ U . Fix t ∈ (t∗, b) and let
(tn)n be a sequence in (a, b) with tn ↗ b and t ≤ t0. This yields that γ (t) ≤ γ (tn)
for all n ∈ N since γ is causal. By construction γ (tn) → p and hence by causal
closedness of U , we obtain γ (t) ≤ p. This shows that γ (t) ≤ p for all t ∈ (t∗, b).
Now fix t ∈ [a, t∗] and let t ′ ∈ (t∗, b). Then, γ (t) ≤ γ (t ′) ≤ p and by transitivity
γ (t) ≤ p, as required.

The latter implication shows that if limt↗b γ (t) exists then γ is extendible. Conversely, if γ

is extendible the limit obviously exists. �
Definition 3.13 A Lorentzian pre-length space (X , d,�,≤, τ ) is called d-compatible if for
every x ∈ X there exists a neighborhood U of x and a constant C > 0 such that Ld(γ ) ≤ C
for all causal curves γ contained in U .

Theorem 3.14 (Limit curve theorem for inextendible curves)Let (X , d,�,≤, τ ) be a locally
causally closed and d-compatible Lorentzian pre-length space. Let (γn)n be a sequence of
future-directed causal curves γn : [0, Ln] → X that are parametrized with respect to d-
arclength with Ln := Ld(γn) → ∞. If there exists a compact set that contains every
γn([0, Ln]) or if d is proper and γn(0) → x for some x ∈ X, then there exists a subsequence
(γnk )k of (γn)n and a future-directed causal curve γ : [0,∞) → X such that γnk → γ

locally uniformly. Moreover, γ is inextendible.

Proof Extend each γn constantly to [0,∞) and denote it again by γn . Then, the sequence
(γn)n is equicontinuous since every γn is 1-Lipschitz continuous and as in the proof of
Theorem 3.7 we have γn([0,∞)) ⊆ K , for some compact set K � X . Again, the Arzelà-
Ascoli theorem gives a locally uniformly converging subsequence (γnk )k . The limit curve
γ := limk→∞ γnk : [0,∞) → X is 1-Lipschitz continuous. To see that γ is causal, observe
that for every t > 0 there is a k0 ∈ N such that Lnk ≥ t for all k ≥ k0 and we have
γnk |[0,t] → γ |[0,t] uniformly. To apply Lemma 3.6, we need to show that γ |[0,t] is not
constant (at least for t > 0 sufficiently large). Let U be a neighborhood of γ (0) such that
there is a C > 0 that bounds the d-arclength of all causal curves in U and let t > C .
Then, since Lnk ≥ t > C , the γnk s cannot be contained in U ; hence, Lemma 3.8 yields that
γ |[0,t] is not constant. Thus, γ |[0,t] is future-directed causal by Lemma 3.6, since γnk |[0,t] is
causal as a segment of the original causal curve γnk defined on [0, Lnk ] for k ≥ k0. Now let
0 ≤ t1 < t2 < ∞, then, by the above, there is a t ≥ t2 such that γ |[0,t] is causal and hence
γ (t1) ≤ γ (t2). It remains to show the inextendibility of γ . Assume, to the contrary, that γ

is extendible and set limt↗∞ γ (t) =: p. Let V be a neighborhood of p such that there is a
C > 0 that bounds the d-arclength of all causal curves in V . There is a t∗ ∈ [0,∞) such
that γ ([t∗,∞)) ⊆ V and hence for T > t∗ with T − t∗ > C there is a k ∈ N such that
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γnk ([t∗, T ]) ⊆ V by the uniform convergence on [t∗, T ] and Lnk > T . This is a contradiction
as Ld(γnk |[t∗,T ]) = T − t∗ > C . �
Corollary 3.15 Let (X , d,�,≤, τ ) be a locally causally closed and d-compatible Lorentzian
pre-length space. Then, X is non-totally imprisoning if and only if no compact set in X
contains an inextendible causal curve.

Proof (⇒): Assume that there is a compact set K � X and an inextendible causal curve
γ contained in K . By Lemma 3.12 we have Ld(γ ) = ∞—a contradiction to X being
non-totally imprisoning.
(⇐): Assume that there is a compact set K � X and a sequence of (without loss of
generality) future-directed causal curves γn : In → X contained in K with Ld(γn) →∞.
Parametrizing them with respect to d-arclength gives a sequence λn : [0, Ln] → X , with
Ln := Ld(γn) = Ld(λn). Now Theorem 3.14 yields a limit curve of this sequence that
is an inextendible causal curve contained in K—a contradiction.

�

3.3 Localizability

Wenow try to capture the idea that locally the geometry and causality of a (smooth)Lorentzian
manifold is better behaved than globally. The following definition generalizes to our cur-
rent setting a number of essential properties inherent to convex neighborhoods in smooth
Lorentzian manifolds. Also in metric length spaces, the corresponding notion would be that
of a convex neighborhood (in the sense of [3, Def. 3.6.5]).

Definition 3.16 A Lorentzian pre-length space (X , d,�,≤, τ ) is called localizable if ∀x ∈
X there is an open neighborhood �x of x in X with the following properties:

(i) There is a C > 0 such that Ld(γ ) ≤ C for all causal curves γ contained in �x (hence
X is d-compatible).

(ii) There is a continuous map ωx : �x × �x → [0,∞) such that (�x , d|�x×�x ,�
|�x×�x ,≤|�x×�x , ωx ) is a Lorentzian pre-length spacewith the following non-triviality
condition: For every y ∈ �x we have I±(y) ∩�x �= ∅.

(iii) For all p, q ∈ �x with p < q there is a future-directed causal curve γp,q from p to q
that is maximal in �x and satisfies

Lτ (γp,q) = ωx (p, q) ≤ τ(p, q). (7)

(That the curve γp,q is maximal in �x means that for every other future-directed causal
curveλ connecting p andqwith image contained in�x wehave that Lτ (γp,q) ≥ Lτ (λ).)

We call such a neighborhood �x a localizing neighborhood of x . If, in addition, the neigh-
borhoods �x can be chosen such that

(iv) Whenever p, q ∈ �x satisfy p � q then γp,q is timelike and strictly longer than any
future-directed causal curve in �x from p to q that contains a null segment,

then (X , d,�,≤, τ ) is called regularly localizable. Finally, if every point x ∈ X
has a neighborhood basis of open sets �x satisfying (i)–(iii), respectively (i)–(iv), then
(X , d,�,≤, τ ) is called strongly localizable, respectively SR-localizable.

Proposition 3.17 Let (X , d,�,≤, τ ) be a strongly causal and localizable Lorentzian pre-
length space. Then, Lτ is upper semicontinuous, i.e., if (γn)n is a sequence of future-directed
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causal curves (defined on [a, b]) converging uniformly to a future-directed causal curve
γ : [a, b] → X, then

Lτ (γ ) ≥ lim sup
n

Lτ (γn). (8)

Proof By strong causality (and Lemma 2.38 (iii)) every point x ∈ X has an open neighbor-
hood Ux ⊆ �x such that any causal curve with endpoints in Ux is contained in �x .

Let ε > 0, then there is a partition (ti )Ni=0 of [a, b] such that
N−1∑
i=0

τ(γ (ti ), γ (ti+1)) < Lτ (γ ) + ε

2
. (9)

By making the partition finer (and by the reverse triangle inequality) we can assume that
γ (ti ), γ (ti+1) ∈ Uxi ⊆ �xi for some xi ∈ γ ([a, b]), i = 0, . . . , N − 1.

Thus,

N−1∑
i=0

τ(γ (ti ), γ (ti+1)) ≥
N−1∑
i=0

ωxi (γ (ti ), γ (ti+1)) =: 
. (10)

Now we choose n0 ∈ N such that for all n ≥ n0 we have γn(ti ), γn(ti+1) ∈ Uxi and
|ωxi (γ (ti ), γ (ti+1)) − ωxi (γn(ti ), γn(ti+1))| < ε

2N for i = 0, . . . , N − 1. By construction
γn([ti , ti+1]) ⊆ �xi . Localizability then implies that for every i = 0, . . . , N − 1 there
is a future-directed causal curve λi from γn(ti ) to γn(ti+1) that is maximal in �xi with
ωxi (γn(ti ), γn(ti+1)) = Lτ (λi ) and so


 ≥
N−1∑
i=0

ωxi (γn(ti ), γn(ti+1))− ε

2
=

N−1∑
i=0

Lτ (λi ) − ε

2

≥
N−1∑
i=0

Lτ (γn |[ti ,ti+1]) −
ε

2
= Lτ (γn) − ε

2
,

where in the last step we used the additivity of the τ -length proved in Lemma 2.25. Together
with (10) this yields Lτ (γ ) ≥ Lτ (γn) − ε for every n ≥ n0. �
Theorem 3.18 In a regularly localizable Lorentzian pre-length space, maximal causal curves
have a causal character, i.e., if for a (future-directed) maximal causal curve γ : [a, b] → X
there are a ≤ t1 < t2 ≤ b with γ (t1) � γ (t2), then γ is timelike. Otherwise, it is null.

Proof First we establish that it suffices to show the claim for t1 = a and t2 = b. Indeed,
let γ : [a, b] → X be a future-directed maximal causal curve and assume that there are
a < t1 < t2 < b with x := γ (t1) � γ (t2) =: y. Thus, γ (a) ≤ x � y ≤ γ (b) and hence by
push-up (Lemma 2.10) we conclude that γ (a) � γ (b).

We begin the main part of the proof by showing that the claim follows if there exist points
γ (t1) = x � y = γ (t2) such that γ ([t1, t2]) lies in a regularly localizing neighborhood � as
in Definition 3.16. In fact, since γ is maximizing on [a, b], it also is on [t1, t2] (Proposition
2.34 (ii)), andweclaim thatγ |[t1,t2] is timelike.Otherwise, therewould exist t1 ≤ s1 < s2 ≤ t2
such that r1 := γ (s1) �� γ (s2) =: r2, implying that τ(r1, r2) = 0 and thus by maximality
Lτ (γ |[s1,s2]) = 0, i.e., γ |[s1,s2] is null. By regular localizability (in�) we know that there is a
future-directed timelike curve γx,y in � from x to y that is strictly longer than γ |[t1,t2], since
the latter contains the null segment γ |[s1,s2]. This is a contradiction to themaximality of γ .We
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Fig. 2 A causal funnel

now cover γ ([t1, b]) by finitely many regularly localizing neighborhoods �1 = �, . . . , �N

as in Definition 3.16 and pick ti (i = 3, . . . , N+2), tN+2 = b, such that γ (ti ) ∈ �i−2∩�i−1

for i = 3, . . . , N + 1 and γ ([ti , ti+1]) ⊆ �i−1 for i = 2, . . . N + 1. It then follows as above
that, since γ (t1) � γ (t2) ≤ γ (t3), and hence γ (t1) � γ (t3), γ must be timelike on [t1, t3].
Then, picking some t ′ < t3 such that γ ([t ′, t3]) ⊆ �2 we find ourselves in the same situation
as before, only with [t ′, t3] replacing [t1, t2]. Consequently, we can iterate the procedure and
obtain that γ is timelike on [t1, b]. Since we may symmetrically argue into the past, γ must
in fact be timelike on all of [a, b].

It remains to show that points x � y as above always exist on γ . Since 0 < τ(p, q) =
Lτ (γ ), by Lemma 2.24 it follows that γ |[a,m] or γ |[m,b] has strictly positive τ -length, where
m = 1

2 (b − a). Iterating this bisection it follows that for any δ > 0 there exist t1 < t2 in
[a, b] such that |t1 − t2| < δ and τ(γ (t1), γ (t2)) = Lτ (γ |[t1,t2]) > 0, and so γ (t1) � γ (t2).
We now cover γ ([a, b]) by finitely many regularly localizing neighborhoods as in Definition
3.16 and let ε be a Lebesgue number of this cover. Since γ is uniformly continuous, by
choosing δ small enough we can guarantee that d(γ (t1), γ (t2)) < ε, and so both points lie
in one of the neighborhoods from the cover. �

Example 3.19 (i) Causal funnels

In Minkowski space R
n
1, let λ be a future-directed causal curve connecting two points p

and q . Let X be the union of J−(p), J+(q) and the image of λ (Fig. 2).

For x, y ∈ X , let x ≤ y if x can be connected to y within X by a curve that is future-
directed causal in R

n
1, and let x � y if this curve can be chosen to contain a timelike

segment. Define τ(x, y) to be the supremum over all lengths of such curves connecting
x and y if such curves exist, and 0 otherwise. Also, let d be the restriction of the standard
metric on R

n . Then, it is easily verified that (X , d,�,≤, τ ) is a Lorentzian pre-length
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space. If λ is null (hence also null in the sense of Definition 2.18), x � p, and q ≤ y,
then the maximal curve from x to y necessarily changes its causal character.

(ii) As can be seen from Corollary 5.5, even in spacetimes with continuous metrics it can
happen that maximal causal curves change their causal character.

We next turn to a fundamental property of smooth spacetimes, namely the push-up princi-
ple (cf. [13]): Causal curves that connect timelike-related points and contain a null segment
can be deformed into timelike curves with the same endpoints and strictly greater length.
This principle can be extended to the current setting as follows:

Theorem 3.20 Let (X , d,�,≤, τ ) be a regularly localizable Lorentzian pre-length space,
and let γ : [a, b] → X be a future-directed causal curve with Lτ (γ ) > 0. If γ |[c,d] is null
on some (non-trivial) subinterval [c, d] of [a, b], then there exists a strictly longer future-
directed timelike curve σ from γ (a) to γ (b). If X is even (SR)-localizable, then σ can be
chosen to lie in any given neighborhood of γ ([a, b]).
Proof Without loss of generality we may suppose that a < c and d = b, the other cases can
be reduced to this one or proved analogously. Let t1 := inf{t ∈ [a, b] : Lτ (γ |[t,b]) = 0},
then a < t1: Suppose, to the contrary, that t1 = a and let �γ(a) be a regularly localizing
neighborhood of γ (a). Then, since Lτ (γ |[s,t]) = ωγ (a)(γ (s), γ (t)) depends continuously
on s and t for s, t small, it would follow that Lτ (γ ) = 0, contradicting our assumption.

Now let� be a regularly localizing neighborhood of γ (t1). Then, we can pick t0 < t1 < t2
sufficiently close to t1 to secure γ (t0), γ (t2) ∈ �. Also, γ (t0) � γ (t2) and γ ([t1, t2])
contains a null segment. Thus, we can connect γ (t0) to γ (t2) by a future-directed timelike
curve σ in � that is strictly longer than γ |[t0,t2].

Similarly to the proof of Theorem 3.18 we cover γ ([t0, b]) by finitely many regularly
localizing neighborhoods �1 = �2 := �,�3, . . . , �N as in Definition 3.16 and pick
t3 < · · · < tN = b in (t2, b] such that γ ([ti , ti+1]) ⊆ �i+1 for i = 0, . . . N − 1. Next, we
choose a point p on σ that lies in �3 and is timelike related to γ (t2) and concatenate σ from
p onward to a maximal curve from p to γ (t3) within �3. Iterating this procedure, we obtain
a timelike curve from γ (t0) to γ (b) that is strictly longer than γ |[t0,b]. Analogously, we can
argue for γ |[a,t0] to construct the claimed curve. Finally, if X is (SR)-localizable then the
regularly localizing neighborhoods and thereby the timelike curve constructed above can be
chosen to lie within any prescribed neighborhood of the image of γ . �
Recalling Lemma 2.30, we obtain the following generalization of [13, Cor. 2.4.16]:

Corollary 3.21 Let (X , d,�,≤, τ ) be a regularly localizable Lorentzian pre-length space,
and let γ : [a, b] → X be a future-directed causal curve such that for some a ≤ c < d ≤ b,
γ |[c,d] is rectifiable. Then, there exists a timelike future-directed curve from γ (a) to γ (b). If
X is even (SR)-localizable, then this curve can be chosen to lie in any given neighborhood
of γ ([a, b]).

3.4 Lorentzian length spaces

Finally,wehave the concepts at hand to define the followingnotion of intrinsic time separation
function.

Definition 3.22 Let (X , d,�,≤, τ ) be a locally causally closed, causally path connected
and localizable Lorentzian pre-length space and let x, y ∈ X . Then set

T (x, y) := sup
{
Lτ (γ ) : γ future-directed causal from x to y

}
,
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if the set of future-directed causal curves from x to y is not empty.Otherwise setT (x, y) := 0.
We call X a Lorentzian length space if T = τ . If, in addition, X is regularly localizable, then
it is called a regular Lorentzian length space.

Remark 3.23 (i) The above definition is a close analogue of the notion of length spaces in
metric geometry: A metric space (X , d) is a length space if for any points x, y ∈ X ,
d(x, y) equals the infimum over the length of all paths connecting them, where the
length of a path is defined as the supremum of the lengths of inscribed polygons (cf.
[3,42]).

(ii) Since a Lorentzian length space is causally path connected, the set of all future-directed
causal curves connecting two causally related points is never empty.

(iii) In any Lorentzian pre-length space, T (x, y) ≤ τ(x, y) for all x, y ∈ X : This is obvious
if T (x, y) = 0. If, on the other hand, T (x, y) > 0, then for any ε > 0 there exists a
future-directed causal curve γ from x to y with T (x, y) < Lτ (γ ) + ε ≤ τ(x, y) + ε.

Example 3.24 (i) Let (M, dh,�,≤, τ ) be the Lorentzian pre-length space induced by a
smooth and strongly causal spacetime (M, g), see Example 2.11. Then by Proposi-
tion 2.32, we know that Lτ = Lg , the usual Lorentzian length functional. Thus, the
definition of T is the same as for the time separation function τ of (M, g), cf. [41,
Def. 14.15]. Using the exponential map and convex neighborhoods, it is not hard to see
that (M, dh,�,≤, τ ) is also locally causally closed and regularly localizable. More-
over, causal path-connectedness holds due to the definition of the causal relations.
Consequently, (M, dh,�,≤, τ ) is a regular and (SR)-localizable Lorentzian length
space.

(ii) As in Example 3.19 (i), let X be a causal funnel. If the connecting curve λ is timelike,
then (X , d,�,≤, τ ) is causally path connected and causally closed. It then readily
follows that (X , d,�,≤, τ ) is a strongly localizable Lorentzian length space.

(iii) In Sect. 5, we will give further examples of Lorentzian length spaces, and in particular
we will show that spacetimes of low regularity can be viewed as Lorentzian length
spaces, although not necessarily as regular Lorentzian length spaces. This connection
is our motivation for the terminology introduced after Definition 3.16 (iv).

Lemma 3.25 In a Lorentzian length space , two timelike-related points can always be con-
nected via a causal curve of positive τ -length.

Proof Let (X , d,�,≤, τ ) be a Lorentzian length space and let x, y ∈ X with x � y. Then,
0 < τ(x, y) = T (x, y). Moreover, for every ε > 0 there is a future-directed causal curve
γ from x to y such that Lτ (γ ) > T (x, y) − ε. By choosing ε = T (x,y)

2 > 0 it follows that
Lτ (γ ) > 0. �

3.5 The causal ladder for Lorentzian length spaces

Theorem 3.26 For Lorentzian length spaces

(i) causality implies chronology,
(ii) non-total imprisonment implies causality,
(iii) strong causality implies non-total imprisonment,
(iv) strong causality is equivalent to the nonexistence of almost closed causal curves (i.e.,

the converse to Lemma 2.38 (iii) holds for Lorentzian length spaces), and
(v) global hyperbolicity implies strong causality.
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Proof Let (X , d,�,≤, τ ) be a Lorentzian length space, which for brevity we just denote by
X . Lemma 3.2 shows that X is interpolative.

(i) Let X be causal, then Lemma 2.38 (i) establishes that X is chronological.
(ii) Let X be non-totally imprisoning. Assume that X is not causal, then by Lemma 3.3 (ii)

we know that there is a closed causal curve γ : [a, b] → X . Since γ is not constant we
have that Ld(γ ) > 0. By going infinitely often around this loop, we get a causal curve
γ̃ such that Ld(γ̃ ) = ∞ and whose image is contained in the compact set γ ([a, b])—a
contradiction to X being non-totally imprisoning.

(iii) Let X be strongly causal and assume that X is totally imprisoning. By Corollary 3.15,
this means that there is a compact set K � X and an inextendible (future-directed)
causal curve γ : [0,∞) → X contained in K . Moreover, by Lemma 3.12 we know that
limt↗∞ γ (t) does not exist. However, for any sequence that convergences to ∞ there
is a convergent subsequence (tn)n with tn ↗ ∞ and limn→∞ γ (tn) =: p, since γ is
contained in the compact set K . Now, since limt↗∞ γ (t) does not exist there is another
sequence (sn)n with sn ↗∞ with limn→∞ γ (sn) =: q �= p. LetU be a neighborhood
of p that does not contain q . By strong causality and Lemma 2.38 (iii), there exists a
neighborhood V of p with V ⊆ U and such that any causal curve with endpoints in V
is contained in U . There is an n0 ∈ N such that γ (tn) ∈ V for all n ≥ n0. By mixing
the sequences (tn)n and (sn)n to get a strictly monotonically increasing sequence (rn)n
one can find n1 < n2 < n3 such that γ (rn1), γ (rn3) ∈ V and γ (rn2) /∈ U . This is a
contradiction since γ |[tr1 ,tr3 ] is a causal curve with endpoints in V that leaves U .

(iv) Let X be such that for all x ∈ X , for every neighborhoodU of x , there is a neighborhood
V ⊆ U of x such that for every causal curve γ : [a, b] → X with γ (a), γ (b) ∈ V one
has γ ([a, b]) ⊆ U . Assume to the contrary that X is not strongly causal, i.e., there is a
p ∈ X and a δ > 0 such that for all A ∈ A (the subbase for the Alexandrov topology,
cf. Sect. 2.2) with p ∈ A one has A � Bd

δ (p). Now the assumptions yield that there is a
d-neighborhood V of p, V ⊆ Bd

δ (p) such that all causal curves with endpoints in V are
contained in Bd

δ (p). Let � be a localizing neighborhood for p, then I±(p) ∩ � �= ∅,
thus by causal path-connectedness there is a timelike curve γ through p. Now choose
p−, p+ ∈ γ ([a, b]) ∩ V with p− � p � p+. Then, p ∈ I+(p−) ∩ I−(p+) ∈ A but
on the other hand I+(p−) ∩ I−(p+) ⊆ Bd

δ (p)—a contradiction.
(v) Let X be globally hyperbolic and assume that X is not strongly causal, i.e., there is

a point x ∈ X and a neighborhood U of x such that for all neighborhoods V of x
with V ⊆ U there is a causal curve with endpoints in V that leaves U . As above
there is a timelike curve λ through x ; hence, we can choose p, q ∈ U on λ with
p � x � q . Moreover, since I+(p)∩ I−(q) is open there is a δ0 > 0 such that for all
0 < δ ≤ δ0 we have Bd

δ (x) ⊆ I+(p) ∩ I−(q) ⊆ J+(p) ∩ J−(q), which is compact
by assumption. Let n0 ∈ N with 1

n0
< δ0, then for all n ≥ n0 there is a future-directed

causal curve γn : [an, bn] → X with γn(a), γn(b) ∈ Bd
1/n(x), γn([an, bn]) ⊆ J (p, q)

and γn([an, bn]) � U . Thus, we can apply the limit curve theorem 3.7 to obtain a
closed causal curve (which is not constant since it leaves U )—a contradiction to non-
total imprisonment via point (ii).

�
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3.6 Geodesic length spaces

Definition 3.27 A Lorentzian pre-length space (X , d,�,≤, τ ) is called geodesic if for all
x, y ∈ X with x < y there is a future-directed causal curve γ from x to y with τ(x, y) =
Lτ (γ ) (hence maximizing).

Theorem 3.28 Let (X , d,�,≤, τ ) be a globally hyperbolic Lorentzian length space, then τ

is finite and continuous.

Proof First we show that τ is continuous. For the moment we assume that τ(p, q) < ∞.
Also assume to the contrary that τ is not upper semicontinuous at (p, q) ∈ X × X . Thus,
there exist some δ > 0 and sequences pn → p, qn → q such that

τ(pn, qn) ≥ τ(p, q) + δ, (11)

for all n ∈ N. Since τ(p, q) ≥ 0 we have that τ(pn, qn) > 0 and hence pn � qn for all
n ∈ N. Furthermore, for n ≥ 1 there is a future-directed causal curve γn from pn to qn
with Lτ (γn) > T (pn, qn) − 1

n = τ(pn, qn) − 1
n . Note that, by strong causality, this shows

that p �= q . Again by strong causality and localizability, there are p−, q+ ∈ X such that
p ∈ I+(p−) and q ∈ I−(q+). So there is an n0 ∈ N such that pn, qn ∈ J (p−, q+) for all
n ≥ n0. By global hyperbolicity J (p−, q+) is compact and the image of γn is contained in
J (p−, q+) for all n ≥ n0 and so by the Limit curve theorem 3.7 and p �= q we get that there
is a subsequence (γnk )k of (γn)n that converges uniformly to a future-directed causal curve
γ from p to q . Moreover, by construction and the upper semicontinuity of Lτ (Proposition
3.17) this yields that

T (p, q) ≥ Lτ (γ ) ≥ lim sup
k

Lτ (γnk )

≥ lim sup
k

(
τ(pnk , qnk ) −

1

nk

)
≥ τ(p, q) + δ = T (p, q) + δ > T (p, q),

a contradiction. In the case that τ(p, q) = ∞, there is nothing to do. Thus, τ is continuous.
It remains to show that τ is finite. Note that (X , d,�,≤, τ ) is chronological by Theorem

3.26 and so τ(x, x) = 0 for all x ∈ X by Lemma 2.38 (ii). Let p, q ∈ X . If τ(p, q) = 0,
there is nothing to prove. Otherwise, there is a causal curve γ : [a, b] → X from p to q .
The map 
 : [a, b] → [0,∞], 
(t) = τ(p, γ (t)) is uniformly continuous. Therefore, we
may choose a partition (ti )Ni=0 of [a, b] such that |τ(p, γ (ti+1))− τ(p, γ (ti ))| < 1 for each
i ∈ {0, . . . , N }. Since, furthermore, τ vanishes on the diagonal, we obtain

τ(p, q) =
N−1∑
i=0

(
τ(p, γ (ti+1))− τ(p, γ (ti ))

)
≤ N ,

establishing that τ is finite. �

Remark 3.29 Finiteness of τ precludes the pathological situation where a maximal curve
could have infinite length.

Finally, we obtain the following generalization of the Avez–Seifert theorem:

Theorem 3.30 Any globally hyperbolic Lorentzian length space (X , d,�,≤, τ ) is geodesic.
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Proof By Theorem 3.28, we know that τ is finite and continuous. Let x, y ∈ X with x < y,
then τ(x, y) < ∞ and we get a sequence (γn)n of future-directed causal curves γn : [a, b] →
X from x to y such that Lτ (γn) → τ(x, y). These curves are all contained in the compact
set J (x, y), and so by the Limit curve theorem 3.7 we get a limit curve γ from x to y with
Lτ (γ ) = lim supn Lτ (γn) = limn Lτ (γn) = τ(x, y). Thus, γ is a maximal future-directed
causal curve from x to y. �

3.7 Parametrization by arclength

We will now establish that a rectifiable curve (which is timelike) can be parametrized with
respect to τ -arclength. The only drawback is that this parametrization need not be Lipschitz
continuous. Thus, the resulting curve will not be a causal curve in the sense of Definition
2.18. To handle this issue, we introduce the following notion.

Definition 3.31 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space , and let γ : [a, b] →
X be a future-directed causal curve. A weak parametrization of γ is a curve of the form
γ ◦ φ : [c, d] → X , where φ : [c, d] → [a, b] is continuous and strictly monotonically
increasing.

Note that if φ is Lipschitz continuous, then γ ◦ φ is Lipschitz continuous, hence a causal
curve. Moreover, the τ -length of a weak parametrization can be defined as in Definition 2.24,
and Lemma 2.28 shows that the τ -length is invariant under such a reparametrization, too.

Lemma 3.32 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space, let γ : [a, b] → X be a
future-directed causal curve, and let λ := γ ◦ φ : [c, d] → X be a weak parametrization of
γ . Then, λ has the same causal character as γ .

Proof We show the case when γ is causal, the timelike case is completely analogous. Let
c ≤ t1 < t2 ≤ d , then a ≤ φ(t1) < φ(t2) ≤ b and so λ(t1) = γ (φ(t1)) ≤ γ (φ(t2)) = λ(t2).

�
Lemma 3.33 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space , and let γ : [a, b] → X
be a future-directed causal curve with L := Lτ (γ ) < ∞. Then, the map φ : [a, b] → [0, L],
t �→ Lτ (γ |[a,t]) is monotonically increasing. Moreover, if the time separation function τ is
continuous and satisfies τ(x, x) = 0 for all x ∈ X then φ is continuous.

Proof First we show that φ is monotonically increasing. Let a ≤ s < t ≤ b and let
a = t0 < t1 < · · · < tN = t be a partition of [a, t]. If there is a k ∈ {1, . . . , N } such
that tk = s, then (ti )ki=0 is a partition of [a, s] and thus φ(s) ≤ ∑k−1

i=0 τ(γ (ti ), γ (ti+1)) ≤∑N−1
i=0 τ(γ (ti ), γ (ti+1)) On the other hand, if there is no such k, define j := max{1 ≤

i ≤ N : ti < s}. Then, (ti )
j
i=0 ∪ {s} is a partition of [a, s]. This yields φ(s) ≤∑ j−1

i=0 τ(γ (ti ), γ (ti+1)) + τ(γ (t j ), γ (s)) ≤ ∑N−1
i=0 τ(γ (ti ), γ (ti+1)), where we again used

that τ ≥ 0 and the reverse triangle inequality. Taking the infimum over all partitions of [a, t]
gives φ(s) ≤ Lτ (γ |[a,t]) = φ(t).

To show continuity of φ at any t ∈ [a, b], we make use of the continuity of the maps
y �→ τ(x, y) and y �→ τ(y, x) for x ∈ X fixed. Let t ∈ [a, b] and ε > 0, then there is a
neighborhood U of γ (t) in X such that for all y ∈ U

τ(γ (t), y) < ε and τ(y, γ (t)) < ε, (12)
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since τ ≥ 0 and τ(γ (t), γ (t)) = 0. By the continuity of γ , there is a δ > 0 such that
γ ((t − δ, t + δ)) ⊆ U . For s ∈ (t − δ, t], we have by Lemma 2.25 and (12)

|φ(t)− φ(s)| = Lτ (γ |[s,t]) ≤ τ(γ (s), γ (t)) < ε.

Analogously for s ∈ [t, t + δ), we have |φ(t)− φ(s)| = Lτ (γ |[t,s]) ≤ τ(γ (t), γ (s)) < ε. �
Proposition 3.34 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space with τ continuous
and τ(x, x) = 0 for all x ∈ X. Let γ : [a, b] → X be a future-directed rectifiable curve
with L := Lτ (γ ) < ∞. Then, there exists a weak parametrization γ̃ of γ such that γ̃ is
parametrized with respect to τ -length, i.e., γ̃ : [0, L] → X with Lτ (γ̃ |[0,s]) = s for all
s ∈ [0, L].
Proof Define φ : [a, b] → [0, L], t �→ Lτ (γ |[a,t]) as in Lemma 3.33. Then, φ is strictly
monotonically increasing and continuous and thus gives rise to a weak parametrization γ̃ :=
γ ◦φ−1 : [0, L] → [a, b]. Note that Lemma 2.28 applies also to weak parametrizations, and
hence we conclude that Lτ (γ̃ |[0,s]) = Lτ (γ |[a,φ−1(s)]) = φ(φ−1(s)) = s. �
Corollary 3.35 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space with τ continuous and
τ(x, x) = 0 for all x ∈ X. Then, a maximal timelike curve γ with finite τ -length has a weak
parametrization λ such that τ(λ(s1), λ(s2)) = s2 − s1 for all s1 < s2 in the corresponding
interval.

Proof Let γ be timelike and maximal. Then, by Proposition 2.34 (iii) γ is rectifiable and
hence by Proposition 3.34 there is a weak parametrization λ = γ ◦ φ−1 on [0, Lτ (γ )]
such that Lτ (λ|[0,s]) = s. Moreover, as noted above, Lemma 2.28 applies also to weak
parametrizations; hence, we have that Lτ (γ ) = Lτ (λ) and thus for 0 ≤ s1 < s2 ≤ Lτ (γ )

we get

s2 − s1 = Lτ (λ|[s1,s2]) = Lτ (γ |[φ−1(s1),φ−1(s2)])
= τ(γ (φ−1(s1)), γ (φ−1(s2))) = τ(λ(s1), λ(s2)).

�

4 Curvature bounds via triangle comparison

In close analogy to the theory of CAT(k)- andAlexandrov spaces, in this sectionwe introduce
spaces whose curvature is bounded above or below, in terms of triangle comparison with
respect to Lorentzian model spaces of constant curvature. The comparison conditions will
be formulated with respect to the time separation function τ .

4.1 Timelike geodesic triangles

Webegin by considering timelike geodesic triangles in aLorentzian length space and compare
them to timelike geodesic triangles in a model space of constant curvature.

Definition 4.1 A timelike geodesic triangle in a Lorentzian pre-length space (X , d,�,≤, τ )

is a triple (x, y, z) ∈ X3 with x � y � z such that τ(x, z) < ∞ and such that the sides
are realized by future-directed causal curves: there are future-directed causal curves α from
x to y, β from y to z, and γ from x to z such that Lτ (α) = τ(x, y), Lτ (β) = τ(y, z) and
Lτ (γ ) = τ(x, z).
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The reason for merely requiring the realizing curves in the previous definition to be causal
instead of timelike is that in general it may happen that maximizing curves change their
causal character. For a concrete example see Corollary 5.5. By Theorem 3.18, however, such
a situation cannot occur in regularly localizable pre-length spaces.

Lemma 4.2 Let (X , d,�,≤, τ ) be a Lorentzian pre-length space and let (x, y, z) be a
geodesic triangle. Let α, β, γ be future-directed causal curves from x to y, y to z, and
x to z, respectively, such that Lτ (α) = τ(x, y) =: a, Lτ (β) = τ(y, z) =: b and
Lτ (γ ) = τ(x, z) =: c. Then, a < ∞, b < ∞ and α, β, γ are maximal.

Proof By the reverse triangle inequality, we get a = τ(x, y) < τ(x, y)+τ(y, z) ≤ τ(x, z) <

∞. Analogously one shows that b < ∞. Let α be defined on the interval [t0, t1], then
Lτ (α) = τ(x, y) = τ(α(t0), α(t1)), hence α is maximal. Similarly, β and γ are maximal. �
Remark 4.3 In the situation of the previous Lemma, if τ is continuous and τ(x, x) = 0 for
all x , then for any 0 < s < τ(x, y) there is a point q on the image of α with τ(x, q) = s
(and analogously for β and γ ). In fact, let α : [a, b] → X . Then since t �→ τ(x, α(t)) is
continuous, it attains any value between 0 = τ(x, α(a)) and τ(x, y) = τ(x, α(b)).

Moreover, if α, β, γ are timelike then Corollary 3.35 allows one to obtain weak
parametrizations of α, β, γ with respect to τ -length.

Lemma 4.4 Let (X , d,�,≤, τ ) be a globally hyperbolic Lorentzian length space, then any
triple of points (x, y, z) ∈ X3 with x � y � z is a geodesic timelike triangle, whose sides,
if timelike, can be weakly parametrized with respect to τ -length.

Proof By Theorem 3.28 τ is finite and continuous, implying in particular τ(x, z) < ∞.
By Theorem 3.26, we know that X is chronological, and thus τ is zero on the diagonal by
Lemma 2.38 (ii). Furthermore, by Theorem 3.30 X is geodesic; hence, there are maximal
causal curves realizing the sides of the triangle,which, if timelike, can beweakly parametrized
with respect to τ -length by Corollary 3.35. �

4.2 Model spaces of constant curvature

Curvature bounds for Lorentzian length spaces will be based on triangle comparison in
relation to model spaces of constant curvature. In the present section, we introduce these
model spaces, following [1,24].

Definition 4.5 Let K ∈ R. ByMK , we denote the simply connected two-dimensional Lorentz
space form of constant curvature K .

Following the notation of [41, Ch. 8], we have

MK =
⎧⎨
⎩

S̃21 (r) K = 1
r2

R
2
1 K = 0

H̃2
1 (r) K = − 1

r2
.

Here, S̃21 (r) is the simply connected covering manifold of the two-dimensional Lorentzian
pseudosphere S21 (r), R

2
1 is two-dimensional Minkowski space, and H̃2

1 (r) is the simply
connected covering manifold of the two-dimensional Lorentzian pseudohyperbolic space.

Concerning the existence of comparison triangles in the model spaces, we may directly
utilize the Realizability Lemma [1, Lemma 2.1] to obtain conditions on a triple (a, b, c) to
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be realized as the side lengths of a timelike triangle in a model space MK . Below, we will
set π√

K
:= ∞ if K ≤ 0.

Lemma 4.6 (Realizability) Let K ∈ R. Let (a, b, c) ∈ R
3+ with c ≥ a+ b. If c = a+ b, then

let c < π√
K
. If c > a + b and K < 0, then assume c < π√−K

. Then, there exists a timelike

geodesic triangle in MK with side lengths a, b, c.

Proof To deduce this from [1, Lemma 2.1], note that in [1] lengths are always signed.
Since we consider only timelike geodesic triangles (and unsigned lengths), (a, b, c) cor-
responds to (−a,−b,−c) in [1]. The result can then immediately be read off from [1,
Lemma 2.1, points 2. and 3.]. �
Following [1], a triple (a, b, c) as in the assumptions of Lemma 4.6 will be said to satisfy
timelike size bounds for K .

4.3 Timelike curvature bounds

To concisely formulate our notion of timelike curvature bounds in Lorentzian pre-length
spaces, we introduce the following terminology: Let (x, y, z) be a timelike geodesic triangle
in a Lorentzian pre-length space as in Definition 4.1, realized by maximal causal curves
α, β, γ , and suppose that (x̄, ȳ, z̄) is a timelike geodesic triangle in a model space MK with
identical side lengths realized by (necessarily) timelike geodesics ᾱ, β̄, γ̄ . Denote the time
separation function in MK by τ̄ . We say that a point q on α corresponds to a point q̄ on ᾱ if
τ(x, q) = τ̄ (x̄, q̄), and analogously for β and γ . ByRemark 4.3, under the assumptionsmade
in the following Definition, any intermediate value of τ along α, β, γ is actually attained.

Definition 4.7 A Lorentzian pre-length space (X , d,�,≤, τ ) has timelike curvature
bounded below (above) by K ∈ R if every point in X possesses a neighborhood U such
that:

(i) τ |U×U is finite and continuous.
(ii) Whenever x , y ∈ U with x � y, there exists a future-directed causal curve α inU with

Lτ (α) = τ(x, y).
(iii) Let (x, y, z) be a timelike geodesic triangle in U , realized by maximal causal curves

α, β, γ whose side lengths satisfy timelike size bounds for K , and let (x̄, ȳ, z̄) be a
comparison triangle of (x, y, z) in MK as given by Lemma 4.6, realized by timelike
geodesics ᾱ, β̄, γ̄ . Then whenever p, q are points on the sides of (x, y, z) and p̄, q̄ are
corresponding points of the sides of (x̄, ȳ, z̄), we have τ(p, q) ≤ τ̄ ( p̄, q̄) (respectively,
τ(p, q) ≥ τ̄ ( p̄, q̄)) (Fig. 3).

Such a neighborhood U is called comparison neighborhood with respect to MK .

Remark 4.8 (i) The above definition is as close as possible to the corresponding definition of
curvature bounds in its metric analogue, the theory of CAT(k), respectively, Alexandrov
spaces [3, Def. 4.1.9, Def. 9.1.1].

(ii) Condition 1 of Definition 4.7 in particular secures that τ(x, x) = 0 for every x ∈ X via
Proposition 2.14, so Remark 4.3 applies.

Example 4.9 In [1], sectional curvature bounds for general semi-Riemannian manifolds were
introduced. A smooth Lorentzian manifold M is defined to satisfy a lower sectional curvature
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Fig. 3 Timelike triangle in X and comparison triangle in MK

bound R ≥ K if spacelike sectional curvatures are ≥ K and timelike sectional curvatures
are ≤ K (and R ≤ K with “timelike” and “spacelike” reversed). It then follows from [1,
Prop. 5.2] that R ≥ K (respectively, R ≤ K ) in this sense implies that M has timelike
curvature bounded below (respectively, above) by K in the sense of Definition 4.7. Hence, a
smooth strongly causal Lorentzian manifold with R ≥ K in the sense of [1], while having
timelike sectional curvature bounded above by K has timelike sectional curvature bounded
below by K in the sense of Definition 4.7, and analogously for R ≤ K .

4.4 Branching of maximal curves

Definition 4.10 (Definition of a branching point) Let (X , d,�,≤, τ ) be a Lorentzian pre-
length space , and let γ : [a, b] → X be a maximal causal curve. A point x := γ (t) with
t ∈ (a, b) is calledbranchingpoint ofγ if there existmaximal causal curvesα, β : [a, c] → X
with c > b such that α|[a,t] = β|[a,t] = γ |[a,t] and α([t, c]) ∩ β([t, c]) = {x}. If α, β, γ are
timelike then x is called a timelike branching point.

Example 4.11 (i) In a causal funnel (see Examples 3.19 and 3.24), any maximal causal
curve from J−(p) to J+(q) has q as a branching point.

(ii) For an example of branching in the setting of spacetimes with continuous Lorentzian
metrics, see Corollary 5.5.

In preparation for the following result, call a Lorentzian pre-length space timelike locally
uniquely geodesic (l.u.g.) if every point x ∈ X has a neighborhood such that, if p � q
and p, q ∈ U then there exists a unique maximal future-directed causal curve from p to q
in U . Hence, compared to (ii) of 4.7 one additionally requires uniqueness. Already for low
regularity Lorentzian metrics, timelike l.u.g. and non-branching are independent properties.
In fact, the classical paper [26] contains examples of C1-Riemannian metrics that are locally
uniquely geodesic but display branching, as well as non-branching metrics that fail to be
locally uniquely geodesic. These examples can be translated into the Lorentzian setting, cf.
[51].

Contrary to the case of metric spaces, in the Lorentzian setting the fact that the time sep-
aration function satisfies the reverse triangle inequality precludes a direct way of generating
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non-degenerate triangles (i.e., such that the strict triangle inequality holds for τ on their ver-
tices), as required in the standard proof of non-branching under lower curvature bounds (cf.
[50, Lemma 2.4]). Conditions (i) and (ii) of the following theorem are sufficient to exclude
degeneracy of comparison triangles.

Theorem 4.12 Let (X , d,�,≤, τ ) be a strongly causal Lorentzian pre-length space with
timelike curvature bounded below by some K ∈ R such that either

(i) Any point in X has a relatively compact, causally closed neighborhood � such that for
any p � q in � there is a maximal future-directed timelike curve from p to q in � that
is strictly longer than any future-directed causal curve from p to q in � that contains a
null segment, and there is some C > 0 bounding the d-length of any causal curve in �

(cf. (i) and (iv) from Definition 3.16), or
(ii) X is timelike locally uniquely geodesic.

Then, maximal timelike curves in X do not have timelike branching points.

Proof Assume there is a (without loss of generality future-directed) maximal timelike curve
λ : [a, b] → X that has a timelike branching point x = λ(t0) (t0 ∈ (a, b)). Then, there are
future-directed timelike maximal curves α, β : [a, c] → X with c > b such that α(t0) =
x = β(t0), α|[a,t0] = β|[a,t0] = λ|[a,t0] and α([t0, c]) ∩ β([t0, c]) = {x}. Let U be an open
comparison neighborhood of x with respect to MK , and let � be a neighborhood of x as
provided by either (i) or (ii). Let V ⊆ U ∩ � be an open neighborhood of x such that all
causal curves with endpoints in V are contained in U ∩ � (cf. Lemma 2.38 (iii)).

Our first aim is to show that under any of the assumptions (i) or (ii) we can construct a
non-degenerate timelike triangle (p, q, r) in U ∩�, i.e., with τ(p, q) + τ(q, r) < τ(p, r).

Let t ′ ∈ [a, t0) such that p := λ(t ′) ∈ V . Choose s ∈ (t0, c] such that β([t0, s]) ⊆ V and
such that there exists some s̃ ∈ (t0, c] with τ(p, β(s)) = τ(p, α(s̃)), and set r := β(s) and
r ′ := α(s̃).

Assuming (ii), note that I−(r) ∩ V is an open neighborhood of x , thus α−1(I−(r) ∩ V )

is an open neighborhood of t0 in [a, c], so there is an s′ ∈ [a, c], s′ > t0 with q := α(s′) ∈
I−(r) ∩ V . By our choice of V , we have that α([t0, s′]) ⊆ U ∩�. Consequently, we obtain
p � q � β(s) = r and there is a unique future-directed maximal causal curve γ of positive
length from q to r in U ∩ � by Definition 4.7,(ii). This gives a timelike geodesic triangle
(p, q, r) contained inU ∩�. Moreover, by the timelike l.u.g.-property of �, the sidelengths
of (p, q, r) satisfy the strict triangle inequality.

Alternatively assuming (i), we first show τ(r ′, r) = 0. If τ(r ′, r) > 0 we get τ(p, r ′) <

τ(p, r ′) + τ(r ′, r) ≤ τ(p, r) = τ(p, r ′)—a contradiction. Defining s∗ := sup{t ∈ [t ′, c] :
τ(α(t), r) > 0}, we obtain s∗ ≤ s̃ and thus q∗ := α(s∗) ≤ r ′ and τ(q∗, r) = 0. We
distinguish two cases: First, let q∗ � r ′. Then, τ(p, q∗) < τ(p, r ′) = τ(p, r) and we pick
ε > 0 such that τ(p, q∗) + ε < τ(p, r). By continuity, we can choose q � q∗ on α with
τ(q, r) < ε, and hence τ(p, q)+ τ(q, r) < τ(p, q∗)+ ε < τ(p, r) (Fig. 4). This gives the
non-degenerate timelike triangle. In the second case, where q∗ = r ′ we derive a contradiction
as follows. Picking a sequence tn ↗ s∗, by (i) there exists a sequence σn of future-directed
timelike curves inU ∩� from α(tn) to r . By Theorem 3.7, σn possesses a limit curve σ that
is future-directed causal and connects r ′ to r . As τ(r ′, r) = 0, σ has to be null. Then, the
concatenation of α|[t ′,s∗] and γ is a future-directed causal curve from p to r that contains a
null segment and so by (i), there exists a strictly longer timelike curve χ from p to r . Hence,

τ(p, r ′) + τ(r ′, r) = Lτ (α|[t ′,s∗]) + Lτ (σ ) < Lτ (χ) ≤ τ(p, r) = τ(p, r ′),

which is impossible.
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Fig. 4 Timelike branching

Thus, under any of the assumptions (i) or (ii) of the theorem we arrive at a non-degenerate
timelike triangle, and it is clear that the points in the above constructions can be chosen in
such a way that the side lengths of this triangle satisfy timelike curvature bounds.

Let 
̄ := ( p̄, q̄, r̄) be a comparison triangle in MK . Denote the sides of 
̄ by ᾱ, β̄, γ̄ and
let x̄1 be a point on ᾱ and x̄2 �= r̄ a point on β̄ such that τ̄ ( p̄, x̄1) = τ̄ ( p̄, x̄2) = τ(p, x) > 0.
Note that since 
̄ is a non-degenerate triangle we have that x̄1 �= x̄2. Moreover, we have
τ̄ (x̄1, r̄) < τ̄ (x̄2, r̄) since otherwise the broken future-directed timelike geodesic going from
p̄ to x̄1 to r̄ would be at least as long as the unbroken future-directed timelike geodesic β̄

from p̄ to r̄ . Finally, since the timelike curvature is bounded from below by K we obtain that

τ(x, r) = τ̄ (x̄2, r̄) > τ̄ (x̄1, r̄) ≥ τ(x, r),

a contradiction. �
As an immediate consequence, we obtain:

Corollary 4.13 Let (X , d,�,≤, τ ) be a strongly causal Lorentzian length spacewith timelike
curvature bounded below by some K ∈ R that is either regular and locally compact or
timelike locally uniquely geodesic. Then, maximal timelike curves in X do not have timelike
branching points.

4.5 Causal curvature bounds

As already indicated in Remark 4.9, Alexander and Bishop [1] introduced Alexandrov cur-
vature bounds for smooth semi-Riemannian manifolds. In fact, they achieve a complete
characterization of sectional curvature bounds in terms of triangle comparison [1, Thm. 1.1].
In their approach, the sides of any given geodesic triangle (in a sufficiently small normal
neighborhood) are parametrized on the interval [0, 1], and this affine parameter is used for
comparing with corresponding triangles in the model spaces. Moreover, timelike geodesics
are assigned negative lengths, and spacelike geodesics positive lengths.

When trying to generalize this approach to Lorentzian pre-length spaces, there are two
basic problems. First, there is no built-in notion of spacelike curve in our setting. In addition,
while in the timelike case a viable substitute for a geodesic in Lorentzian manifolds is given
by the notion of maximal causal curve between timelike-related points (as implemented in
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Definition 4.7), even for maximal null curves there is no natural parametrization. Indeed,
the affine parametrizations on [0, 1] employed in the comparison results of [1] rely on the
fact that geodesics satisfy a second order ODE, which already for Lorentzian metrics on
spacetimes of regularity below C1 has no classical counterpart, hence is also unavailable in
our setting.

Nevertheless, a restricted notion of causal curvature bounds can also be implemented for
Lorentzian pre-length spaces. In fact, in addition to timelike geodesic triangles in the sense
of Definition 4.1 we may consider triangles (x, y, z) that satisfy x � y ≤ z or x ≤ y � z
such that τ(x, z) < ∞ and such that the sides (if non-trivial) are realized by future-directed
causal curves. Such triangles will be called admissible causal geodesic triangles. Those sides
of any such triangle whose vertices are timelike related are called the timelike sides of the
triangle. Since one of the sides of the triangle may have vanishing τ -length, when realizing
such sides by maximal curves in X , or the comparison triangle by causal geodesics in the
model spaces, we now allow for the degenerate cases where the realizing curve (either in X
or in the model space) is in fact constant. By [1, Lemma 2.1], the realizability Lemma 4.6
only needs minor modifications to also cover the current setup: Let (a, b, c) ∈ R≥0, with
c ≥ a+b and at most one entry equal to 0. Then, the same bounds as is Lemma 4.6 guarantee
the existence of causal comparison triangles in the model spaces. With these conventions,
the analogue of Definition 4.7 reads:

Definition 4.14 ALorentzian pre-length space (X , d,�,≤, τ ) has causal curvature bounded
below (above) by K ∈ R if every point in X possesses a neighborhood U such that:

(i) τ |U×U is finite and continuous.
(ii) Whenever x, y ∈ U with x < y, there exists a causal curveα inU with Lτ (α) = τ(x, y).
(iii) Let (x, y, z) be an admissible causal geodesic triangle inU , realized by maximal causal

curves (or a constant curve, respectively) α, β, γ whose side lengths satisfy timelike
size bounds for K , and let (x̄, ȳ, z̄) be a comparison triangle of (x, y, z) in MK realized
by causal geodesics (or a constant curve, respectively) ᾱ, β̄, γ̄ . Then whenever p, q are
points on the timelike sides of (x, y, z) and p̄, q̄ are corresponding points of the timelike
sides of (x̄, ȳ, z̄), we have τ(p, q) ≤ τ̄ ( p̄, q̄) (respectively τ(p, q) ≥ τ̄ ( p̄, q̄)).

Again such a neighborhood U is called a comparison neighborhood with respect to MK .

Since as explained above there is no natural parametrization for the null side of an admis-
sible causal geodesic triangle, there is also no natural notion of corresponding points for these
sides and the null side of the comparison triangle in the model space. Thus the restriction to
the timelike sides in the above definition.

Despite this limitation, causal curvature bounds make it possible to establish properties
of maximal curves and of length-increasing push-up that are closely analogous to those of
regularly localizable Lorentzian length spaces (cf. Theorems 3.18 and 3.20). To show these,
we start with the following observation:

Proposition 4.15 Let (X , d,�,≤, τ ) be a strongly causal Lorentzian pre-length space with
causal curvature bounded above. Let γ : [a, b] → X be a future-directed causal curve with
γ (a) � γ (b) and suppose there exists some (non-trivial) subinterval [c, d] of [a, b] such
that γ |[c,d] is null. Then, γ is not maximal.

Proof It suffices to consider the case where a < c and d = b. So suppose, to the contrary,
that γ were maximal and let t0 := inf{t ∈ [a, b] : Lτ (γ |[t,b]) = 0}. By Proposition 2.34 (ii)
and the lower semicontinuity of τ , Lτ (γ |[t0,b]) = τ(γ (t0), γ (b)) = 0. Also, a < t0(≤ c)
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Fig. 5 Push-up via upper causal curvature bound

since otherwise τ(γ (a), γ (b)) would vanish, contrary to our assumption. Moreover, for any
a ≤ s < t0, τ(γ (s), γ (t0)) = Lτ (γ |[s,t0]) > 0 by definition of t0, and γ (s) � γ (b) (Fig. 5).

Pick some x := γ (s) and z := γ (t) for s < t0 < t and s, t sufficiently close to t0
so that both points are contained in a comparison neighborhood U around y := γ (t0).
Again by Proposition 2.34 (i), τ(x, z) = Lτ (γ[s,t]) = Lτ (γ[s,t0]) = τ(x, y) > 0, and
τ(y, z) = Lτ (γ[t0,t]) = 0. Also, we may choose s and t such that the side lengths satisfy
timelike size bounds for the upper bound K on the curvature. Then, the corresponding
comparison triangle (x̄, ȳ, z̄) in the model space MK is degenerate, with the timelike sides
coinciding and the null side collapsing to a single point ȳ = z̄.

Since X is strongly causal, we may choose a point w < z on a realizing causal curve σ

from x to z that is sufficiently close to z so that w /∈ I−(y). However, by our assumption on
the upper curvature bound we have 0 < τ̄(w̄, ȳ) ≤ τ(w, y), a contradiction. �
Remark 4.16 Combining Proposition 4.15 with the general assumptions on comparison
neighborhoods, we obtain that in a strongly causal Lorentzian pre-length space with causal
curvature bounded above, every point possesses a neighborhood in which property (iv) from
Definition 3.16 is satisfied. This allows us to adapt the proofs of Theorems 3.18 and 3.20
almost verbatim to obtain the following two results.

Theorem 4.17 In any strongly causal Lorentzian pre-length space with causal curvature
bounded above, maximal causal curves have a causal character, i.e., if for a (future-directed)
maximal causal curve γ : [a, b] → X there are a ≤ t1 < t2 ≤ b with γ (t1) � γ (t2), then γ

is timelike. Otherwise it is null.

Furthermore, also in the current setting the principle of length-increasing push-up of causal
curves is valid:

Theorem 4.18 Let (X , d,�,≤, τ ) be a strongly causal Lorentzian pre-length space with
causal curvature bounded above and let γ : [a, b] → X be a future-directed causal curve.

(i) If Lτ (γ ) > 0 and if γ |[c,d] is null on some (non-trivial) subinterval [c, d] of [a, b], then
there exists a strictly longer future-directed timelike curve σ from γ (a) to γ (b).
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(ii) If there exist a ≤ c < d ≤ b such that γ |[c,d] is rectifiable, then there exists timelike
future-directed curve from γ (a) to γ (b).

This result provides an interesting perspective on length-increasing push-up, namely that it
is a necessary consequence of any upper bound on synthetic causal curvature, while in the
smooth setting it is usually traced back to theGaussLemma.As already pointed out inRemark
4.16, there is also a close connection to regular localizability in the sense of Definition 3.16,
cf. also Example 5.13 (ii).

Another consequence of the observation in Remark 4.16 is the following corollary of
Theorem 4.12.

Corollary 4.19 Let (X , d,�,≤, τ ) be a strongly causal Lorentzian pre-length space with
timelike curvature bounded below and causal curvature bounded above. Then, maximal
timelike curves in X do not have timelike branching points.

4.6 Curvature singularities

The synthetic approach to curvature bounds developed in the previous sections in particular
allows one to define curvature singularities in Lorentzian pre-length spaces, and thereby
in particular in spacetimes of low regularity, where a classical description in terms of the
Riemann curvature tensor is not viable, or even in settings where there is no spacetime metric
available at all. In the present section, we introduce the necessary notions.

Definition 4.20 A Lorentzian pre-length space (X , d,�,≤, τ ) has timelike (respectively,
causal) curvature unbounded below/above if every point in X possesses a neighborhood U
such that 1. and 2. from Definition 4.7 (respectively, Definition 4.14) are satisfied, but such
that the corresponding part of property 3 from these definitions fails to hold for any K ∈ R.
In this case, we say that X has a curvature singularity.

Thus, we assume that locally there always exist timelike triangles, but that the comparison
conditions fail somewhere in X .

Example 4.21 Consider a causal funnel X as in Example 3.19 with λ timelike. Since X is
clearly timelike uniquely geodesic, Example 4.11 (i) and Theorem 4.12 imply that X has
timelike curvature unboundedbelow.Moreover, ifλ is null then one easily constructsmaximal
curves violating Theorem 4.18 (i), so in this case the causal curvature of X is unbounded
above.

Curvature singularities are of central importance in General Relativity. As an application
of the notions introduced above, we therefore demonstrate that the central singularity of the
interior Schwarzschild metric can be detected by timelike triangle comparison.

Example 4.22 The curvature singularity of the interior of a Schwarzschild black hole.
Consider the interior Schwarzschild metric (cf., e.g., [15,41,57])

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2) , (13)

where M > 0, t ∈ R, r ∈ (0, 2M) and θ , φ parametrize the two-sphere S2. The metric (13)
has the form of a warped product, with fiber S2 and leafs isometric to R × (0, 2M) with
metric

g = −
(
2M

r
− 1

)−1

dr2 +
(
2M

r
− 1

)
dt2. (14)
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We write g in this form to emphasize that, in the Schwarzschild interior, the coordinate r is
timelike, and t is spacelike. As is well known, for r → 0+, this metric incurs a curvature
singularity. In fact, its sectional curvature (i.e., its Gauss curvature), is given by K = 2M

r3
[41, Lemma 13.3], hence goes to +∞ as one approaches the spacelike hypersurface r = 0.

Although [1, Thm. 1.1] provides a characterization of sectional curvature in terms of
triangle comparison, we cannot directly from that result conclude that the spacetime (14)
displays a timelike curvature singularity in the sense of Definition 4.20. In fact, divergence
of timelike sectional curvature (as is the case here) only implies that triangle comparison for
triangles of arbitrary causal character will fail, and does not necessarily entail that timelike
triangles will be the culprits for this behavior. Instead, to verify the conditions of Definition
4.20 we will explicitly study a family of timelike geodesic triangles approaching r = 0.

For brevity, put h(r) := 1− 2M
r . Then denoting by τ proper time along a timelike geodesic,

by [41, Prop. 13.11] in the case L = 0, for the constant of motion E we have

E = h(r)
dt

dτ
(15)

E2 =
(
dr

dτ

)2

+ h(r). (16)

By [15, Eq. (81)], for E = 1 there are two families of pregeodesicsγ±(r) = (r , t±(r)+const),
where

t±(r) = ±2

3
(6M + r)

√
r

2M
∓ 4Martanh

(√
r

2M

)
. (17)

Here, the corresponding proper time is given by (see [15, Eq. (76)])

τ(r) = ±
√
2r

M

r

3
+ const. (18)

Also, for E = 0 there is a pregeodesic of the form γ0(r) = (r , 0), with

dr

dτ
=

√
2M

r
− 1. (19)

Now fix the constant in γ− to be −2C for some C > 0 to be specified later, and denote, for
k ∈ N, by γ

(k)
+ the pregeodesic γ+ with constant C

k . Let x be the intersection of γ0 and γ−,
yk that of γ− and γ

(k)
+ , and zk that of γ

(k)
+ and γ0 (see Fig. 6). As the time orientation in the

Schwarzschild interior is directed towards r = 0, (x, yk, zk) is a timelike triangle with the
corresponding pregeodesics from above as realizing sides.

Wewill use the timelike triangles (x, yk , zk) to demonstrate that the interior Schwarzschild
solution has a curvature singularity in the sense of Definition 4.20, more precisely that the
timelike curvature is unbounded below.

Suppose, to the contrary, that the timelike curvature were bounded below by some K ∈ R.
It follows from (18) and (19) that each of the above geodesics reaches r = 0 in finite proper
time and that these finite times go to zero as C → 0+. Thus, we can choose C > 0 so small
that each triangle satisfies timelike size bounds for K .

Consider now the scalar product of the unit tangent vectors of γ0 and γ
(k)
+ at zk =: (0, rk).

A straightforward calculation shows that this is given by

− 1√
1− (t ′+)2(rk)

(
2M
rk

− 1
)2 →−1 (k →∞),
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Fig. 6 Infalling timelike geodesics for M = 1 and C = 0.5

confirming that the triangles become degenerate, with the hyperbolic angle at zk collapsing
to 0 as k →∞.

One can now apply [1, Prop. 5.1] to conclude that the comparison triangles in the model
space must display the same behavior. In fact, as in [1] denote by γpq (respectively, γ̄ p̄q̄ )
the maximal timelike geodesic connecting p to q # p in the spacetime (respectively, p̄ to
q̄ # p̄ in MK ), parametrized on [0, 1]. Moreover, let Eq(r) := 〈γ ′

qr (0), γ
′
qr (0)〉. Then by

[1, Eq. (5.3)], for a timelike geodesic triangle (p, q, r),

(Eq ◦ γpr )
′(0) = −2

〈
γ ′
pq(0), γ

′
pr (0)

〉
, (20)

and analogously for ( p̄, q̄, r̄) in MK . The key observation now is that to calculate the left
hand side of this equation, information is only required about (Eq ◦ γpr )(t) for t arbitrarily
close to 0 and that, since p ∈ I−(q), so is γpr (t) for t small. Hence, knowledge of time-
like distances suffices to determine (Eq ◦ γpr )(t). More precisely, −(Eq ◦ γpr )(t) equals
the square of the time separation from γpr (t) to q . Consequently, our assumption on time-
like triangle comparison implies that (Eq ◦ γpr )

′(0) ≥ (Ēq̄ ◦ γ̄ p̄r̄ )
′(0), hence by (20) that

〈γ ′
pq(0), γ

′
pr (0)〉 ≤ 〈γ̄ ′̄

pq̄(0), γ
′̄
pr̄ (0)〉. Since the sidelengths of (p, q, r) and ( p̄, q̄, r̄) coin-

cide by definition, the same relation must hold between the scalar products of the unit tangent
vectors.

Applying this to the timelike triangles (x, yk, zk) and (x̄, ȳk, z̄k), it follows that the assump-
tion of the lower bound K on the timelike curvature in the sense of Definition 4.7 implies that
the hyperbolic angle at z̄k must also go to 0 as k →∞. But in themodel spaceMK , (x̄, ȳk, z̄k)
converges to a non-degenerate timelike triangle whose side lengths equal the (non-trivial)
limits of the sidelengths of (x, yk, zk) (hence satisfy the strict reverse triangle inequality), a
contradiction.
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5 Classes of examples

5.1 Continuous Lorentzianmetrics

As a main application of the theory developed so far, in this subsection we are going to show
that any smooth manifold endowed with a continuous, strongly causal and causally plain (as
defined in [12]) Lorentzian metric provides a natural example of a Lorentzian length space.

Let M be a smooth manifold, and let g be a continuous Lorentzian metric on M (cf.
Example 2.2). By a causal, respectively, timelike curve in M we mean a locally Lipschitz
curve whose tangent vector is causal, respectively, timelike almost everywhere. It would also
be possible to start from absolutely continuous curves, but since causal absolutely contin-
uous curves always possess a reparametrization that is Lipschitz (cf. the discussion in [37,
Sec. 2.1, Rem. 2]), the above convention is not a restriction.

The time separation function τ : M × M → [0,∞] is defined in the standard way, i.e.,
τ(x, y) = sup{Lg(γ ) : γ future-directed causal from x to y}, if x ≤ y and τ(x, y) = 0
otherwise. Here, by Lg(γ ) we denote the g-length of a causal curve γ : [a, b] → M , i.e.,

Lg(γ ) = ∫ b
a

√−g(γ̇ , γ̇ ) dt . Then 2.8 (1), i.e., the reverse triangle inequality for τ , just as in
the smooth case, follows directly from the definition. Also, we fix any complete Riemannian
metric h on M and denote by dh the metric introduced by h.

Remark 5.1 Any Lg-maximal curve γ is also Lτ -maximal, and Lg(γ ) = Lτ (γ ). In fact,
suppose that γ is future-directed causal from p to q with Lg(γ ) = τ(p, q). Since τ(p, q) ≥
Lτ (σ ) for any future-directed causal curve σ from p to q , γ is also Lτ -maximal. Moreover,
Lg(γ ) ≥ Lτ (γ ) and since the converse inequality always holds (see Lemma 5.10), Lg(γ ) =
Lτ (γ ).

Example 5.2 It was shown in [12] thatwithout further assumptions, causality theory of contin-
uous Lorentzian metrics displays a number of unexpected (and unwanted) new phenomena.
Consider the following metric on R

2 [12, Ex. 1.11]:

g = − (
du + (1− |u|λ)dx)2 + dx2, (21)

where λ ∈ (0, 1). Then, g ∈ C0,λ(R2) and g is smooth everywhere except on the x-axis.
However, the light cone J (p)\ I (p) of any point p on the x-axis has nonzero measure (and is
covered by the null curves emanating from p). For points q in the interior of this region (the
so-called bubbling region), push-up fails. Also, although τ(p, q) > 0, there does not exist
any timelike curve connecting p to q , so p �� q . In addition, as already noted in [22], τ is
not lower semicontinuous for this spacetime: Let p be the origin and let q ∈ ∂ I+(p). Then,
τ(p, q) > 0, but taking pn := ( 1n , 0), τ(pn, q) = 0 for every n. Consequently (fixing any
background Riemannian metric h on R

2), (R2, dh,�,≤, τ ) is not a Lorentzian pre-length
space.

In order to exhibit additional exotic causality properties of continuous Lorentzian metrics,
let us study the metric g from (21) in greater depth. For concreteness, set λ := 1

2 and let
M := (−1, 1) × R. Thus, the metric is

g(u,x) = −du2 + 2
(√|u| − 1

)
du dx + √|u|

(
2− √|u|

)
dx2,

and its inverse is given by

g−1
(u,x) =

√|u|
(√|u| − 2

)
du2 + 2

(√|u| − 1
)
du dx + dx2.
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We first collect some basic facts about the causality of (M, g), choosing the time orienta-
tion by defining ∂u to be future directed.

Let γ = (α, β) : [a, b] → M be a causal curve, then

0 ≥ −α̇(s)2 + 2
(√|u| − 1

)
α̇(s)β̇(s) + √|u|

(
2− √|u|

)
︸ ︷︷ ︸

>0

β̇(s)2

≥ −α̇(s)2 + 2
(√|u| − 1

)
α̇(s)β̇(s),

for all s ∈ [a, b] such that γ̇ (s) exists (i.e., for almost all s ∈ [a, b]).
Furthermore, the time orientation of γ gives

0 > −α̇(s) +
(√|u| − 1

)
β̇(s) (if γ is future-directed), (22)

0 < −α̇(s) +
(√|u| − 1

)
β̇(s) (if γ is past-directed), (23)

again for all s ∈ [a, b] such that γ̇ (s) exists.

Lemma 5.3 The spacetime (M, g) is strongly causal.

Proof Define f : M → R by f (u, x) := u, then the gradient of f is given by grad ( f )(u,x) =√|u|(√|u| − 2)∂u + (
√|u| − 1)∂x . Thus,

g(u,x) (grad ( f ), grad ( f ))

= −
(√|u|

(√|u| − 2
))2 + √|u|

(√|u| − 2
)

︸ ︷︷ ︸
<0

(√|u| − 1
)2 ≤ 0,

and g(u,x)(grad ( f ), grad ( f )) < 0 for u �= 0. Moreover, g(u,x)(grad ( f ), ∂u) = 1, so
grad ( f ) is past-directed causal onM and past-directed timelike on (−1, 0)×R and (0, 1)×R,
hence is a temporal function there. So strong causality holds on (−1, 0)×R and (0, 1)×R.

It remains to show strong causality at points (0, x0). Let γ = (α, β) : [a, b] → M be
a future-directed causal curve with γ (a) = (0, x0) and γ (b) = (u1, x1). Note that from
grad ( f ) being past-directed causal follows that 0 ≤ α̇(s), whenever γ̇ (s) exists. So α(s) ≥ 0
for all s ∈ [a, b] and if u1 > 0 then γ cannot return to a neighborhood of (0, x0) that does
not contain (u1, x1). Finally, if γ does not enter (0, 1) × R, then α = 0, and so by Eq. (22)
we obtain β̇(s) > 0 almost everywhere. Consequently, γ cannot return to a neighborhood
not containing (0, x1) (note that necessarily x1 > x0). �

Nowfix a point q := (u0, x0) in the (upper right) bubble region, i.e., 0 < u0 < min( x04 , 1).

Proposition 5.4 There exists a maximal causal curve from 0 to q.

Proof By Remark 5.1, it suffices to show the existence of a future-directed causal curve from
0 to q whose Lg-length is maximal. To this end, we will show that J+(0)∩ J−(q) is compact
and then refer to results from [48]. By the above we know that J+(0) ⊆ [0, 1) × R. The
past light cone emanating from q is bounded by the null curves ν, μ given below. Note that
they are pregeodesics on (0, 1) × R, since the metric is smooth there and so [4, Thm. 4.13]
applies. The left bounding null curve ν : [0, x0] → M is given by

ν(x) :=
{(

1
4

(
2
√
u0 − x

)2
, x0 − x

)
(x ∈ [0, 2√u0]),

(0, x0 − x) (x ∈ [2√u0, x0]).
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Fig. 7 J+(0) ∩ J−(q) for q = ( 18 , 1)

It connects q to 0 and is past-directed null. Moreover, note that ν is parametrized as x �→
(v(x), x0 − x) and so satisfies the equation v̇(x) = −√|v(x)| (cf. [12, Eq. (1.20)]). The
other past-directed null curve emanating from q solves the equation

u̇(x) = −2+ √|u(x)|,
if parametrized asμ(x) = (u(x), x). This corresponds to the ε = −1 case in [12, Eq. (1.20)].
As initial condition we impose u(x0) = u0. We can solve this equation as follows: Let
F : [−1, 1] → R be given by

F(s) :=
∫ s

u0

1

−2+√|r | dr + x0 (s ∈ [−1, 1]).

Then clearly F ′(s) ≤ − 1
2 , and hence F is strictly monotonically decreasing and F(u0) = x0.

Define x ′ := F(0) = x0 −
∫ u0
0

1
−2+√|r | dr , a := F(1) and b := F(−1). Then a < x0 <

x ′ < b and F([−1, 1]) = [a, b], so the inverse of F exists, F−1 : [a, b] → [−1, 1]. Finally,
u is given as u := F−1|[x0,x ′] : [x0, x ′] → (−1, 1) and satisfies u(x0) = u0 and u(x ′) = 0.
Thus, μ : [x0, x ′] → M , x �→ (u(x), x) connects q to (0, x ′). Then, as we saw above in
Lemma 5.3, any past-directed causal curve from (0, x ′) to 0 lies on the x-axis.

Now we see that

J+(0) ∩ J−(q)

=
{
(u, x) ∈ M : x ∈ [0, x0] and 0 ≤ u ≤ v(x) or x ∈ [x0, x ′] and 0 ≤ u ≤ u(x)

}
,

which is a compact subset of M (Fig. 7).
Finally, we are able conclude that C̃(0, q) is compact (with respect to the compact-open

topology) as in the first part of the proof of [48, Thm. 3.2]. So, [48, Prop. 6.4] establishes the
existence of a maximal causal curve connecting 0 and q . �

Corollary 5.5 Let γ = (α, β) : [0, 1] → M be a maximal curve from 0 to q, as given by
Proposition 5.4, then γ has a branching point at which it changes its causal character (from
null to timelike).
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Proof We first note that since the future-directed causal curve given by going from 0 along
the x-axis to (0, x0) and then vertically to (u0, x0) = q has length u0 > 0, we know that
Lg(γ ) ≥ u0 > 0. Therefore, γ has to be somewhere timelike and in particular, it has
to leave the x-axis after x0 − 2

√
u0 (where ν intersects the x-axis for the first time) and

before x ′. Off the x-axis, i.e., on (0, 1)×R, γ has to be pregeodesic, since it is maximizing
everywhere and the metric is smooth in this region. Consequently, γ has a causal character
on (0, 1)×R. First, we observe that γ cannot be null on (0, 1)×R, since then Lg(γ ) would
vanish, a contradiction. Thus, γ has to be timelike on (0, 1) × R. This demonstrates that
γ is a maximal causal curve whose causal character changes. Moreover, the point where it
leaves the x-axis is a branching point as defined in Definition 4.10 because the x-axis itself
is maximizing (and null) between any of its points. �

In light of the results of Sect. 4, it can be argued that the root cause of the phenomena
described above lies in the fact that the curvature of the metric g is unbounded near {u = 0},
see [12, Eq. (1.23)].

The foregoing considerations demonstrate that Lorentzian metrics that are merely contin-
uous do not provide a satisfactory causality theory, a problem clearly recognized already by
Chrusciel and Grant [12]. As a sufficient condition for reasonable causality properties of con-
tinuous Lorentzianmetrics, these authors introduced the notion of a causally plainLorentzian
metric. To define this concept, let us first recall from [12, Def. 1.3] that a locally Lipschitz
curve γ is called locally uniformly timelike (l.u.t.) if there exists a smooth Lorentzian metric
ǧ ≺ g such that ǧ(γ̇ , γ̇ ) < 0 almost everywhere. ForU ⊆ M open and p ∈ U , by Ǐ±(p,U )

we denote the set of all points that can be reached by a future directed, respectively, past-
directed l.u.t. curve inU starting in p. Moreover, a cylindrical neighborhood of a point p is a
relatively compact chart domain containing p such that in this chart g equals the Minkowski
metric at p and the slopes of the light cones of g remain close to 1 (see [12, Def. 1.8] for
a precise definition). Finally, (M, g) is called causally plain if every p ∈ M possesses a
cylindrical neighborhoodU such that ∂ Ǐ±(p,U ) = ∂ J±(p,U ). Otherwise, it is called bub-
bling. Causally plain spacetimes in particular satisfy the standard push-up properties [12,
1.22–1.24], as well as I±(p) = Ǐ±(p) for every p ∈ M . Any spacetime with a Lipschitz
continuous metric is causally plain [12, Cor. 1.17].

Our main aim in this section is to establish that (M, dh,�,≤, τ ) as defined above is a
Lorentzian length space for any continuous, strongly causal and causally plain metric g.

Lemma 5.6 Let (M, g) be causally plain, and let p, q ∈ M. Then, p � q if and only if
τ(p, q) > 0.

Proof That p � q implies τ(p, q) > 0 is immediate from the definition of τ .
For the converse implication, suppose that τ(p, q) > 0 and let γ be a future-directed

causal curve from p to q with Lg(γ ) ≥ 1
2τ(p, q) > 0. If we can show that γ enters I+(p)

then p � q will follow from push-up [12, Lemma 1.22]. Since the length of γ is strictly
positive, the restriction of γ to a suitable subinterval will also have positive length while at
the same time being contained in a cylindrical neighborhood as in the definition of causally
plain spacetimes around some point on γ . So without loss of generality we may suppose that
γ is contained in such a neighborhood U around p. Now let us suppose that γ never enters
I+(p,U ), i.e., that it remains within J+(p,U ) \ I+(p,U ). By our assumption on U , [12,
Prop. 1.10 (v)] implies that ∂ J+(p,U ) = ∂ Ǐ (p,U ) = ∂ I (p,U ) is given (in the cylindrical
chart overU ) as the graph of a Lipschitz function f . It follows that γ lies entirely within the
graph of f . But then the proof of [12, Prop. 1.21 (v)] shows that γ̇ (t) (if it exists) cannot be
g-timelike at any t . This contradicts the fact that Lg(γ ) > 0. �
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Proposition 5.7 Let (M, g) be causally plain. Then, the time separation function τ : M ×
M → [0,∞] is lower semicontinuous.

Proof We basically follow [4, Lemma 4.4]. Let p, q ∈ M . If τ(p, q) = 0, there is nothing
to prove. Next, let 0 < τ(p, q) < ∞ and, given any 0 < ε < τ(p, q), choose a future-
directed causal curve γ : [0, 1] → M from p to q with Lg(γ ) ≥ τ(p, q) − ε

2 . Now pick
0 < t1 < t2 < 1 such that 0 < Lg(γ |[0,t1]) < ε

4 and 0 < Lg(γ |[t2,1]) < ε
4 . Set p1 := γ (t1)

and q1 := γ (t2), as well as U := I−(p1) and V := I+(q1). Since Lg(γ |[0,t1]) > 0,
τ(p, p1) > 0, which by Lemma 5.6 implies that p ∈ I−(p1). Analogously, V := I+(q1) is
an open neighborhood of q . For any (p′, q ′) ∈ U × V we obtain

τ(p′, q ′) ≥ τ(p′, p1) + τ(p1, q1) + τ(q1, q
′) ≥ Lg(γ |[t1,t2])

= Lg(γ ) − Lg(γ |[0,t1]) − Lg(γ |[t2,1]) ≥ τ(p, q) − ε,

and thereby lower semicontinuity of τ at (p, q).
Finally, if τ(p, q) = ∞, there are causal curves of arbitrary length from p to q . Then, the

previous argument shows that the same is true of any points p′, q ′ in U , respectively, V . �

Collecting the previous results, we obtain:

Proposition 5.8 Let (M, g) be a spacetime with a continuous causally plain metric. Then,
(M, dh,�,≤, τ ) is a Lorentzian pre-length space.

In order for a spacetimewith a continuous causally plain metric to give rise to a Lorentzian
length space, there is one further requirement, namely we have to make sure that the notions
of causal curve and of R-causal curve coincide. In fact, as our next result will show, this is
guaranteed if the spacetime is strongly causal. In its proof, we will make use of time func-
tions, i.e., functions that increase along any future-directed causal curve. In any continuous
spacetime, there always exist smooth local time functions (e.g., the time coordinate in any
cylindrical neighborhood).

Proposition 5.9 For a continuous and strongly causal spacetime (M, g), the notions of causal
and R-causal curve coincide.

Proof By [40, Lemma 3.21] (which remains valid for continuous spacetimes), strong causal-
ity implies that any point in M possesses a neighborhood basis consisting of causally convex
neighborhoods (i.e., such that any causal curve with endpoints contained in the neighbor-
hood remains entirely within it). Suppose now that γ : I → M is an R-causal curve and
let t0 ∈ I . By [10, Lemma 15] it suffices to show that for any smooth local time function
f in a neighborhood U of γ (t0), f ◦ γ is non-decreasing near t0. To this end, let V ⊆ U
be causally convex and let J ⊆ I be an open interval around t0 such that γ (J ) ⊆ V . Then
by R-causality, for t1 < t2 in J there exists a future-directed causal curve σ in M (and
consequently in V ) from γ (t1) to γ (t2). By definition, f is non-decreasing along σ , so in
particular f (γ (t1)) ≤ f (γ (t2)). �

Adding the assumption of strong causality, and defining T as in Definition 3.22, we have:

Lemma 5.10 Let (M, g) be a causally plain spacetime with a continuous, strongly causal
metric and let p, q ∈ M. Then, τ(p, q) = T (p, q). Moreover, for any causal curve γ ,
Lg(γ ) ≤ Lτ (γ ).
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Proof Note first that the claimed inequality on the lengths of causal curves follows from the
first part of the proof of Proposition 2.32.

Also, T (p, q) ≤ τ(p, q) was already shown in Remark 3.23 (iii).
To show the converse inequality suppose, to the contrary, that there exists some ε > 0

such that T (p, q) + ε < τ(p, q). Then, by the definitions of T and τ there exists some
future-directed causal curve σ from p to q such that for any future-directed causal curve γ

we have

Lτ (γ ) < τ(p, q) − ε < Lg(σ ) ≤ Lτ (σ ).

Setting γ := σ now gives a contradiction. �

Remark 5.11 (i) This result indicates that the length coming from a time separation function
τ that in turn is defined via a length functional, is better behaved than Lτ for a generic
τ . In fact, in Lemma 5.10 we show τ = T without knowing whether Lτ equals Lg .

(ii) The assumption of causal plainness in Lemma 5.10 is in fact not needed for the proof.
However, it was added as otherwise τ would not be lower semicontinuous in general
and hence one would not obtain a Lorentzian pre-length space.

Based on this, we can proceed to proving the main result of this section:

Theorem 5.12 Let (M, g) be a spacetime with a continuous, strongly causal and causally
plain metric. Then, (M, dh,�,≤, τ ) is a strongly localizable Lorentzian length space.

Proof Due to Proposition 5.8, Proposition 3.5, Lemma 5.10 and the fact that spacetimes
are causally path connected by definition, it remains to establish that (M, dh,�,≤, τ ) is
strongly localizable (Definition 3.16). We first note that by Proposition 5.9 g-causal curves
are the same as causal curves in the sense of Definition 2.18; hence, we may speak of causal
curves without ambiguity.

Let p ∈ M , then there is a neighborhood U of p such that the h-arclength of all causal
curves in U is bounded by some constant C > 0 by [13, Lemma 2.6.5] or [22, Lemma 2.1].
This gives 3.16 (i).

At this point, let ĝ be a smooth Lorentzian metric on M , with g ≺ ĝ (see [12]). Then,
there exists an (arbitrarily small) ĝ-globally hyperbolic neighborhood (V , xμ) of p that is
causally convex in U by [40, Thm. 2.14] (cf. also [51, Thm. 2.2]). This means that in the
xμ-coordinates one has that x0 = 0 is a Cauchy hypersurface in V with respect to ĝ and
that any ĝ-causal curve in U with endpoints in V is contained in V . Then, x0 = 0 is also
a Cauchy hypersurface with respect to g; hence, (V , g|V ) is globally hyperbolic by [48,
Thm. 5.7], and thus maximal (in V ) causal curves exist between any two (in V ) causally
related points by the Avez–Seifert result for continuous metrics [48, Prop. 6.4]. By strong
causality, we can without loss of generality assume that V is actually causally convex in M .
Clearly, I±(x) ∩ V �= ∅ for every x ∈ V .

Now define ω : V × V → [0,∞) by ω(x, y) := τ(x, y) for x, y ∈ V . Note that any
causal curve from x ∈ V to y ∈ V is contained in V , hence τ(x, y) < ∞ as there exists a
maximal causal curve. This curve is actually globally maximal since V is causally convex in
M . This also implies that ω is continuous. It is lower semicontinuous by Proposition 5.7, so
assume that it were not upper semicontinuous at (x, y) ∈ V × V . Thus, there is a δ > 0 and
sequences xn → x , yn → y in V such that

τ(xn, yn) ≥ τ(x, y) + δ,
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which implies τ(xn, yn) > 0. Consequently, there is a future-directed causal curve αn from
xn to yn with Lg(αn) > τ(xn, yn)− 1

n . Since V is globally hyperbolic there is a limit curve α

from x to y of the αns (by the limit curve theorem [35]), that satisfies Lg(α) ≥ τ(x, y)+δ—a
contradiction. This shows that ω is continuous and establishes 3.16 (ii).

By the above we have that for any x, y ∈ V with x < y there is a globally maximal causal
curve γx,y from x to y. Thus, γx,y is also τ -maximal by Remark 5.1 and so Lτ (γx,y) =
τ(x, y) = ω(x, y), which establishes 3.16 (iii). �

Example 5.13 There are large classes of spacetimes that are in fact regular Lorentzian length
spaces, namely:

(i) Strongly causal Lorentzian metrics g of regularity at leastC1,1. Indeed, for such metrics
property (iv) from Definition 3.16 is an immediate consequence of the Gauss Lemma
(cf. [36] or [30]).

(ii) Continuous causally plain and strongly causalLorentzianmetricswhose causal curvature
is bounded above. In fact, in this case Definition 3.16 (iv) is satisfied by Remark 4.16.

5.2 Closed cone structures

Many results from smooth causality theory can be generalized to cone structures on smooth
manifolds. The interest in such generalizations originated in the problem of constructing
smooth time functions in stably causal or globally hyperbolic spacetimes. Fathi and Siconolfi
[18] studied continuous cone structures and employed methods from weak KAM theory
to address this problem. In [10], Bernard and Suhr considered closed cone structures and
developed a theory of Lyapunov functions for such cone structures, showing, among other
results, the equivalence between stable causality and the existence of temporal functions, or
between global hyperbolicity and the existence of steep temporal functions in this setting.
The deepest and most comprehensive study of causality theory for closed cone structures
to date is the very recent work by Minguzzi [37]. It provides a complete causality theory,
establishing the full causal ladder for such cone structures and containsmanifold applications,
among others to time and temporal functions, singularity theorems, embedding of Lorentzian
manifolds into Minkowski spacetime and non-commutative geometry.

In this section, we follow the approach in [37] and show that closed cone structures provide
a rich source of examples of Lorentzian pre-length and length spaces. We begin by recalling
some basic definitions.

A sharp cone in a vector space V is a subset of V \ {0} that is positively homogeneous,
closed in the trace topology of V on V \ {0}, convex, and does not contain any line through
0. It is called proper if its interior is non-empty. A cone structure on a smooth manifold M
is a map x �→ Cx that assigns to each x ∈ M a sharp non-empty cone. The cone structure
is called closed if it forms a closed subbundle of the slit tangent bundle of M . It is called
proper if it is closed and int(C)x �= ∅ for each x ∈ M . (Semi-)continuity of cone structures
is formulated in terms of the Hausdorff distance on local sphere bundles, see [18, Sec. 2],
[37, Sec. 2].

An absolutely continuous curve γ in M is called causal for the cone structure C if γ̇ (t) ∈
Cγ (t) almost everywhere. Timelike curves are by definition piecewise C1-solutions of the
differential inclusion γ̇ (t) ∈ int(C)γ (t). Based on these notions, one defines the chronological
and causal relations� and < as usual, whereby any locally Lipschitz cone structure induces
a causal space in the sense of Definition 2.1 (cf. [37, Thm. 8]).
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The following notions were introduced in [37, Sec. 2.13]: Given a closed cone structure
(M,C) and a concave, positively homogeneous function F : C → [0,∞), a cone structure
on M× := M × R is defined by

C×
(p,r) :=

{
(y, z) : y ∈ Cp, |z| ≤ F(y)

}
.

The corresponding cone structure (M×,C×) is called a Lorentz–Finsler space (M,F). The
latter is called closed, respectively, proper, respectively locally Lipschitz if (M×,C×) has
these properties. On a closed Lorentz–Finsler space, the length of a causal curve γ : [0, 1] →
M is defined by L(γ ) := ∫ 1

0 F(γ̇ ) dt . The corresponding Lorentz–Finsler distance is defined
as τ(p, q) = 0 if p �≤ q , and τ(p, q) := supγ L(γ ) otherwise, where the supremum is taken
over all future-directed causal curves from p to q . Finally, fix a complete Riemannian metric
h on M . Then, we have:

Proposition 5.14 Let (M,F) be a locally Lipschitz proper Lorentz–Finsler space such that
F(∂C) = 0. Then, (M, dh,�,≤, τ ) is a Lorentzian pre-length space.

Proof In fact, under these assumptions τ is lower semicontinuous by [37, Thm. 52]. Fur-
thermore, τ(p, q) > 0 ⇔ p � q follows from [37, Thm. 55]. The other properties are
immediate from the definitions. �
As in the case of continuous spacetimes, if we want to proceed to establishing the properties
of Lorentzian length spaces we first have to secure that the classes of R-causal and causal
curves coincide. In fact, this is true for any strongly causal closed cone structure, hence
in particular for any strongly causal proper Lorentz–Finsler space: Since the existence of
arbitrarily small causally convex neighborhoods in this case holds by definition, this follows
exactly as in the proof of Proposition 5.9. Moreover, defining T as in Definition 3.22, the
same proof as in Lemma 5.10 gives:

Lemma 5.15 Let (M,F) be a locally Lipschitz proper Lorentz–Finsler space such that
F(∂C) = 0 and suppose that (M,F) is strongly causal. Then, for all p, q ∈ M,
T (p, q) = τ(p, q).

Finally, we can prove:

Theorem 5.16 Let (M,F) be a locally Lipschitz proper Lorentz–Finsler space such that
F(∂C) = 0. If (M,F) is strongly causal, then (M, dh,�,≤, τ ) is a strongly localizable
Lorentzian length space.

Proof By strong causality and [37, Prop. 7], any point x in M possesses a basis of open
neighborhoods that are globally hyperbolic and causally convex.Wemay therefore pick such
a neighborhood �x such that �x is causally closed. Since M is causally path connected by
definition and taking into account Lemma 5.15, it only remains to establish strong localiz-
ability, i.e., properties (i)–(iii) from Definition 3.16 for a neighborhood basis. Now for any
�x , (i) follows from [37, Prop. 7], and to obtain (ii), by [37, Thm. 52 and Thm. 58], we may
set ωx := τ |�x×�x . Finally, (iii) follows from the Avez–Seifert theorem [37, Thm. 54] (or
also from Theorem 3.30). �

Moreover, just as in Example 5.13 (ii), regularity and (SR)-localizability can be achieved
by assuming upper causal curvature bounds.

Finally, a natural open question is whether one can weaken the assumption of local Lip-
schitz continuity of the cone structure by an analogue of causal plainness, as in the case of
continuous spacetimes.
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5.3 Outlook on further examples

The framework developed in the previous sections makes it possible to handle situations
where one might not have the structure of a manifold or Lorentz(-Finsler) metric. Even in
these cases, the theory of Lorentzian (pre-) length spaces allows one to define timelike and
causal curvature (bounds) via triangle comparison. Thus, it provides a new perspective on
curvature in such cases where there is no classical notion of curvature (Riemann tensor, Ricci
and sectional curvature, etc.). This is applies, in particular, to certain approaches to quantum
gravity, as pointed out in, e.g., [38] (see also the corresponding paragraph in the introduction,
Sect. 1). In this non-rigorous outlook, we briefly sketch two such approaches, namely causal
Fermion systems [16,17] and the theory of causal sets [6].

The underlying idea in both cases is that the structure of spacetime has to be modified
on a microscopic scale to include quantum effects. This gives rise to non-smoothness of
the underlying geometry, and only in the macroscopic picture the classical spacetime (i.e., a
Lorentzian manifold) emerges.We briefly recall the relevant definitions, the causal structures
and discuss the connections to Lorentzian (pre-)length spaces.

We startwith the recent approach of causal Fermion systems. Let H be a separable complex
Hilbert space, and let n ∈ N. Let F ⊆ L(H) be the set of all self-adjoint operators on H of
finite rank that have at most n positive and n negative eigenvalues. Let ρ be a measure defined
on a σ -algebra of subsets of F , called the universal measure. Then, (H , F, ρ) is called a
causal Fermion system. The spacetime M is defined as M := supp(ρ) ⊆ F , the support of
the universal measure ρ, with the induced topology from L(H). The causal structure arises as
follows: For x, y ∈ M the product xy := x ◦ y has at most 2n eigenvalues. If all of them have
the same absolute value, x and y are called spacelike separated. If they do not all have the
same absolute value and are real, then x and y are called timelike separated. In all other cases,
x and y are called lightlike separated. There is also a notion of time orientation as follows: For
an operator x ∈ M denote by πx the orthogonal projection on the subspace x(H). Define the
anti-symmetric function C : M × M → R by C(x, y) := i tr(yxπyπx − xyπxπy). One can
therefore define that y lies to the future (past) of x ifC(x, y) > 0 (C(x, y) < 0, respectively).
Now one can define timelike and causal chains and the causal relations x � y if there is
(a future-directed) timelike chain from x to y and analogously x < y for causal chains.
At this point, one is able to introduce a Lorentzian distance on M and obtain the structure
of a Lorentzian pre-length space, as described in [17, Subsec. 5.1]. Whether this gives the
structure of a Lorentzian length space will be considered elsewhere.

Another approach to quantum gravity is the theory of causal sets, which is closely related
to Lorentzian pre-length spaces and Example 2.16.

Let (X ,≤) be a partially ordered set that is locally finite, i.e., for every x, y ∈ X the
set J (x, y) := {z ∈ X : x ≤ z ≤ y} is finite. Writing x < y if x ≤ y and x �= y we
define I (x, y) := {z ∈ X : x < z < y}. This minimal framework induces an analogous
notion of geodesics or maximal curves as follows: (x, y) ∈ X2 is called a link if x ≤ y and
I (x, y) = ∅. A chain is a sequence of points (xi )ni=1 with xi < xi+1 for i = 1, . . . , n−1, and
moreover, a chain is a path if every pair (xi , xi+1) is a link. The length of a chainC = (xi )ni=1
is l(C) = n and a geodesic between x and y (for x < y) is a path from x to y whose length
is maximal over all paths from x to y.

To include causal sets in the framework of Lorentzian pre-length spaces, define �:=<,
i.e., x � y if and only if x < y. Then, (X ,�,≤) is a causal space (in the sense of Definition
2.1) and we define τ(x, y) := sup{l(C) : C is a chain from x to y} and τ(x, y) = 0 if there
is no chain from x to y. Putting any metric d on X that makes τ lower semicontinuous yields
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a Lorentzian pre-length space (X , d,�,≤, τ ). Since J (x, y) is finite for every x, y ∈ X
there is no metric on X that allows continuous parametrizations of J (x, y) and thus it cannot
be turned into a Lorentzian length space. However, there is a close connection and it seems
possible to discretize a Lorentzian length space as one can discretize a Lorentzian manifold
to obtain a causal set.
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