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The talk based on the jonit work with

Chao Xia, Julian Scheuer, Liangjun Weng, Xiaoyan lJia,
Xuwen Zhang and Xinqun Mei

on hypersurfaces in a space form with boundary about

. Minkowski formulas
. Alexandrov-Fenchel inequalities (Isoperimetric ineqality)

. Karcher-Heintze inequality

A W N =

. Geometric curvature flow



Minkowski formulas for closed hypersrufaces
Let ¥ be a closed hypersurfaces in R™*1.

1. Minkowski formula:

/E<93,V>H1:/21, /2<$’V>Hk+1:./EHk.

Proof: dive = n + 1 implies
divy 2T = divg(z — (z,v)v) = n — nH;
Applications: The classification of stable CMC hypersrufaces

(Barbosa-Do Carmo, Barbosa-Do Carmo-Eschenberg)

Test function: 1 — (z,v)H, since [ (1 — (z,v)H;) =0



2. Karcher-Heintze-Ros inequality for embedded hypersurfaces

1 ~
— > (n+1)[X],
|72 D)
equality iff X is a sphere, where 51 is the domain enclosed by .

Application: If Hy = const., then

|| :/E<x,y>H1 :H1/E<x,y> = Hi(n+1)[3),

1 ~
— = (n+1)[3],
| =@+

and hence ¥ is a sphere. (Ros, Montiel-Ros)



3. Alexandrov-Fenchel inequalities and isoperimetric inequality
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Equality iff 3 is a sphere.
There are many applications.

Guan-Li, Huisken, Chang-Y. Wang, Qiu,
Agostiniani-Fogagnolo-Mazzieri for non-convex

Open Problem: Is Minkowski inequality true for mean convex
hypersurfaces
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One flow approach to prove AF inequality

The Minkowski formulas can be used to prove AF (Guan-Li):

2. Variational formula (W}, is the quermassintegral)

d d
—Wii1 = — H;, = H; .
k= = /Z k / k+1.f

d H
Wi = /Hk—H b (z,v)) = /(Hk — Hi11(z,v)) = 0.
dt Hy 1

W = /H;c <HIZl = <x,u>> > /(Hk—1 — Hp(z,v)) = 0.

If the flow converges to a sphere, then we obtain the AF inequality!



Free boundary or capillary hypersurfaces in B"*!

We consider hypersurfaces ¥ in B"*! with free boundary
0¥ c OB"! =S

General 6 € (0,7), it is called a capillary hypersurface.
oz

Two geometries, X in R and 9% on S™.



A new Minkowski formula
An old approach: from divy, x

Jo=nmy= [ @= [ 1=z

Not good in applications.

T = n — nH; (Ros-Vergasta)

Instead we considered
1
X, = (z,a)x — §(|x\2 +1)a, for a € R™™
5[ Vi(Xa)j + Vi(Xa)i] = (z,0)d;5 =
diszaT =n((z,a) — Hi(X,,V)), (Xa,x)|o = 0.

New Minkowski formula (W.-Xia Math. Ann 2019)

/E{Q:, a) — Hi(X,,v)}dA =0,

™ =



Stable CMC capillary hypersurface are unique

Application: Classification of stable CMC free boundary
hypersurfaces

W.-Xia (n > 2)

Any immersed stable free boundary (and also capillary) CMC
hypersurface is a spherical cap.

Ros-Vergasta, Nunes (n = 2)



Heintze-Karcher-Ros type inequality (W.-Xia)

Let z : ¥ — B"*! be an embedded free boundary hypersurfaces
with 3 lies in a half ball B""! = {(x,a) > 0}. If H; > 0, then

/E%}?E(n+1)/g<%a>,

equality iff X is a spherical cap.




Theorem (Scheuer-W.-Xia JDG 2022)

Wa(E) 2 (fa o fi N(Wi(D)),

where fr, = fi(r) is the strictly increasing real function
fre = Wi(Cy).

Equality holds if and only if 3 is a spherical cap or a flat disk C,.. |

%1‘ - { iH? — (Xa, 1/>}1/

The flow preserves W,, and increases W}, for k < n.

Recent work: W.-Weng, Weng-Xia, Hu-Wei-Yang-Zhou



H.H, _
OWi(Zy) = Rl g a) — Hp(Xa, v)
St Hn

> Hk_1<$,€> _Hk’<XCL>V>
3t

If &K = n, we have equality

Han,1

s, H
=/Hn
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0

Wy (%) (x,e) — Hy(Xe, V)

_1{z,e) — Hp(Xe, V)



Capillary hypersurface in R”"




Capillary hypersurface in R”"
Capillary area functional
|X| — cos 6|5§]|

Capillary isoperimetric inequality

% — o805 _ (IS T
IS?| — cos0]0SE| — \ IB5 T

n = {z € S"|zpt1 > cosb}, Byt = {x € B"" 2,11 > cos 6}

Question:
1. What is the capillary Alexandrov-Fenchel inequalities?

2. What is the quermassintegral for capillary hypersurfaces in
R7H1?



Quermassintegral for capillary hypersurfaces

- - - 1 _
Woe(Z) =1[%],  Wip(2) = m(\m — cos 0|0%]),

S cos 0 sin® 6
Wat10(E) = / H,dA — cosfsin" aﬁ

Variational formula:

d — n+1—%
Wi o(2y) = ——— HidA
g e.0(2¢t) — ZLf kdAy

for (Opz)* = fv.



Minkowski formula

Minkowski formula:

/ Hi_1(14 cos6(v,e))dA = / Hy(x,v)dA
by by
A crucial vector filed: = + cos0((v,e)z — (z,v)e).
Set P, := (v,e)x — (x,v)e
Vi ((azT + cos HPQT)J-) +V; ((xT + cos HPET)Z-)
= (14 cosf(v,e))gij — hij(z,v)
div (27 4 cosOP.) = n(1+cosb{v,e)) — nHy(z,v)

2T 4 cosOP, L p along 9.



Theorem (W.-Weng-Xia Math Ann. (2023))

Forn > 2, let ¥ C @iﬂ be a convex capillary hypersurface with a
contact angle 6 € (0, 7], then there holds

1
(S S #FE
W) o (W) , Yo<k<n,
by by

with equality if and only if X is a spherical cap.

Hy_4
H;

(Bpa) ™ = [(1 + cosf(v, e))

—(z,v)| v.

W .-Weng-Xia for star-shaped and k-convex, ie. a boundary
version of Guan-Li.
Hu-Wei-Yang-Zhou for convex.

But still open, when 6 > %



Minkowski inequality for capillary hypersurfaces

W.-Weng-Xia
Star-shaped and mean convex capillary hypersurface with a contact
angle 6 € (0, ) satisfies the following Minkowski inequality

n

=1
n
)

/ HdA — sinfcos8|9%| > n(n + 1)= S| (|| — cos0]0%))
b))

with equality if and only if X is a capillary spherical cap.

Open problem: Can one remove the condition of star-shaped?



Heintze-Karcher inequality for capillary hypersurface

. . . . +1
The Minkowski type formula capillary hypersurfaces in R’/

/(1(30%91/("n+1 /HTV
5

It is natural to ask if the Heintze-Karcher inequality holds true

1 —cosO{v, e, ~
/ Wrent)) 5 (1 1)8)
S H

Theorem Jia-Xia-Zhang (6 € (0,7/2])
Lz- AL

fg V en+1

Equality holds if and only if 3 is a spherical cap.

(Proof uses the Reilly type formula)



Theorem (Jia-W.-Xia-Zhang)
For 6 € (0, ), it holds

/ 1 —cosO(v,ent1)
by

= > (n+1)[Z].

Equality holds if and only if 3 is a spherical cap.

Idea: Consider parallel hypersurfaces
z+t(v—cosb(v,ent1))
which are still capillary hypersurfaces.

A similar result holds for capillary hypersurfaces in the unit
ball.



Capillary Minkowski Problem

Observation:
AX) = 2| - cosﬁlgi\ = /(1 —cosO(v(x), Epy1))dH" (x),
by

It induces capillary area measure on Borel sets in
Co={¢ € RT_IHf + cos0E, 1| = 1} (v =v—cosOFE,1)

mg(B) := A(ﬁ‘l(B))—/ y )(1—0089@(.) Eni1))dH" (z)
7—1(B
Capillary Minkowski Problem: Given a measure on Cy, is there

a convex capillary hypersurface such that its capillary area measure
mg = m?



Capillary Minkowski Problem (Xinqun Mei-W.-Liangjun Weng)
Let § € (0,3], f € C?*(Cy) be a positive function with

(& Ba) nmpey _
/(;9 O dH" (&) =0, Vl<a<n,

Then there exists a C37 (v € (0,1)) strictly convex, capillary
hypersurface > C Rffl such that its Gauss-Kroneckor curvature
K satisfying

K7€) = f(©),

for all £ € Cy. Moreover, 3. is unique up to a horizontal translation
in R?!
il




Thank You very much!



