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§1 Motivation from Conformal Geometry

Yamabe Problem:

Yamabe functional:

F (g̃) =

∫
M Rg̃dVg̃

VolM(g̃)
n−2

n

.

Conformal Laplacian:

Lg(u) := −∆gu +
n − 2

4(n − 1)
Rgu;

Sharp Sobolev inequality on Rn:∫
Rn

|∇φ|2dx ≥ Cn||φ||2
L

2n
n−2 (Rn)

.

Q: How to generalize to higher order curvature quantities?



Introduction CVIs Polydifferential operators

§1 Q4-curvature, a 4th order analogue of scalar curvature

n ≥ 3, Branson’s Q4-curvature and the Paneitz operator Pg are

Pgu := (−∆g)
2u − div(anRgg − bnRicg)du +

n − 4
2

Qg
4 u

Qg
4 := − 1

2(n − 1)
∆gRg + cnR2

g − dn|Ricg |2,

Gauss-Bonnet-Chern Formula in 4D: Given (M4, g) a closed
Riemannian manifold,∫

M4

(
Qg

4 +
1
4
|Wg |2

)
dVg = 8π2χ(M) Wg : Weyl tensor.

kP :=
∫

M4 Qg
4 dVg is a conformal invariant.

(
Pgu + Qg

4

)
= Qg̃

4 e4u, for n = 4 and g̃ = e2ug

Pg(u) =
n − 4

2
Qg̃

4 u
n+4
n−4 , for n ̸= 4 and g̃ = u

4
n−4 g
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§1 Q-curvature in Riemannian geometry

Motivation: Fischer-Marsden(’75), Chang-Gursky-Yang(’96).

Through metric deformations of Q4-curvature, we can prove local
stability, local and global rigidity and volume comparison for
Q4-curvature (L.-Yuan’16, L-Yuan’22).

Recall γ∗
g f = (DRg)

∗f = ∇2f − g∆g f − fRic(g). Then

Ric(g) = −γ∗
g (1).

L.-Yuan(’17): On (Mn, g) (n ≥ 3), define the symmetric (0, 2)-tensor
associated to Q4 to be

Jg := −1
2
Γ∗

g1.

J-curvature is a generalization of Ricci curvature:

trgJg = Qg
4 and divgJg =

1
4

dQg
4 .
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§2 Conformally Variational Riemannian invariants

A CVI (conformally variational Riemannian invariant), Lg is a

(1) natural Riemannian scalar invariant:

Lg = contr(∇r1 Rm ⊗ · · · ⊗ ∇rj Rm);

(2) homogeneous:

Lc2g = cωLg , c > 0,

where ω = −2k is the weight.

(3) conformally variational:

∃ a Riemannian functional F such that

d
dt

∣∣∣
t=0

F(e2tγg) =
∫

M
γLg dvolg ,

for all metrics g and smooth functions γ.
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§2 Properties and examples of CVIs

If Lg is a CVI of weight −2k on (Mn, g), then

DF (γ) = (n − 2k)
∫

M
γLg dvolg ,

where F (g) :=
∫

Lg dvolg . (i.e. a standard conformal primitive)

(Branson-Gover’08) L is a CVI of weight −2k if and only if ∃ a formally
self-adjoint operator Ag such that Ag(1) = 0 and

DLg(γ) :=
d
dt

∣∣∣
t=0

Le2tγg = −2kγLg + Ag(γ) = −2kγLg − δ(T (dγ)).

Examples of CVIs:
weight -2 : scalar curvature - Rc2g = c−2Rg ,
DR(γ) = −2γRg − 2(n − 1)∆γ.

weight -4 : basis {Q4, σ2, |W |2} - Qc2g
4 = c−4Qg

4 ,
DQ4(γ) = −4γQg

4 + (Pg)0(γ), where (Pg)0(γ) := Pg(γ)− γPg(1).

weight -6: renormalized volume coefficient v3, Q6...etc
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§2 Results for CVIs

L : a CVI of weight −2k

Γ[h] := DLg(h) = d
dt

∣∣∣
t=0

L(g(t)), g(t) = g + th

— the metric linearization of L at g.

Γ∗(f ) : C∞(M) → S2(M) — the formal L2-adjoint of Γ.

Define the associated symmetric (0, 2)-tensor S := −Γ∗(1). We have

trgS = kLg and divgS =
1
2

dLg .

Case - L.- Yuan (’19) Variational properties and many results of scalar
and Q4-curvatures extend to CVIs:

e.g. Schur’s lemma, almost Schur’s lemma, locally prescribing CVI, and
local rigidity on closed flat manifolds...etc
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§3 Motivation

GJMS operators L2k is a linear, formally self-adjoint operator with leading
terms (−∆)k on n-manifolds. Let g̃ = e2γg

L2 = conformal Laplacian: Lg̃
2(u) = e− n+2

2 γLg
2(e

n−2
2 γu) and L2(1) = Rg .

L4 = Paneitz operator: Lg̃
4(u) = e− n+4

2 γLg
2(e

n−4
2 γu) and L4(1) = n−4

2 Qg
4 .

The formally self-adjoint, conformally covariant, tri-differential operator
associated to the σ2-curvature is the polarization of

Lσ2(u, u, u) :=
1
2
δ
(
|∇u|2du

)
− n − 4

16

(
u∆|∇u|2 − δ

(
(∆u2)du

))
−1

2

(
n − 4

4

)2

uδ
(

T1(∇u2)
)
+

(
n − 4

4

)3

σ2u3;

Lσ2(1, 1, 1) =
(

n − 4
4

)3

σ2.

Case-Wang (’18): solved a Dirichlet problem on manifolds with
boundary under a positivity assumption.
Case(’21): used the multi-linearity of Lσ2 to give a new proof of a sharp
fully nonlinear Sobolev inequality.
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§3 Definition

A natural ℓ-differential operator D : (C∞(M))ℓ → C∞(M) is associated to a
CVI L (of weight −2k) if it is
(1) conformally covariant of bidegree (a, b):

De2γg(u1, ..., uℓ) = e−bγDg(eaγu1, ..., eaγuℓ), γ, u1, ..., uℓ ∈ C∞(M);

(2) formally self-adjoint:

(u0, . . . , uℓ) 7→
∫

M
u0 D(u1, . . . , uℓ) dvolg

is symmetric ∀u0, ..., uℓ ∈ C∞(M).

(3) recovers L:

for n > 2k , D(1, . . . , 1) =
( n−2k

ℓ+1

)ℓ L;
for n = 2k ,

1
ℓ!

∂ℓ

∂tℓ

∣∣∣∣
t=0

entγLe2tγg = D(γ, . . . , γ) ∀γ ∈ C∞(M).
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§3 Existence of CVI associated operators

Theorem (Case-L.- Yuan’22)
Let L be a CVI of weight −2k. There is an integer 1 ≤ j ≤ 2k such that
(1) there is a (j − 1)-differential operator associated to L; and
(2) for any 1 ≤ ℓ < j − 1, ∄ an ℓ-differential operator associated to L.
j is called the rank of L.

A natural ℓ-differential operator D is conformally covariant of bidegree
(a, b) if and only if ∂

∂t

∣∣
t=0 (e

btΥ ◦ De2tΥg ◦ e−atΥ) = 0 ∀γ ∈ C∞(M).

In addition, if D is formally self-adjoint, then a = n−2k
ℓ+1 and b = nℓ+2k

ℓ+1 ,
where −2k is the homogeneity of D.

Remark: If a CVI L is of weight −2k , then rank r ≤ 2k .

Examples: Q2k is rank 2 and σk or vk is rank 2k .
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§3 What is an ambient space?

The canonical sphere Mn = Sn ↪→ Rn+1,1 = G̃:Tuesday, June 13, 2023 1:00 AM

   New Section 5 Page 1    
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§3 Ambient Space

Theorem [Fefferman-Graham’12]: Let (Mn, [g]) be a conformal
manifold. Given g ∈ [g], there is a one-parameter family of metrics gρ on
M such that g0 = g and g̃ = 2ρ dt2 + 2t dt dρ+ t2gρ.

g̃ is an ambient metric on ambient space G̃ := R+ × M × (−ε, ε) for
some ε > 0.

Let X = t∂t be the infinitesimal generator of the dilation δλ : G̃ → G̃.
Given ω ∈ R, let Ẽ[ω] := {ũ ∈ C∞(G̃) : Xũ = ωũ}.

The space of conformal densities of weight ω is E[ω] := {ũ|G : ũ ∈ Ẽ[ω]}.

A differential operator L̃ : Ẽ[ω] → Ẽ[ω′] is tangential if the map
Ẽ[ω] ∋ ũ 7→ L̃(ũ)|G ∈ E[ω′] depends only on u := ũ|G ∈ E[ω].

⇐⇒ L̃(Qz) ≡ 0 mod Q ∀z ∈ Ẽ[ω − 2], where Q := |X |2 is a defining
function for G ∼= R+ × M.

If L̃ is tangential, it induces a conformally covariant operator
Lg : C∞(M) → C∞(M) using identifications E[ω] ∼=g C∞(M).
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§3 Classification of conformally covariant operators

Branson (’95): The space of conformally covariant differential operators
on Sn is the span of restrictions ∆̃k ũ|G , where ∆̃ is ambient Laplacian on
Minkowski space (Rn+1,1,−dτ 2 + dx2) and ũ ∈ Ẽ[− n−2k

2 ].

On the ambient space of a pseudo-Riemannian n-manifold (n ≥ 2k):

∆̃k −→ induce GJMS operators L2k = (−∆)k+ l.o.t
(GJMS operators are conformally covariant and formally self-adjoint).

critical weights:
ω1, ω2 ∈ Ik := {− n−2k

2 − ℓ}k−1
ℓ=0 , ω1 + ω2 ∈ Ok := {− n−2k

2 + ℓ}k−1
ℓ=0

Ovsienko-Redou(’03): for non-critical weights ω1, ω2, the space of
conformally covariant bi-differential operators of total order 2k on Sn,
D2k ;ω1,ω2 : E[ω1]⊗ E[ω2] → E[ω1 + ω2 − 2k ] is one-dimensional.

Clerc (’16, ’17): classified the space for remaining weights on Sn - can
be one, two or three dimensional.

Case-L.-Yuan(’23) - complete classification of tangential
Ovsienko-Redou operators of order at most 2k ≤ n on the ambient
space of an n-manifold.
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Ovsienko-Redou operators of order at most 2k ≤ n on the ambient
space of an n-manifold.
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2 ].
On the ambient space of a pseudo-Riemannian n-manifold (n ≥ 2k):

∆̃k −→ induce GJMS operators L2k = (−∆)k+ l.o.t
(GJMS operators are conformally covariant and formally self-adjoint).

critical weights:
ω1, ω2 ∈ Ik := {− n−2k

2 − ℓ}k−1
ℓ=0 , ω1 + ω2 ∈ Ok := {− n−2k

2 + ℓ}k−1
ℓ=0

Ovsienko-Redou(’03): for non-critical weights ω1, ω2, the space of
conformally covariant bi-differential operators of total order 2k on Sn,
D2k ;ω1,ω2 : E[ω1]⊗ E[ω2] → E[ω1 + ω2 − 2k ] is one-dimensional.

Clerc (’16, ’17): classified the space for remaining weights on Sn - can
be one, two or three dimensional.

Case-L.-Yuan(’23) - complete classification of tangential
Ovsienko-Redou operators of order at most 2k ≤ n on the ambient
space of an n-manifold.



Introduction CVIs Polydifferential operators

§3 Classification of conformally covariant operators

Branson (’95): The space of conformally covariant differential operators
on Sn is the span of restrictions ∆̃k ũ|G , where ∆̃ is ambient Laplacian on
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§3 Classification of Ovsienko-Redou operators

Theorem (Case-L.-Yuan’23, Case 1)

Let (Mn, [g]) be a conformal manifold and k ≤ n/2 be a positive integer. Let
ω1, ω2 ∈ R. Suppose that either
(1) at most one of ω1 ∈ Ik or ω2 ∈ Ik or ω1 + ω2 ∈ Ok holds;
(2) ω1, ω2 ∈ Ik , with ω1 + ω2 + n ≤ k, but ω1 + ω2 /∈ Ok ;
(3) ω1 ∈ Ik and ω1 + ω2 ∈ Ok with ω2 ≥ k, but ω2 /∈ Ik ; or
(4) ω2 ∈ Ik and ω1 + ω2 ∈ Ok with ω1 ≥ k, but ω1 /∈ Ik . Then the space of
Ovsienko-Redou operators is one-dimensional and spanned by

D̃2k ;ω1,ω2(ũ, ṽ) :=
k∑

s=0

k−s∑
t=0

ak−s−t,s,t∆̃
k−s−t

((
∆̃sũ

)(
∆̃t ṽ

))
,

where as,t = as,t(s, t , n, k , gamma function). Then D̃2k ;ω1,ω2 is tangential, and
induces a natural conformally covariant bi-differential operator
D2k ;ω1,ω2 : E[ω1]⊗ E[ω2] → E[ω1 + ω2 − 2k ].

Remark: For remaining weights ω1, ω2 in case 2 and 3, the space of
Ovsienko-Redou operators is two and three-dimensional, respectively.
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)(
∆̃t ṽ
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§3 What do we know about Ovsienko-Redou operators?

Theorem (Case-L.- Yuan’23)

Let (Mn, g) be pseudo-Riemannian manifold and k ∈ {1, 2, 3}. Then
D2k := D2k,− n−2k

3 ,− n−2k
3

is formally self-adjoint.

Conjecture: D2k is formally self-adjoint for all k .

Theorem (Case-L.- Yuan’23 (commutator formula))

Let (Sn, dθ2) be round sphere, k ∈ N and n > 2k. Let {x i}n
i=0 be standard

Cartesian coordinates in Rn+1. Then
n∑

i=0

x i [D2k , x i ] = −Cn,k D2k−2,− n−2k+3
3 ,− n−2k

3
,

where [D, f ](u ⊗ v) := D((uf )⊗ v)− fD(u ⊗ v) for all u, v , f ∈ C∞(Sn).
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§3 Applications of Ovsienko-Redou operators

1. Construction of a large family of conformally covariant differential
operators:

Theorem (Case-L.- Yuan’23)

Let (Mn, [g]) be a conformal manifold and k ≤ n/2 be a positive integer, and
let Ĩ ∈ Ẽ[−2ℓ], ℓ ≤ k be a natural scalar Riemannian invariant on (G̃, g̃). Then
the operator D̃ : Ẽ[− n−2k

2 ] → Ẽ[− n+2k
2 ],

D̃(ũ) := D̃2k−2ℓ;−2ℓ,− n−2k
2

(̃I, ũ)

is tangential, and induces a natural conformally covariant differential operator
D : E[− n−2k

2 ] → E[− n+2k
2 ]. Moreover, if k ≤ ℓ+ 3, then D is formally

self-adjoint.

Examples
ℓ = 0: recover GJMS operators;
ℓ = 2, k = 3 : Inserting Ĩ = |R̃m|2, we have

Du =
n − 10

2
∆(|W |2u) +

n − 10
2

|W |2∆u) + (2∆|W |2 − (n − 6)2

2
J|W |2)u.
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§3 Applications of Ovsienko-Redou operators

2. Sharp fully nonlinear Sobolev inequalities:

Theorem (Case-L.- Yuan, work in progress)
Let n ≥ 5 and ε ≥ 0. Then∫

Sn

[(
16(n − 1)
3(n + 2)

+ ε

)
Qg

4 +
16(n − 4)2

9(n + 2)
σg

2

]
dvolg ≥ CnVolg(Sn)

n−4
n ,

for all conformally flat metrics g on Sn. Moreover, equality holds if and only if
g has constant sectional curvature.

Theorem (Case-L.- Yuan, work in progress)
Let n ≥ 5 and ε ≥ 0. Then∫
Rn

ε(∆u3)2 + 4u2|∇2u2|2 + 4(2n − 5)
n + 2

u2(∆u2)2 dx ≥ Cn

(∫
Rn

|u|
6n

n−4 dx
) n−4

n

for all u ∈ Sε. Moreover, equality holds if and only if
u(x) = ua,λ,x0(x) := a(λ+ |x − x0|2)−

n−4
6 .
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Thank you for your attention!


	Introduction
	

	CVIs
	

	Polydifferential operators
	


