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Introduction 

In this note we prove the following theorem. 

THEOREM I. Let F E C2(R) be a non-negative function and u E C3(Rn) a 
solution in all of R" of the equation 

= f ( u ) ,  

where f = F" is the Jirst derivative of F. If u is bounded on R 
x,, E R" such that F(u(x,)) = 0, then u is constant. 

and there exists 

The point of this result is that no convexity is assumed about F. Indeed, it is 
well known by a theorem of J. Serrin [ 5 ]  that, when F is convex, then any 
bounded entire solution of A M  = f ( u )  is constant. On the other hand, if we drop 
the assumption F(u(x,)) = 0, it is very easy, as we show in a moment, to give 
examples of bounded entire solutions which are not constant. Here and in the 
following, by entire solution we mean solution in the whole R". 

A nonlinear Poisson equation to which our result applies is A M  = sinu (it 
suffices to choose F(t) = 1 - cost) and, in this case, Theorem I could be 
formulated as follows: any bounded nonconstant entire solution of A M  = sinu 
lies entirely in some strip 2k77 < u < 2(k + l ) m  with k E Z. If we observe that 
u(xl,' ' ', x,) = 4arctanexp{ xl} is a bounded entire solution of Au = sin u such 
that inf u = 0 and sup u = 2 m ,  then it is clear that in some sense our result is 
optimal. 

In the physical literature some "entire" solutions of A M  = sin u with oscilla- 
tion in R "  equal to 4m, 677, . * are constructed, for example (see G. Leibbrandt 
[2]), in R with polar coordinates 

u ( p , 8 )  = 4arctan 
exp{ pcos8) - exp{ psino} 
1 - exp{ p(cos8 + sine)} 

These solutions appear to contradict our theorem but actually they are not entire 
solutions in our sense. In fact, even if formally we have AM = sin u in the whole 
R ", u is not defined as single-valued function on the straight line cos 8 + sin 8 = 0. 
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Note that, even if we consider arctan as a multiple-valued function, u is singular 
at the origin. 

The proof of Theorem I is an immediate consequence of the following 
gradient bound. 

THEOREM 11. Let F E C2(R) be a non-negutiue function and u E C3(R ") be a 
bounded entire solution of the equation Au = f ( u ) .  Then \Du12(x) 2 2 F ( u ( x ) )  for 
every x E R". 

A proof of Theorem 11, under some additional conditions on F and, in 
particular, under the assumption F( u ( x ) )  # 0 for every x E R ", was obtained in 
a joint paper with S. Mortola [3] by using the gradient bounds proved by L. A. 
Peletier and J. Serrin [4]. Attempts to eliminate the condition F ( u ( x ) )  f 0 in 
order to obtain the Liouville theorem (Theorem I) remained unsuccessful until B. 
Kawohl pointed out to us the work of L. E. Payne, R. P. Sperb, I. Stakgold and 
others (see Sperb's book [6]) about the so-called P-functions for the equation 
A u  = f ( u ) ;  the simplest example is just IDu12(x) - 2 F ( u ( x ) ) .  Thus, Theorem I1 
can be regarded as a theorem about P-functions in unbounded domains without 
boundary conditions on u except the boundedness, while, to our knowledge, the 
results of the authors quoted above are mainly concerned with bounded domains 
and given boundary conditions (Dirichlet's, Neumann's, Robin's, etc.). However, 
the proof of Theorem I1 we give here does not depend on known results about the 
P-functions: we essentially apply to a P-function the classical technique of 
Bernstein for obtaining global gradient bounds via the maximum principle. 

1. Proof of the Theorems 

Let us begin by proving Theorem 11. Since u is bounded, we have infRnlDu12 
= 0. Fix 6 > 0; since the statement of Theorem I1 is translation-invariant, we 
may choose the origin in R "  so that 

Define on R "  

P ( x )  = IDul2(x) - 2 F ( u ( x ) ) .  

It is easy to deduce from the inequality 

which holds for any cube Q with edge d and center xo (e.g. see D. Gilbarg and 
N. S. Trudinger [l], Section 3.4), that IDu( is bounded on R"; thus P also is 
bounded on R". 
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Since P is of class C2, following R. Sperb [6], Chapter 5, we obtain that, for 
every i = 1,. - ., n ,  

n 

D i p  = 2 C DjuDiju - Z f ( u ) D , u ;  
i = 1  

hence 

Consequently, using Au = f (  u) ,  we find 

n 0 

A P  = 2 c ( D I J u ) ' +  2 c D,UD,(AU) - 2 f ' ( u ) l D ~ 1 ~  - 2 f 2 ( u )  
I ,  J - 1  J = 1  

so that, by (2 ) ,  

r=l 

= +IDPl2 + 2 f ( u ) D u  DP.  

Now, let us fix E > 0, po > 0 and suppose we have constructed a function 
71 = v , , ~ ~ :  [po ,  + a[ -+ IW of class C2 with the following properties: 

(4) ? J ( p o )  = 1, 71 > 0 ,  71' < 0 ,  p l i y ( P )  = 0 ,  

where 

M = s u p 2 ) f ( u ) ) ) D u ) ,  L = sup2)DuJ2 
R" W" 

(7) 

Of course, we may assume M > 0, L > 0. 
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Letting u ( x )  = q( lx l )P(x)  for 1x1 2 po, we shall prove that 

This is obvious if suplxl,,p(x) 0, so we may suppose u > 0 somewhere. 
Since 

because P is bounded and (4) holds, it suffices to prove that u ( X )  6 E in any 
interior maximum point X (if there are any), that is for any X such that (XI > po 
and u ( X )  = S U ~ ~ , ~ , , ~ U ( X )  > 0. With Aq and Dq having the obvious meaning, we 
find that, at X, Du = qDP + PDq = 0 and q > 0, and hence DP = -PDq/q 
and also, by (3), that, at X, 

Now A u ( X )  5 0, since X is an interior maximum, and P(X)  > 0, because q(lX1) > 
0 and u ( X )  > 0; thus, at X, 

(9) 

Let us remark that, if lDu12(X) 5 E ,  then, recalling that q 5 1 by (4), and 
F 2 0, we have 

u ( x )  u ( X )  s P(X) 5 IDu12(X) E for all x :  1x1 2 po 

and therefore (8) holds. In the other case lDu12(X) > E ,  we obtain from the 
inequality q’ < 0, (7) and (9), that, at X, 

and finally, observing that lDql = -q’, Aq = 9’’ + ( n  - l)q‘/p and recalling 
(6) ,  we conclude that u ( X )  E ;  thus (8) is proved. 
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Now, recalling (5) and letting E 4 0 + in (8) we obtain 

letting p o  + 0 + in this last inequality we infer that 

P ( X )  max(0, P ( O ) }  for all x E Rn. 

Furthermore, by (l), 

P ( 0 )  = p u l y o )  - 2 F ( u ( 0 ) )  5 IDuI2(O) < 6; 

hence, 6 > 0 being arbitrary, we find that P 5 0 as asserted in Theorem 11. 
It remains to construct q = qE,,, so that (4), (3, (6 )  hold. Let 

and 

and define 

where c = g,(0)/he, ,o( + 00) and g;' denotes the inverse function of g,. It is 
trivial to check that q is well defined and (4) holds. For ( 5 )  it suffices to remark 
that the g;' converge as E 0 + , uniformly on any compact interval of R +, to 
y ( t )  = 1/(1 + t ) ,  while the he converge pointwise to 0. For (6) it suffices to 
differentiate, to take the logarithm, and to differentiate again with respect to p the 
following equality which implicitly defines q : 

Thus Theorem I1 is completely proved. 

The proof of Theorem I is now straightforward. Let a = u(xo) and A = 
{ x  E R": u(x) = a } .  As A is nonvoid and closed, it suffices to prove that A is 
open. Let xl E A .  Since F 2 0 and F ( a )  = 0, we have F'(a)  = 0 and P ' ( a )  2 0; 
hence there exists k 2 0 such that 

F ( t )  5 k ( t  - u l 2  for all t :  ~t - ul 5 S, 
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provided that 6 is small enough. Now, if w E R "  and lw( = 1 and if we define 

+ ( t )  = u ( x l  + tw)  - u(xl) for I t (  < 6, 

Theorem I1 implies that 

and since +(O) = 0 it follows that $I = 0. Hence u is constant in the ball B ( x , ,  8) 
and Theorem I is proved. 
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