A Gauss-Bonnet Formula for Renormalized Areas

Jeffrey S. Case
(Joint with R. Graham, T.-M. Kuo, A. Tyrrell, A. Waldron) Penn State University

29 June 2023
Workshop in Conformal Geometry and Non-Local Operators Instituto de Matemáticas, Universidad de Granada

Table of contents

Background and Motivation
Renormalized Volumes and Areas
The Extrinsic GJMS Operator and Extrinsic Q-curvature

The Gauss-Bonnet Formula
Statement of Results
Sketch of Proof

The Submanifold Alexakis Conjecture Statement of the Conjecture Partial Results

Renormalized Volumes and Areas

Theorem (Graham (2000))
Let $\left(X^{n+1}, g_{+}\right)$, n odd, be an asymptotically hyperbolic manifold such that $g_{+}=r^{-2}\left(d r^{2}+g_{r}\right)$ with

$$
g_{r}=g_{(0)}+r^{2} g_{(2)}+\cdots+r^{n-1} g_{(n-1)}+r^{n} g_{(n)}+o\left(r^{n}\right)
$$

and $\operatorname{tr}_{g_{(0)}} g_{(n)}=0$. Then

$$
\int_{\{r>\varepsilon\}} \mathrm{dV}_{g_{+}}=c_{0} r^{-n}+c_{2} r^{2-n}+\cdots+c_{n-1} r^{-1}+\mathcal{V}+o(1)
$$

Moreover, the renormalized volume \mathcal{V} depends only on g_{+}.

Renormalized Volumes and Areas

Theorem (Chang-Qing-Yang (2006))
Let $\left(X^{n+1}, g_{+}\right)$be an even-dimensional Poincaré-Einstein manifold. There is a scalar conformal invariant \mathcal{X}_{n+1} of weight
$-n-1$ such that

$$
(-1)^{(k+1) / 2} \mathcal{V}=\frac{(2 \pi)^{(n+1) / 2}}{n!!} \chi(X)+\int_{X} \mathcal{X}_{n+1}
$$

Remarks

1. $\mathcal{X}_{2}, \mathcal{X}_{4}$, and \mathcal{X}_{6} are explicitly known.
2. Existence due to Alexakis' decomposition (2006-12).
3. Key ingredients are factorization of GJMS operators for Einstein manifolds and the (Q_{n+1}-flat) scattering compactification, or adapted metric.

The Extrinsic GJMS Operator and Extrinsic Q-curvature

Theorem (C.-Graham-Kuo (2023))
Let $i: Y^{k+1} \rightarrow\left(X^{n+1},[g]\right), k<n$ odd, be a conformal immersion. For each $h \in i^{*}[g]$, there is an operator $P_{k+1}: C^{\infty}(Y) \rightarrow C^{\infty}(Y)$ and a scalar $Q_{k+1} \in C^{\infty}(Y)$ such that

1. P_{k+1} and Q_{k+1} are natural;
2. $P_{k+1}=(-\bar{\Delta})^{(k+1) / 2}+$ l.o.t.;
3. P_{k+1} is formally self-adjoint with $P_{k+1}(1)=0$;
4. if $u \in C^{\infty}(Y)$, then

$$
e^{(k+1) u} Q_{k+1}^{e^{2 u} h}=Q_{k+1}^{h}+P_{k+1}^{h}(u) ;
$$

5. if $i(Y)$ is minimal and $h=i^{*} g$ for $\mathrm{Ric}_{g}=n \lambda g$, then

$$
P_{k+1}=\prod_{j=0}^{\frac{k-1}{2}}\left(-\bar{\Delta}+\frac{(k+2 j+1)(k-2 j-1)}{4} \lambda\right)
$$

The Gauss-Bonnet Formula in General Dimension

Theorem (C.-Graham-Kuo-Tyrrell-Waldron (WIP))
Let $k \in \mathbb{N}$ be odd. Suppose that there is a constant $c_{n, k}$ and a scalar conformal submanifold invariant \mathcal{W}_{k+1} such that

$$
Q_{k+1}=c_{n, k} \overline{\operatorname{Pf}}+\mathcal{W}_{k+1}+\bar{\nabla}_{\alpha} V^{\alpha}
$$

for every Riemannian embedding i: $Y^{k+1} \rightarrow\left(X^{n+1}, g\right), k<n$. If $i: Y^{k+1} \rightarrow\left(X^{n+1}, g_{+}\right)$is a regular minimal immersion into a Poincaré-Einstein space, then

$$
(-1)^{(k+1) / 2} \mathcal{A}=\frac{(2 \pi)^{(k+1) / 2}}{k!!} \chi(Y)+\frac{1}{k!} \int_{Y} \mathcal{W}_{k+1}
$$

The Gauss-Bonnet Formula in Low Dimensions

Corollary (Alexakis-Mazzeo (2010), CGKTW (WIP))
Let $i: Y^{2} \rightarrow\left(X^{n+1}, g_{+}\right), n>2$, be a regular minimal immersion into a Poincaré-Einstein space. Then

$$
-\mathcal{A}=2 \pi \chi(Y)+\frac{1}{2} \int_{Y}\left(\mid \AA^{2}-W_{\alpha \beta}^{\alpha \beta}\right) \mathrm{dA}
$$

Corollary (CGKTW (WIP), cf. Tyrrell (2022))
Let $i: Y^{4} \rightarrow\left(X^{n+1}, g_{+}\right), n>4$, be a regular minimal immersion into a Poincaré-Einstein space. Then

$$
\mathcal{A}=\frac{4 \pi^{2}}{3} \chi(Y)-\frac{1}{6} \int_{Y}\left(\frac{1}{4}|\bar{W}|^{2}-3 \mathcal{I}-2|\mathrm{~F}|^{2}+2 \mathrm{G}^{2}\right) \mathrm{dA}
$$

The Gauss-Bonnet Formula in Low Dimensions

Corollary (CGKTW (WIP), cf. Tyrrell (2022))
Let $i: Y^{4} \rightarrow\left(X^{n+1}, g_{+}\right), n>4$, be minimal. Then

$$
\mathcal{A}=\frac{4 \pi^{2}}{3} \chi(Y)-\frac{1}{6} \int_{Y}\left(\frac{1}{4}|\bar{W}|^{2}-3 \mathcal{I}-2|\mathrm{~F}|^{2}+2 \mathrm{G}^{2}\right) \mathrm{dA} .
$$

Some conformal scalar submanifold invariants

$$
\begin{aligned}
\mathrm{F}:= & \frac{1}{k-1}\left(\mathscr{L}_{\alpha \gamma \alpha^{\prime}} \mathfrak{L}_{\beta^{\gamma \alpha^{\prime}}}-W_{\alpha \gamma \beta}{ }^{\gamma}-\mathrm{G} h\right), \quad \mathrm{G}:=\operatorname{tr}_{h} \mathrm{~F}=\frac{1}{2 k}\left(|\dot{L}|^{2}-W_{\alpha \beta}{ }^{\alpha \beta}\right) \\
\mathcal{I}:= & -\frac{2 k-5}{k} \bar{\Delta} \mathrm{G}+\frac{k-5}{k} \bar{\nabla}^{\alpha} \bar{\nabla}^{\beta} \mathrm{F}_{\alpha \beta}+(k-3)(\bar{J}+\mathrm{G}) \mathrm{G} \\
& +\frac{(k-1)(k-5)}{k}\left\langle\mathrm{~F}-\mathrm{G} i^{*} g, \bar{J}+\mathrm{F}\right\rangle+\frac{2(k-2)(k-5)}{k}\left(\frac{1}{2(n-3)} B_{\alpha}{ }^{\alpha}\right. \\
& \left.-H^{\alpha^{\prime}} C_{\alpha \alpha^{\prime}}{ }^{\alpha}+\frac{1}{2} H^{\alpha^{\prime}} H^{\beta^{\prime}} W_{\alpha^{\prime} \alpha \beta^{\prime}}{ }^{\alpha}-\frac{1}{2}|\mathrm{D}|^{2}\right) .
\end{aligned}
$$

Sketch of Proof - Key Ideas

1. Fix a representative $h_{(0)}$ of the conformal infinity of $\left(Y, i^{*} g_{+}\right)$.
2. Let $h=\rho^{2} h_{+}$be the geo. compactification det'd by $h_{(0)}$. Then

$$
\frac{1}{k!} \int_{Y} Q_{k+1}=\frac{(2 \pi)^{(k+1) / 2}}{k!!} \chi(Y)+\frac{1}{k!} \int_{Y} \mathcal{W}_{k+1}
$$

3. Let \widehat{h} be the scattering compactification det'd by $h_{(0)}$; i.e.

$$
-\bar{\Delta}_{h_{+}} v=k, \quad v=\log \rho+A+B \rho^{k}, \quad \widehat{h}=v^{2} h_{+} .
$$

Then $Q_{k+1}^{\widehat{h}}=0$ and $\mathcal{A}=\left.\oint_{\partial Y} B\right|_{\partial Y}$.
4. Compute:

$$
\int_{Y} Q_{k+1}^{\hat{h}}=\int_{Y} Q_{k+1}^{h}+\left.P_{k+1}^{h}\left(A+B \rho^{k}\right) \equiv(-1)^{\frac{k-1}{2}} k!\oint_{\partial Y} B\right|_{\partial Y}
$$

Sketch of Proof - Identities For Extrinsic Q-curvature

Theorem (CGKTW (WIP))
Let $i: Y^{k+1} \rightarrow\left(X^{n+1},[g]\right)$ be a conformal immersion. Then

$$
\begin{array}{ll}
Q_{2}=\bar{Q}_{2}+\mathrm{G}, & \text { if } k=1, \\
Q_{4}=\bar{Q}_{4}+Q_{4, \mathrm{G}}+k \mathcal{I}+2|\mathrm{~F}|^{2}-\frac{k+1}{2} \mathrm{G}^{2}, & \text { if } k=3,
\end{array}
$$

where

$$
\begin{aligned}
P_{4, \mathrm{G}} & :=\bar{\nabla}^{\alpha} \circ\left(4 F_{\alpha \beta}-(k-1) G g_{\alpha \beta}\right) \circ \bar{\nabla}^{\beta}+\frac{k-3}{2} Q_{4, G} u \\
Q_{4, \mathrm{G}} & :=4 \bar{\Delta} \mathrm{G}-(k-5) \bar{\nabla}^{\alpha} \bar{\nabla}^{\beta} \mathrm{F}_{\alpha \beta}+(k-3)(\cdots)
\end{aligned}
$$

are such that

$$
P_{4, \mathrm{G}}^{\mathrm{e}^{2 u} g} \circ e^{-\frac{k-3}{2} u}=e^{-\frac{k+3}{2} u} \circ P_{4, \mathrm{G}}^{g} .
$$

The Submanifold Alexakis Conjecture - Statement

Conjecture (CGKTW (WIP))

Fix $k \in \mathbb{N}$ odd. Let I^{g} be a natural scalar Riemannian submanifold invariant such that $\int_{Y} I^{g}$ is conformally invariant for every Riemannian immersion $i: Y^{k+1} \rightarrow\left(X^{n+1}, g\right)$. Then there is a constant c, a scalar conformal submanifold invariant \mathcal{W} of weight $-k-1$, and a natural extrinsic Riemannian vector field V^{α} such that

$$
I=c \overline{\mathrm{Pf}}+\mathcal{W}+\bar{\nabla}_{\alpha} V^{\alpha}
$$

Remark
Alexakis (2012) proved the corresponding result for natural scalar Riemannian invariants.

The Submanifold Alexakis Conjecture - Partial Results

1. Mondino-Nguyen (2018) proved the case $k=1$ assuming the immersion has codimension one or two.
2. Mondino-Nguyen (2018) also proved the case of general $k \in \mathbb{N}$ assuming the immersion has codimension one and the invariant can be written as a sum of an intrinsic invariant and a polynomial in $\AA_{\alpha \beta \alpha^{\prime}}$.
3. Astaneh-Solodukhin (2021) and Chalabi-Herzog-O'Bannon-Robinson-Sisti (2022) classified the conformally invariant integrals in dimension four.
4. Juhl (2023) proved that the decomposition is true for the fourth-order singular Yamabe Q-curvature (codimension one).
5. The previous slide gives the decomposition for Q_{2} and Q_{4}.

The Submanifold Alexakis Conjecture - Partial Results

Theorem (CGKTW (WIP))
The Submanifold Alexakis Conjecture is true in dimensions two and four.

Proof when $\operatorname{dim} Y=2$
The natural scalar Riemannian submanifold invariants of weight
-2 are spanned by

$$
\overline{P f},|\check{L}|^{2}, \mathrm{G},|H|^{2}, P_{\alpha^{\prime}} \alpha^{\prime} .
$$

Now compute conformal linearizations.

The Submanifold Alexakis Conjecture - Partial Results

Proof when $\operatorname{dim} Y=4$
Modulo scalar conformal submanifold invariants and tangential divergences, the natural scalar Riemannian submanifold invariants of weight -4 are spanned by

$$
\begin{aligned}
& \langle\mathrm{F}, \overline{\mathrm{P}}\rangle, W_{\alpha \beta \alpha^{\prime}}{ }^{\beta} \mathrm{D}^{\alpha \alpha^{\prime}},\left|\AA^{2} \overline{\mathrm{~J}},\left\langle\grave{L}^{2}, \overline{\mathrm{P}}\right\rangle, \bar{J}^{2},|\overline{\mathrm{P}}|^{2}, \mathrm{GJ},|\mathrm{D}|^{2},\right. \\
& H^{\alpha^{\prime}} \bar{\Delta} H_{\alpha^{\prime}}, H^{\alpha^{\prime}} \bar{\nabla}^{\alpha} \mathrm{D}_{\alpha \alpha^{\prime}}, H^{\alpha^{\prime}} \bar{\nabla}^{\alpha} W_{\alpha \beta \alpha^{\prime}}{ }^{\beta},|H|^{4},|H|^{2}\left|\stackrel{L}{L^{2}},\left|H^{\alpha^{\prime}} \dot{L}_{\alpha \beta \alpha^{\prime}}\right|^{2}\right. \text {, } \\
& |H|^{2} \mathrm{~J}, \mathrm{G}|H|^{2}, H^{\alpha^{\prime}} \dot{L}_{\alpha}{ }^{\beta}{ }_{\alpha^{\prime}} \stackrel{\circ}{\beta}^{\gamma \beta^{\prime}} \dot{L}_{\gamma}{ }^{\alpha} \beta^{\prime}, H^{\alpha^{\prime}} \dot{L}_{\alpha \beta \alpha^{\prime}} \mathrm{F}^{\alpha \beta}, H^{\alpha^{\prime}} \dot{L}_{\alpha \beta \alpha^{\prime}} \overline{\mathrm{P}}^{\alpha \beta}, \\
& H^{\alpha^{\prime}} H^{\beta^{\prime}} W_{\alpha^{\prime} \alpha \beta^{\prime}}{ }^{\alpha}, H^{\alpha^{\prime}} \dot{L}^{\alpha \beta \beta^{\prime}} W_{\alpha \alpha^{\prime} \beta \beta^{\prime}}, H^{\alpha^{\prime}} C_{\alpha \alpha^{\prime}}{ }^{\alpha}, \\
& \mathrm{GP}_{\alpha^{\prime}}{ }^{\alpha^{\prime}}, \mathrm{P}^{\alpha^{\prime} \beta^{\prime}} W_{\alpha^{\prime} \alpha \beta^{\prime}}{ }^{\alpha},|H|^{2} \mathrm{P}_{\alpha^{\prime}}{ }^{\alpha^{\prime}}, \mid \grave{L}^{2} \mathrm{P}_{\alpha^{\prime}}{ }^{\alpha^{\prime}}, H^{\alpha^{\prime}} H^{\beta^{\prime}} \mathrm{P}_{\alpha^{\prime} \beta^{\prime}}, \\
& \check{L}_{\alpha \beta} \alpha^{\alpha^{\prime}} \dot{L}^{\alpha \beta \beta^{\prime}} \mathrm{P}_{\alpha^{\prime} \beta^{\prime}}, \overline{\mathrm{J}} \mathrm{P}_{\alpha^{\prime}}{ }^{\alpha^{\prime}}, \mathrm{P}_{\alpha^{\prime}}{ }^{\alpha^{\prime}} \mathrm{P}_{\beta^{\prime}}{ }^{\beta^{\prime}}, \mathrm{P}_{\alpha^{\prime} \beta^{\prime}} \mathrm{P}^{\alpha^{\prime} \beta^{\prime}}, \\
& H^{\alpha^{\prime}} \nabla_{\alpha^{\prime}} \text { J, } \\
& \Delta \mathrm{J} \text {, }
\end{aligned}
$$

Now compute conformal linearizations.

Thank You!

