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Introduction



Introduction:

In 1979, Schoen and Yau, using minimal surface techniques, pro-
ved:

Positive Mass Theorem (Schoen-Yau): Let (M™", g), n <
7, be an asymptotically flat manifold with non-negative scalar
curvature, then the ADM mass is non-negative. Furthermore, if
the ADM mass is zero, then M must be isometric to the Euclidean
space.

e Witten gave a different proof that works for any dimension
under the assumption that M is spin.

e Schoen-Yau announced the validity of the Positive Mass
Theorem with no dimensional restrictions.
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Introduction:
The Positive Mass Theorem implies the following rigidity result:

Theorem (Miao): Suppose that g is a smooth metric on the
unit ball B” C R" with the following properties:

e The scalar curvature of g is non-negative,
® gjop» agrees with the standard metric on 0B",
e the mean curvature of 0B™ with respect to ¢ is at least n—1.

Then, g is isometric to the standard metric on B".

Similar results for asymptotically hyperbolic manifolds (Min-
Oo, Anderson-Dahl, Chrusciel-Herzlich....)
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Introduction:

In 1995, Min-Oo, inspired by the Positive Mass Theorem, conjec-
tured:

Min-Oo Conjecture: Let (M", g) be a compact manifold
with boundary OM = ¥ so that R(g) > n(n — 1), X is isome-
tric to S"1 and totally geodesic, then (M, g) is isometric to the
hemisphere S .
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Introduction:

In 1995, Min-Oo, inspired by the Positive Mass Theorem, conjec-
tured:

Min-Oo Conjecture: Let (M", g) be a compact manifold
with boundary OM = ¥ so that R(g) > n(n — 1), X is isome-
tric to S"1 and totally geodesic, then (M, g) is isometric to the
hemisphere S .

e False in general: Brendle-Marques-Neves showed the
existence of such non-trivial metric in the hemisphere, howe-
ver such metric is not conformal to the standard one.

e True: For locally conformally flat manifolds. Hang-Wang,
Spiegel.
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Introduction (Schouten Tensor):

On a Riemannian manifold (M", g), n > 2, we have

Riem = Wy + Schy © g,

where Riem is the Riemann curvature tensor, W, is the Weyl
tensor, ® is the Kulkarni-Nomizu product, and

Schy, = 5 <Ricg — % g>

is the Schouten tensor.

Remark: Trace(Sch,) = C(n) R(g).
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Introduction:
We can rewrite:

Spiegel, Hang-Wang Theorem: Let (M, g) be a loc.
conformally flat manifold so that

2
—Trace(Schy) > 1 in M
n

and OM is isometric to S*™! and totally geodesic. Then,
M is the hemisphere S .

(Recall that Schy, = %g(), go standard metric of S")
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Introduction:

We focus on a more general type of equation, a rich subject in the
last few years: conformally invariant equations. More precisely:

Given a smooth functional f(x1,. .., x,), does there exist a con-
formal metric g = e*gy in S such that the eigenvalues \; of its
Schouten tensor satisfy

FO D RN RS
imposing restrictions along the boundary?

Min-Oo Problem: f(z1,...,x,) => ;.
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Introduction (Elliptic Functionals):

We define the curvature function f : R” — R, considered as a
function on the eigenvalues of the Schouten tensor, is elliptic for
conformal metrics in the following way. Set

e = (2y,--- ,x Z$2>02—12 ,n}

and
I 2 x> 0,1=1,2,--- np
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Introduction (Elliptic Functionals):

Let I' C R" be a symmetric open convex cone and f € C*(T") N
€ (f) Then, (f,I') is an elliptic datum if

I I C [,

2. f is symmetric,

S (in T,

4. flor =0,

5. for all z € I' it holds Vf(x) € T,
6. f is homogeneous of degree 1,

@i 1) =2
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In this talk:

A rigidity result for non-degenerate fully nonlinear Min-Oo type
problems

Theorem (Barbosa, Cavalcante & —): Let g = €*’gy be a con-

formal metric in the hemisphere ST, and let (f,I') be an elliptic
datum. Assume that

1) f(A(p)) 2 1, for X(p) € I" and p € ST,

i) The boundary OS'! with respect to g is isometric to OS] .

Then g = ®*gy, where ® € Conf(S") so that ®(S") = S .
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The objective...

So far, this is a PDE problem. Here, we show a
geometric point of view...

fF(=V?p+dp®dp+3(1—|Vpl*)g) =1
p=20
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The objective...

We use a bridge between the theories of:
e Conformal metrics: g = e*gy on Q C S™

e Hypersurfaces: M™ c H""!' with regular hyperbolic
Gauss map.

E.-Galvez-Mira, E.-Bonini-Qing, E.-Abantos:

There is a global correspondence between pro-
perly immersed horospherically concave hyper-
surfaces ¢ : M" — H""! and complete conformal
metrics e’ gs» on domains ) of the sphere S".
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Hypersurfaces in H"t!




Hypersurfaces in H""': Ball Model
Let ¢ : M™ — H""! = (B"*!, g_;) immersed and oriented, 7 its
unit normal.
The hyperbolic Gauss map
G: M"—>§"

of ¢ is defined as follows: for every p € M™, G(p) € S™ is the point
at infinity of the unique horosphere H, in H"™! passing through
®(p) and with the inner unit normal the same as —n(p) at ¢(p).
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Hypersurfaces in H""!': Ball Model

Figure 1: Hyperbolic Gauss Map
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Hypersurfaces in H""!': Ball Model

Remark: If ¢(M™) = H is a horosphere and 7 its outward
orientation, then its hyperbolic Gauss map G is constant, i.e.,
S — x c 5",

Figure 2: Horospheres
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Hypersurfaces in H""': Hyperboloid Model

Let ¢ : M™ — H*! C L"*? immersed and oriented, n : M™ —
STH C L™*? its unit normal, then, we define the associated
light cone map as

b= — 15 : M — NIT UGN
If we write ¢» = (¢, ...,%¥n41), consider the map G (the hy-

perbolic Gauss map) given by:

i ,
_(wlu NN 7¢7l+1) M — S"
()

So, if we label e” := 1)y (the hyperbolic support function),
we get

G:

i c’(1,G).
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Hypersurfaces in H""': Hyperboloid Model

If (M™) = H is a horosphere
H={yeH"" : (y,a) =1} where (a,a) =0,

and n(y) = y — a its outward orientation, then its associated light
cone map v is constant, i.e.,

= — (1, ) € NI,
where
o p:= dist(0,p(M"))

e €5"
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Properties of the horospherical metric

(A) Since ¢ = e”(1,G), it satisfies
g = (dy, dy) = €(dG, dG)sn.

Hence, g is a Riemannian metric iff G is a local diffeomorphism.
g is the horospherical metric.

(B) In particular, the horospherical metric g is conformally flat.

We need a geometric property to ensure that g
is a Riemannian metric

€« €« » » A4 > ON¥N H O



Horospherically concave hypersurfaces in H""!

Let M"™ C H""! be immersed and oriented. The following condi-
tions are equivalent:

1. M™ lies around any point p strictly at the concave side of
the tangent horosphere at p whose normal points into the
concave side of the tangent horosphere.

2. k; > —1 hold simultaneously at every point.

g = {d(e;), dp(e;)) = (1 + ki) (1 + K;5)ds

3. G: M"— §S" is a local diffeomorphism.

4. Its horospherical metric g is Riemannian.
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The bridge principle




The bridge

Let ¢ : U C (S", gg) — H"™ be a locally horospherical hypersur-

face with G(z) = x and hyperbolic support function e”. Then, it
holds

p
¢ = % (1472 (14 ([V*%p||2,)) (1, 2) + e7?(0, —z + V¥p)

el
e eii= TR e 25ch, (e, 6'7'))2

1
II = I-5g-+Sch,

Here: g = €*’gy = horospherical metric and ey,...,e, € T,S"
orthonormal frame w.r.t. go, such that Ve; = 0.
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From hypersurfaces in H""! to conformal me-
trics

Let ¢ : M™ — H"™! be horospherically concave with G(x) = .

Then, its horospherical metric g = ¢*’gy is a conformal metric on
G(M™) C S™ whose Schouten tensor eigenvalues are

1 1

2_2 1+/€L

Moreover, it holds (when we view H"™ C LL""?)

P
BRI ([V70][5,)) (1,5) + e7°(0, —2 + V¥p).
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From conformal metrics to hypersurfaces in H""!

Let g = €* gy denote a conformal metric having Schouten tensor
eigenvalues {\1,..., A\, }. Assume

V1 /2 (or equivalently, if g/2 — Sch, > 0).
Then the map ¢ : S* — H"*! C L"*2 given by

p
¢ = % (1+e2? (1+|[V%p|2)) (1,2) + e77(0, —z + V¥p)

is a horospherical ovaloid with horospherical metric ¢, such that
1 1t

§ 2 1+/€j.

Remark: the condition in blue can always be attained by a di-
lation.
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Geodesic Flow and Dilatations

Let ¢ : Q C S" — H""! be an oriented horospherical concave
hypersurface so that G(z) = x.

Let {¢:},.g denote the geodesic flow of ¢ in hyperbolic space
H", that is,

$1(2) = expyp)(—tn(x)) = B(z) cosht — (z) sinh,

where exp denotes the exponential map for the hyperbolic metric.

The hyperbolic Gauss maps G; remain invariant under this
flow and the horospherical metric of ¢; is g, := e*'g, where g is
the horospherical metric of ¢.
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Geodesic Flow and Dilatations

Conversely, given a conformal metric g := e*’gs» on S™, one con-
siders a family of rescaled metric g; = e*g.

e Choosing ¢, large so that e "Sch, < %, it follows that the

one parameter family of hypersurfaces

p+t
B e 7% (11 [Vol)) (1,5) +e AU

for t > ty consists of immersed, horospherically convex hy-
persurfaces with hyperbolic Gauss map G;(z) = z the iden-
tity.

e The eigenvalues of the Schouten tensor change as

A]ZL == G_t)\,j.
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Isometries and Conformal Diffeomorphism

T € Iso(H"!) one-to-one ® € Conf(S")

Let ¥ Cc H""! be horospherically concave with horospherical
metric ¢, then the horospherical metric § associated to ¥ = T/(X)
is given by g = P*g. Viceversa, given a conformal metric g on
a subdomain of the sphere with associated hypersurface X, given
by the representation formula under the appropriated conditions,
the associated horospherically concave hypersurface 3 associated
to the conformal metric § = ®*¢ is given by ¥ = T(X).
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Fully nonlinear
Min-Oo Conjecture




Min-Oo Conjecture

Theorem (Barbosa, Cavalcante & —): Let g = %’y be a con-

formal metric in the hemisphere S, and let (f,I') be an elliptic
datum. Assume that

i) f(A(p)) > 1, for A(p) € T" and p € S},

i) The boundary OS'. with respect to g is isometric to OS',.

Then g = gy 1S the standard metric.
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Ideas involved in the proof




Idea of the proof...

Claim A: Given a conformal metric on ST super-solution
to an elliptic datum (f,T), there exists ty > 0 so that
the dilated metric g, :== e*q, t > ty, satisfies:

® g; is a super-solution to the elliptic problem

fri(X(p)) > e, X(p) €Ty, peSt,
gE=p Lt =1, onJS].

where f;(A'(p)) = f(e”*A(p)) and Ty = e 'T".
e (P1) p =0 along OS'".

o (P2) [Schy,| < 1/2.
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Claim A

(P1) By Obata Theorem, up to a conformal diffeomorphism,
we can assume that p = 0 along the boundary.

(P2) This follows from

B i =1,...,n.

€« €« » » A4 > ON¥N H O



Idea of the proof...

Claim B: Given a conformal metric on ST, there exists
a horospherically concave embedded hypersurface

¢+(S}) =: Ty C H

with compact boundary 0%; such that ¥; and 0%; are
topologically " and 0S't = S"! respectively.
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Idea of the proof...

Theorem (Abanto-E.): Let Q@ C S™ be an open do-
main and O = V1UVy, VINVy = 0. Let p € C**(Q U V)
be such that o = e ? € C**(QU V) satisfies:

1. 0% can be extended to a CY' function on Q.
2. |Val|? can be extended to a Lipschitz function on Q.
Then, there is tg > 0 such that for all t > ty the map

¢ : QUYV, — H" associated to p = p +t is an
embedded horospherically concave hypersurface.

€

2@ =%~ T ey ver )

(20%(z) z 4+ Vo?(z)) € B™

€= €
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Idea of the proof...

Claim C: Let v : R — H"" be the complete geodesic
(parametrized by arc-length) joining the south and north
poles. Let C; be the cylinder in H' ! of axis v and radius
t. Then, 0%, lies outside the interior of C; and 0% N
C: C P, that is, at points at the boundary where ¥ s
orthogonal to P.

A direct calculation shows that if x € OS"! then:

L 2
drn+1(93(z), v(s)) > arc cosh <COSh<pt> \ % <%> )

>t
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Claim C

Figure 3: The boundary 0%, lies in the envelope by horospheres at distance ¢
from the origin
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Finishing the proof....

Figure 4: Consider the half-sphere S;” = S; N P+ and observe that S, is
orthogonal to P along the boundary dS;" and its horospherical metric is given
by §: = e*gp and \; := e7t/2.
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Finishing the proof....

o Let T, : H"*!' — H"*! be the hyperbolic translation at dis-
tance s along v so that T5((1,0)) = 7(s), an isometry of
H™tL. Tt is clear that T,(S; \ 9S;) N 9%; = 0, for all s € R.

o Let ®, € Conf(S") be the unique conformal diffeomorphism
associated to Ts. Set S := T,(S;) for all s € R, then
the horospherical metric associated to S is given by g s =
e*'®*gy in S" and denote by p; s € C°°(S") the horospherical
support function associated to Sis, i.€, grs = ePus g,

e Let g s be the restriction of g, s to 87, i.e., §m|§,¢ = G 5, and

prs the restriction of p; ¢ to @
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Finishing the proof....




Finishing the proof....

Claim F: p; > p; 4, in @




Finishing the proof....

Note that, since the elliptic data is homogeneous of degree one,
we have that g; satisfies

FOu(p)) = FleA(p)) > e for all p € S
and the horospherical metric of S;', = satisfies
F., (0)) = F(e™ g (p) = e7f(1/2,...,1/2) = 7" for all p € S,
that is

fg(p) = (A, (p)) for all p € ST
and

Pt = Prs, in ST and pi(Z) = prs (T)
By Li-Li’s Maximum Principle, we get

A o T
= . inS"
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Thanks you!



