Introduction	CVIs	Polydifferential operators
0000	000	000000000

Conformally covariant polydifferential operators associated with CVIs and its applications

Yueh-Ju Lin Wichita State University

Summer Program in Conformal Geometry and Non-local Operators

IMAG, Granada

June 19-30, 2023

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Introduction ● ○ ○ ○	CVIs	Polydifferential o

§1 Guideline

- Introduction and Motivation
- Conformally variational Riemannian invariants (CVIs)
- Conformally covariant polydifferential operators associated with CVIs
- Ovsienko-Redou operators and applications

Joint works with Jeffrey Case (Penn State) and Wei Yuan (Sun Yat-Sen University, China)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	
0000	

▲□▶▲□▶▲□▶▲□▶ □ のQ@

§1 Motivation from Conformal Geometry

Yamabe Problem:

• Yamabe functional:

$$F(\widetilde{g}) = \frac{\int_{M} R_{\widetilde{g}} dV_{\widetilde{g}}}{Vol_{M}(\widetilde{g})^{\frac{n-2}{n}}}.$$

• Conformal Laplacian:

$$L_g(u):=-\Delta_g u+\frac{n-2}{4(n-1)}R_g u;$$

• Sharp Sobolev inequality on \mathbb{R}^n :

$$\int_{\mathbb{R}^n} |\nabla \varphi|^2 dx \geq C_n ||\varphi||_{L^{\frac{2n}{n-2}}(\mathbb{R}^n)}^2.$$

• Q: How to generalize to higher order curvature quantities?

Introduction	CVIs
0000	000

§1 Q₄-curvature, a 4th order analogue of scalar curvature

• $n \ge 3$, Branson's Q_4 -curvature and the Paneitz operator P_g are

$$P_g u := (-\Delta_g)^2 u - \operatorname{div}(a_n R_g g - b_n Ric_g) du + rac{n-4}{2} Q_4^g u$$

 $Q_4^g := -rac{1}{2(n-1)} \Delta_g R_g + c_n R_g^2 - d_n |Ric_g|^2,$

• Gauss-Bonnet-Chern Formula in 4D: Given (M^4, g) a closed Riemannian manifold,

$$\int_{M^4} \left(Q_4^g + rac{1}{4} |W_g|^2
ight) dV_g = 8\pi^2 \chi(M) \quad W_g : ext{Weyl tensor.}$$

• $k_P := \int_{M^4} Q_4^g dV_g$ is a conformal invariant.

Introduction
0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

§1 Q-curvature in Riemannian geometry

Motivation: Fischer-Marsden('75), Chang-Gursky-Yang('96).

- Through metric deformations of *Q*₄-curvature, we can prove local stability, local and global rigidity and volume comparison for *Q*₄-curvature (**L.-Yuan'16**, **L-Yuan'22**).
- Recall $\gamma_g^* f = (DR_g)^* f = \nabla^2 f g\Delta_g f fRic(g)$. Then

 $Ric(g) = -\gamma_g^*(1).$

§1 Q-curvature in Riemannian geometry

Motivation: Fischer-Marsden('75), Chang-Gursky-Yang('96).

- Through metric deformations of Q₄-curvature, we can prove local stability, local and global rigidity and volume comparison for Q₄-curvature (L.-Yuan'16, L-Yuan'22).
- Recall $\gamma_g^* f = (DR_g)^* f = \nabla^2 f g\Delta_g f fRic(g)$. Then

 $Ric(g) = -\gamma_g^*(1).$

L.-Yuan('17): On (Mⁿ, g) (n ≥ 3), define the symmetric (0, 2)-tensor associated to Q₄ to be

$$J_g := -\frac{1}{2}\Gamma_g^* \mathbf{1}.$$

J-curvature is a generalization of Ricci curvature:

$$\operatorname{tr}_g J_g = Q_4^g$$
 and $\operatorname{div}_g J_g = \frac{1}{4} dQ_4^g$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへぐ

Polydifferential operators

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

§2 Conformally Variational Riemannian invariants

A CVI (conformally variational Riemannian invariant), L_g is a

(1) natural Riemannian scalar invariant:

$$L_g = \operatorname{contr}(\nabla^{r_1} Rm \otimes \cdots \otimes \nabla^{r_j} Rm);$$

(2) homogeneous:

$$L_{c^2g}=c^{\omega}L_g, \quad c>0,$$

where $\omega = -2k$ is the *weight*.

(3) conformally variational:

 \exists a Riemannian functional ${\mathcal F}$ such that

$$\left. rac{d}{dt}
ight|_{t=0} \mathcal{F}(e^{2t\gamma}g) = \int_M \gamma L_g \ d extsf{vol}_g,$$

for all metrics g and smooth functions γ .

Introduction	
0000	

§2 Properties and examples of CVIs

• If L_g is a CVI of weight -2k on (M^n, g) , then

$$DF(\gamma) = (n-2k)\int_M \gamma L_g \ dvol_g,$$

where $F(g) := \int L_g dvol_g$. (i.e. a standard conformal primitive)

• (Branson-Gover'08) *L* is a CVI of weight -2k if and only if \exists a formally self-adjoint operator A_g such that $A_g(1) = 0$ and

$$DL_g(\gamma) := rac{d}{dt}\Big|_{t=0} L_{e^{2t\gamma}g} = -2k\gamma L_g + A_g(\gamma) = -2k\gamma L_g - \delta(T(d\gamma)).$$

Introduction	
0000	

A D F A 同 F A E F A E F A Q A

§2 Properties and examples of CVIs

• If L_g is a CVI of weight -2k on (M^n, g) , then

$$DF(\gamma) = (n-2k) \int_M \gamma L_g dvol_g,$$

where $F(g) := \int L_g \, dvol_g$. (i.e. a standard conformal primitive)

• (Branson-Gover'08) *L* is a CVI of weight -2k if and only if \exists a formally self-adjoint operator A_g such that $A_g(1) = 0$ and

$$DL_g(\gamma) := rac{d}{dt}\Big|_{t=0} L_{e^{2t\gamma}g} = -2k\gamma L_g + A_g(\gamma) = -2k\gamma L_g - \delta(T(d\gamma)).$$

• Examples of CVIs:

weight -2 : scalar curvature - $R_{c^2g} = c^{-2}R_g$, $DR(\gamma) = -2\gamma R_g - 2(n-1)\Delta\gamma$.

Introduction	
0000	

§2 Properties and examples of CVIs

• If L_g is a CVI of weight -2k on (M^n, g) , then

$$DF(\gamma) = (n-2k) \int_M \gamma L_g dvol_g,$$

where $F(g) := \int L_g dvol_g$. (i.e. a standard conformal primitive)

• (Branson-Gover'08) *L* is a CVI of weight -2k if and only if \exists a formally self-adjoint operator A_g such that $A_g(1) = 0$ and

$$DL_g(\gamma) := rac{d}{dt}\Big|_{t=0} L_{e^{2t\gamma}g} = -2k\gamma L_g + A_g(\gamma) = -2k\gamma L_g - \delta(T(d\gamma)).$$

• Examples of CVIs:

weight -2 : scalar curvature - $R_{c^2g} = c^{-2}R_g$, $DR(\gamma) = -2\gamma R_g - 2(n-1)\Delta\gamma$.

weight -4 : basis $\{Q_4, \sigma_2, |W|^2\}$ - $Q_4^{c^2g} = c^{-4}Q_4^g$,

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Introduction	
0000	

§2 Properties and examples of CVIs

• If L_g is a CVI of weight -2k on (M^n, g) , then

$$DF(\gamma) = (n-2k) \int_M \gamma L_g \ dvol_g,$$

where $F(g) := \int L_g dvol_g$. (i.e. a standard conformal primitive)

• (Branson-Gover'08) *L* is a CVI of weight -2k if and only if \exists a formally self-adjoint operator A_g such that $A_g(1) = 0$ and

$$DL_g(\gamma) := rac{d}{dt}\Big|_{t=0} L_{e^{2t\gamma}g} = -2k\gamma L_g + A_g(\gamma) = -2k\gamma L_g - \delta(T(d\gamma)).$$

• Examples of CVIs:

weight -2 : scalar curvature - $R_{c^2g} = c^{-2}R_g$, $DR(\gamma) = -2\gamma R_g - 2(n-1)\Delta\gamma$.

weight -4 : basis $\{Q_4, \sigma_2, |W|^2\}$ - $Q_4^{c^2g} = c^{-4}Q_4^g$, $DQ_4(\gamma) = -4\gamma Q_4^g + (P_g)_0(\gamma)$, where $(P_g)_0(\gamma) := P_g(\gamma) - \gamma P_g(1)$.

weight -6: renormalized volume coefficient v_3 , Q_6 ...etc

Introduction		
0000		

CVIs

Polydifferential operators

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

§2 Results for CVIs

- L : a CVI of weight -2k
 - $$\begin{split} & \Gamma[h] := DL_g(h) = \left. \frac{d}{dt} \right|_{t=0} L(g(t)), \ g(t) = g + th \\ & \text{the metric linearization of } L \text{ at } g. \end{split}$$

 $\Gamma^*(f): C^{\infty}(M) \to S_2(M)$ — the formal L^2 -adjoint of Γ .

• Define the associated symmetric (0, 2)-tensor $S := -\Gamma^*(1)$. We have

$$\operatorname{tr}_g S = kL_g$$
 and $div_g S = \frac{1}{2}dL_g$.

0000	

CVIs

Polydifferential operators

A D F A 同 F A E F A E F A Q A

§2 Results for CVIs

- L : a CVI of weight -2k
 - $$\begin{split} & \Gamma[h] := \textit{DL}_g(h) = \left. \frac{d}{dt} \right|_{t=0} \textit{L}(g(t)), \ g(t) = g + th \\ & \text{the metric linearization of } \textit{L} \text{ at } g. \end{split}$$

 $\Gamma^*(f): C^{\infty}(M) \to S_2(M)$ — the formal L^2 -adjoint of Γ .

• Define the associated symmetric (0, 2)-tensor $S := -\Gamma^*(1)$. We have

$$\operatorname{tr}_g S = kL_g$$
 and $div_g S = \frac{1}{2}dL_g.$

• Case - L.- Yuan ('19) Variational properties and many results of scalar and *Q*₄-curvatures extend to CVIs:

e.g. Schur's lemma, almost Schur's lemma, locally prescribing CVI, and local rigidity on closed flat manifolds...etc

Introduction 0000	CVIs 000	Polydifferential operators

§3 Motivation

- GJMS operators L_{2k} is a linear, formally self-adjoint operator with leading terms (−Δ)^k on *n*-manifolds. Let g̃ = e^{2γ}g
 - $L_2 = \text{conformal Laplacian: } L_2^{\tilde{g}}(u) = e^{-\frac{n+2}{2}\gamma}L_2^g(e^{\frac{n-2}{2}\gamma}u) \text{ and } L_2(1) = R_g.$
 - L_4 = Paneitz operator: $L_4^{\tilde{g}}(u) = e^{-\frac{n+4}{2}\gamma}L_2^g(e^{\frac{n-4}{2}\gamma}u)$ and $L_4(1) = \frac{n-4}{2}Q_4^g$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ntroduction	
0000	

UVIS

§3 Motivation

- GJMS operators L_{2k} is a linear, formally self-adjoint operator with leading terms (−Δ)^k on *n*-manifolds. Let g̃ = e^{2γ}g
 - $L_2 = \text{conformal Laplacian: } L_2^{\tilde{g}}(u) = e^{-\frac{n+2}{2}\gamma}L_2^g(e^{\frac{n-2}{2}\gamma}u) \text{ and } L_2(1) = R_g.$

 $L_4 = \text{Paneitz operator: } L_4^{\tilde{g}}(u) = e^{-\frac{n+4}{2}\gamma} L_2^g(e^{\frac{n-4}{2}\gamma}u) \text{ and } L_4(1) = \frac{n-4}{2}Q_4^g.$

 The formally self-adjoint, conformally covariant, tri-differential operator associated to the σ₂-curvature is the polarization of

$$L_{\sigma_2}(u, u, u) := \frac{1}{2} \delta\left(|\nabla u|^2 du \right) - \frac{n-4}{16} \left(u\Delta |\nabla u|^2 - \delta\left((\Delta u^2) du \right) \right)$$
$$-\frac{1}{2} \left(\frac{n-4}{4} \right)^2 u\delta\left(T_1(\nabla u^2) \right) + \left(\frac{n-4}{4} \right)^3 \sigma_2 u^3;$$

$$L_{\sigma_2}(1,1,1)=\left(\frac{n-4}{4}\right)^3\sigma_2.$$

Introduction	
0000	

CVIS

§3 Motivation

GJMS operators L_{2k} is a linear, formally self-adjoint operator with leading terms (−Δ)^k on *n*-manifolds. Let g̃ = e^{2γ}g

 $L_2 = \text{conformal Laplacian: } L_2^{\tilde{g}}(u) = e^{-\frac{n+2}{2}\gamma}L_2^g(e^{\frac{n-2}{2}\gamma}u) \text{ and } L_2(1) = R_g.$

 L_4 = Paneitz operator: $L_4^{\tilde{g}}(u) = e^{-\frac{n+4}{2}\gamma}L_2^g(e^{\frac{n-4}{2}\gamma}u)$ and $L_4(1) = \frac{n-4}{2}Q_4^g$.

 The formally self-adjoint, conformally covariant, tri-differential operator associated to the σ₂-curvature is the polarization of

$$L_{\sigma_2}(u, u, u) := \frac{1}{2}\delta\left(|\nabla u|^2 du\right) - \frac{n-4}{16}\left(u\Delta|\nabla u|^2 - \delta\left((\Delta u^2) du\right)\right)$$
$$-\frac{1}{2}\left(\frac{n-4}{4}\right)^2 u\delta\left(T_1(\nabla u^2)\right) + \left(\frac{n-4}{4}\right)^3 \sigma_2 u^3;$$

 $L_{\sigma_2}(1,1,1)=\left(\frac{n-4}{4}\right)^3\sigma_2.$

Case-Wang ('18): solved a Dirichlet problem on manifolds with boundary under a positivity assumption.

Case('21): used the multi-linearity of L_{σ_2} to give a new proof of a sharp fully nonlinear Sobolev inequality.

Introduction	CVIs 000	Polydifferential operators

§3 Definition

A natural ℓ -differential operator $D : (C^{\infty}(M))^{\ell} \to C^{\infty}(M)$ is associated to a CVI *L* (of weight -2k) if it is (1) conformally covariant of bidegree (a, b):

$$D^{e^{2\gamma}g}(u_1,...,u_\ell) = e^{-b\gamma}D^g(e^{a\gamma}u_1,...,e^{a\gamma}u_\ell), \ \gamma, u_1,...,u_\ell \in C^{\infty}(M);$$

(2) formally self-adjoint:

$$(u_0,\ldots,u_\ell)\mapsto \int_M u_0 D(u_1,\ldots,u_\ell) dvol_g$$

is symmetric $\forall u_0, ..., u_\ell \in C^\infty(M)$.

(3) recovers L:

for n > 2k, $D(1, ..., 1) = \left(\frac{n-2k}{\ell+1}\right)^{\ell} L$; for n = 2k,

$$\frac{1}{\ell!} \frac{\partial^{\ell}}{\partial t^{\ell}} \bigg|_{t=0} e^{nt\gamma} L^{e^{2t\gamma}g} = D(\gamma, \ldots, \gamma) \quad \forall \gamma \in C^{\infty}(M).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

§3 Existence of CVI associated operators

Theorem (Case-L.- Yuan'22)

Let L be a CVI of weight -2k. There is an integer $1 \le j \le 2k$ such that (1) there is a (j - 1)-differential operator associated to L; and (2) for any $1 \le \ell < j - 1$, \nexists an ℓ -differential operator associated to L. *j* is called the rank of L.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

§3 Existence of CVI associated operators

Theorem (Case-L.- Yuan'22)

Let L be a CVI of weight -2k. There is an integer $1 \le j \le 2k$ such that (1) there is a (j - 1)-differential operator associated to L; and (2) for any $1 \le \ell < j - 1$, \nexists an ℓ -differential operator associated to L. *j* is called the rank of L.

• A natural ℓ -differential operator D is conformally covariant of bidegree (a, b) if and only if $\frac{\partial}{\partial t}\Big|_{t=0} (e^{bt\Upsilon} \circ D^{e^{2t\Upsilon}g} \circ e^{-at\Upsilon}) = 0 \quad \forall \gamma \in C^{\infty}(M).$

In addition, if *D* is formally self-adjoint, then $a = \frac{n-2k}{\ell+1}$ and $b = \frac{n\ell+2k}{\ell+1}$, where -2k is the homogeneity of *D*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

§3 Existence of CVI associated operators

Theorem (Case-L.- Yuan'22)

Let L be a CVI of weight -2k. There is an integer $1 \le j \le 2k$ such that (1) there is a (j - 1)-differential operator associated to L; and (2) for any $1 \le \ell < j - 1$, \nexists an ℓ -differential operator associated to L. *j* is called the rank of L.

• A natural ℓ -differential operator D is conformally covariant of bidegree (a, b) if and only if $\frac{\partial}{\partial t}\Big|_{t=0} (e^{bt\Upsilon} \circ D^{e^{2t\Upsilon}g} \circ e^{-at\Upsilon}) = 0 \quad \forall \gamma \in C^{\infty}(M).$

In addition, if *D* is formally self-adjoint, then $a = \frac{n-2k}{\ell+1}$ and $b = \frac{n\ell+2k}{\ell+1}$, where -2k is the homogeneity of *D*.

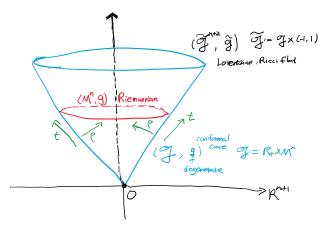
• **Remark:** If a CVI L is of weight -2k, then rank $r \le 2k$.

Examples: Q_{2k} is rank 2 and σ_k or v_k is rank 2k.

Introduction	CVIs	Polydifferential operators
0000	000	0000000000

§3 What is an ambient space?

The canonical sphere $M^n = \mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1,1} = \widetilde{\mathcal{G}}$:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction 0000	CVIs 000	Polydifferential operators

Theorem [Fefferman-Graham'12]: Let (Mⁿ, [g]) be a conformal manifold. Given g ∈ [g], there is a one-parameter family of metrics g_ρ on M such that g₀ = g and g̃ = 2ρ dt² + 2t dt dρ + t²g_ρ.

 \widetilde{g} is an ambient metric on ambient space $\widetilde{\mathcal{G}} := \mathbb{R}_+ \times M \times (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

(ロ) (同) (三) (三) (三) (○) (○)

Introduction 0000	CVIs 000	Polydifferential operators

Theorem [Fefferman-Graham'12]: Let (Mⁿ, [g]) be a conformal manifold. Given g ∈ [g], there is a one-parameter family of metrics g_ρ on M such that g₀ = g and g̃ = 2ρ dt² + 2t dt dρ + t²g_ρ.

 \widetilde{g} is an ambient metric on ambient space $\widetilde{\mathcal{G}} := \mathbb{R}_+ \times M \times (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

Let X = t∂_t be the infinitesimal generator of the dilation δ_λ : G̃ → G̃.
 Given ω ∈ ℝ, let Ẽ[ω] := {ũ ∈ C[∞](G̃) : Xũ = ωũ}.

The space of conformal densities of weight ω is $\mathcal{E}[\omega] := \{ \widetilde{u} |_{\mathcal{G}} : \widetilde{u} \in \widetilde{\mathcal{E}}[\omega] \}.$

Introduction 0000	CVIs 000	Polydifferential operators

Theorem [Fefferman-Graham'12]: Let (Mⁿ, [g]) be a conformal manifold. Given g ∈ [g], there is a one-parameter family of metrics g_ρ on M such that g₀ = g and g̃ = 2ρ dt² + 2t dt dρ + t²g_ρ.

 \widetilde{g} is an ambient metric on ambient space $\widetilde{\mathcal{G}} := \mathbb{R}_+ \times M \times (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

• Let $X = t\partial_t$ be the infinitesimal generator of the dilation $\delta_{\lambda} : \widetilde{\mathcal{G}} \to \widetilde{\mathcal{G}}$. Given $\omega \in \mathbb{R}$, let $\widetilde{\mathcal{E}}[\omega] := \{\widetilde{u} \in C^{\infty}(\widetilde{\mathcal{G}}) : X\widetilde{u} = \omega \widetilde{u}\}.$

The space of conformal densities of weight ω is $\mathcal{E}[\omega] := \{ \widetilde{u}|_{\mathcal{G}} : \widetilde{u} \in \widetilde{\mathcal{E}}[\omega] \}.$

A differential operator *L* : *E*[ω] → *E*[ω'] is tangential if the map *E*[ω] ∋ *ũ* → *L*(*ũ*)|_G ∈ *E*[ω'] depends only on *u* := *ũ*|_G ∈ *E*[ω].

 $\iff \widetilde{L}(Qz) \equiv 0 \mod Q \quad \forall z \in \widetilde{\mathcal{E}}[\omega - 2], \text{ where } Q := |X|^2 \text{ is a defining function for } \mathcal{G} \cong \mathbb{R}_+ \times M.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Introduction	CVIs	Polydifferential operators
0000	000	0000000000

Theorem [Fefferman-Graham'12]: Let (Mⁿ, [g]) be a conformal manifold. Given g ∈ [g], there is a one-parameter family of metrics g_ρ on M such that g₀ = g and g̃ = 2ρ dt² + 2t dt dρ + t²g_ρ.

 \widetilde{g} is an ambient metric on ambient space $\widetilde{\mathcal{G}} := \mathbb{R}_+ \times M \times (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

• Let $X = t\partial_t$ be the infinitesimal generator of the dilation $\delta_{\lambda} : \widetilde{\mathcal{G}} \to \widetilde{\mathcal{G}}$. Given $\omega \in \mathbb{R}$, let $\widetilde{\mathcal{E}}[\omega] := \{\widetilde{u} \in C^{\infty}(\widetilde{\mathcal{G}}) : X\widetilde{u} = \omega \widetilde{u}\}.$

The space of conformal densities of weight ω is $\mathcal{E}[\omega] := \{ \widetilde{u}|_{\mathcal{G}} : \widetilde{u} \in \widetilde{\mathcal{E}}[\omega] \}.$

A differential operator *L* : *E*[ω] → *E*[ω'] is tangential if the map *E*[ω] ∋ *ũ* → *L*(*ũ*)|_G ∈ *E*[ω'] depends only on *u* := *ũ*|_G ∈ *E*[ω].

 $\iff \widetilde{L}(Qz) \equiv 0 \mod Q \quad \forall z \in \widetilde{\mathcal{E}}[\omega - 2], \text{ where } Q := |X|^2 \text{ is a defining function for } \mathcal{G} \cong \mathbb{R}_+ \times M.$

(ロ) (同) (三) (三) (三) (○) (○)

• If \widetilde{L} is tangential, it induces a conformally covariant operator $L^g: C^{\infty}(M) \to C^{\infty}(M)$ using identifications $\mathcal{E}[\omega] \cong_g C^{\infty}(M)$.

Introduction	CVIs	Polydifferential operators
0000	000	0000000000

 Branson ('95): The space of conformally covariant differential operators on Sⁿ is the span of restrictions Δ^kũ|_G, where Δ is ambient Laplacian on Minkowski space (ℝ^{n+1,1}, −dτ² + dx²) and ũ ∈ Ẽ[-^{n-2k}/₂].

(日) (日) (日) (日) (日) (日) (日)

Introduction	CVIs	Polydifferential operators
0000	000	0000000000

- Branson ('95): The space of conformally covariant differential operators on Sⁿ is the span of restrictions Δ̃^kũ|_G, where Δ̃ is ambient Laplacian on Minkowski space (ℝ^{n+1,1}, −dτ² + dx²) and ũ ∈ Ẽ[-^{n-2k}/₂].
- On the ambient space of a pseudo-Riemannian n-manifold $(n \ge 2k)$:

 $\widetilde{\Delta}^k \longrightarrow$ induce GJMS operators $L_{2k} = (-\Delta)^k + \text{l.o.t}$

(GJMS operators are conformally covariant and formally self-adjoint).

Introduction	CVIs	Polydiffe
0000	000	00000

- Branson ('95): The space of conformally covariant differential operators on Sⁿ is the span of restrictions Δ̃^kũ|_G, where Δ̃ is ambient Laplacian on Minkowski space (ℝ^{n+1,1}, −dτ² + dx²) and ũ ∈ Ẽ[-^{n-2k}/₂].
- On the ambient space of a pseudo-Riemannian n-manifold $(n \ge 2k)$:

 $\widetilde{\Delta}^k \longrightarrow$ induce GJMS operators $L_{2k} = (-\Delta)^k + 1.0.t$

(GJMS operators are conformally covariant and formally self-adjoint).

critical weights:

 $\omega_1, \omega_2 \in \mathcal{I}_k := \{ -\frac{n-2k}{2} - \ell \}_{\ell=0}^{k-1}, \quad \omega_1 + \omega_2 \in \mathcal{O}_k := \{ -\frac{n-2k}{2} + \ell \}_{\ell=0}^{k-1}$

- Ovsienko-Redou('03): for non-critical weights ω₁, ω₂, the space of conformally covariant bi-differential operators of total order 2k on Sⁿ, D_{2k;ω1,ω2} : ε[ω₁] ⊗ ε[ω₂] → ε[ω₁ + ω₂ 2k] is one-dimensional.
- Clerc ('16, '17): classified the space for remaining weights on Sⁿ can be one, two or three dimensional.

erential operators

Introduction	CVIs	Polydifferential operators
0000	000	0000000000

• Branson ('95): The space of conformally covariant differential operators on S^n is the span of restrictions $\widetilde{\Delta}^k \widetilde{u}|_{\mathcal{G}}$, where $\widetilde{\Delta}$ is ambient Laplacian on Minkowski space $(\mathbb{R}^{n+1,1}, -d\tau^2 + dx^2)$ and $\widetilde{u} \in \widetilde{\mathcal{E}}[-\frac{n-2k}{2}]$.

• On the ambient space of a pseudo-Riemannian n-manifold (n > 2k):

 $\widetilde{\Delta}^k \longrightarrow$ induce GJMS operators $L_{2k} = (-\Delta)^k + 1.0.1$

(GJMS operators are conformally covariant and formally self-adjoint).

critical weights:

 $\omega_1, \omega_2 \in \mathcal{I}_k := \{-\frac{n-2k}{2} - \ell\}_{\ell=0}^{k-1}, \quad \omega_1 + \omega_2 \in \mathcal{O}_k := \{-\frac{n-2k}{2} + \ell\}_{\ell=0}^{k-1}$

- **Ovsienko-Redou('03)**: for non-critical weights ω_1, ω_2 , the space of conformally covariant bi-differential operators of total order 2k on S^n , $D_{2k;\omega_1,\omega_2}: \mathcal{E}[\omega_1] \otimes \mathcal{E}[\omega_2] \rightarrow \mathcal{E}[\omega_1 + \omega_2 - 2k]$ is one-dimensional.
- Clerc ('16, '17): classified the space for remaining weights on Sⁿ can be one, two or three dimensional.
- Case-L.-Yuan('23) complete classification of tangential Ovsienko-Redou operators of order at most $2k \leq n$ on the ambient space of an *n*-manifold. (日) (日) (日) (日) (日) (日) (日)

Introduction	CVIs	Polydifferential operators
0000	000	00000000000

§3 Classification of Ovsienko-Redou operators

CVIs

§3 Classification of Ovsienko-Redou operators

Theorem (Case-L.-Yuan'23, Case 1)

Let $(M^n, [g])$ be a conformal manifold and $k \le n/2$ be a positive integer. Let $\omega_1, \omega_2 \in \mathbb{R}$. Suppose that either (1) at most one of $\omega_1 \in \mathcal{I}_k$ or $\omega_2 \in \mathcal{I}_k$ or $\omega_1 + \omega_2 \in \mathcal{O}_k$ holds; (2) $\omega_1, \omega_2 \in \mathcal{I}_k$, with $\omega_1 + \omega_2 + n \le k$, but $\omega_1 + \omega_2 \notin \mathcal{O}_k$; (3) $\omega_1 \in \mathcal{I}_k$ and $\omega_1 + \omega_2 \in \mathcal{O}_k$ with $\omega_2 \ge k$, but $\omega_2 \notin \mathcal{I}_k$; or (4) $\omega_2 \in \mathcal{I}_k$ and $\omega_1 + \omega_2 \in \mathcal{O}_k$ with $\omega_1 \ge k$, but $\omega_1 \notin \mathcal{I}_k$. Then the space of Ovsienko-Redou operators is one-dimensional and spanned by

$$\widetilde{D}_{2k;\omega_1,\omega_2}(\widetilde{u},\widetilde{v}) := \sum_{s=0}^k \sum_{t=0}^{k-s} a_{k-s-t,s,t} \widetilde{\Delta}^{k-s-t} \left(\left(\widetilde{\Delta}^s \widetilde{u} \right) \left(\widetilde{\Delta}^t \widetilde{v} \right) \right),$$

where $a_{s,t} = a_{s,t}(s, t, n, k, \text{gamma function})$. Then $D_{2k;\omega_1,\omega_2}$ is tangential, and induces a natural conformally covariant bi-differential operator $D_{2k;\omega_1,\omega_2} : \mathcal{E}[\omega_1] \otimes \mathcal{E}[\omega_2] \rightarrow \mathcal{E}[\omega_1 + \omega_2 - 2k]$.

Remark: For remaining weights ω_1, ω_2 in case 2 and 3, the space of Ovsienko-Redou operators is two and three-dimensional, respectively.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	CVIs	Polydifferential operators
0000	000	000000000000

§3 What do we know about Ovsienko-Redou operators?

(ロ)、

Introductio	on
0000	

§3 What do we know about Ovsienko-Redou operators?

Theorem (Case-L.- Yuan'23)

Let (M^n, g) be pseudo-Riemannian manifold and $k \in \{1, 2, 3\}$. Then $D_{2k} := D_{2k, -\frac{n-2k}{3}}$ is formally self-adjoint.

Conjecture: D_{2k} is formally self-adjoint for all *k*.

Intr	od	lu	С	ti	0	n
00	0	С)			

§3 What do we know about Ovsienko-Redou operators?

Theorem (Case-L.- Yuan'23)

Let (M^n, g) be pseudo-Riemannian manifold and $k \in \{1, 2, 3\}$. Then $D_{2k} := D_{2k, -\frac{n-2k}{3}}$ is formally self-adjoint.

Conjecture: D_{2k} is formally self-adjoint for all *k*.

Theorem (Case-L.- Yuan'23 (commutator formula))

Let $(S^n, d\theta^2)$ be round sphere, $k \in \mathbb{N}$ and n > 2k. Let $\{x^i\}_{i=0}^n$ be standard Cartesian coordinates in \mathbb{R}^{n+1} . Then

$$\sum_{i=0}^{n} x^{i} [D_{2k}, x^{i}] = -C_{n,k} D_{2k-2, -\frac{n-2k+3}{3}, -\frac{n-2k}{3}},$$

where $[D, f](u \otimes v) := D((uf) \otimes v) - fD(u \otimes v)$ for all $u, v, f \in C^{\infty}(S^n)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

§3 Applications of Ovsienko-Redou operators

1. Construction of a large family of conformally covariant differential operators:

Theorem (Case-L.- Yuan'23)

Let $(M^n, [g])$ be a conformal manifold and $k \le n/2$ be a positive integer, and let $\tilde{I} \in \tilde{\mathcal{E}}[-2\ell], \ell \le k$ be a natural scalar Riemannian invariant on $(\tilde{\mathcal{G}}, \tilde{g})$. Then the operator $\tilde{D} : \tilde{\mathcal{E}}[-\frac{n-2k}{2}] \to \tilde{\mathcal{E}}[-\frac{n+2k}{2}]$,

$$\widetilde{D}(\widetilde{u}) := \widetilde{D}_{2k-2\ell;-2\ell,-\frac{n-2k}{2}}(\widetilde{l},\widetilde{u})$$

is tangential, and induces a natural conformally covariant differential operator $D: \mathcal{E}[-\frac{n-2k}{2}] \rightarrow \mathcal{E}[-\frac{n+2k}{2}]$. Moreover, if $k \leq \ell + 3$, then D is formally self-adjoint.

§3 Applications of Ovsienko-Redou operators

1. Construction of a large family of conformally covariant differential operators:

Theorem (Case-L.- Yuan'23)

Let $(M^n, [g])$ be a conformal manifold and $k \le n/2$ be a positive integer, and let $\tilde{I} \in \tilde{\mathcal{E}}[-2\ell], \ell \le k$ be a natural scalar Riemannian invariant on $(\tilde{\mathcal{G}}, \tilde{g})$. Then the operator $\tilde{D} : \tilde{\mathcal{E}}[-\frac{n-2k}{2}] \to \tilde{\mathcal{E}}[-\frac{n+2k}{2}]$,

$$\widetilde{D}(\widetilde{u}) := \widetilde{D}_{2k-2\ell;-2\ell,-\frac{n-2k}{2}}(\widetilde{l},\widetilde{u})$$

is tangential, and induces a natural conformally covariant differential operator $D: \mathcal{E}[-\frac{n-2k}{2}] \rightarrow \mathcal{E}[-\frac{n+2k}{2}]$. Moreover, if $k \leq \ell + 3$, then D is formally self-adjoint.

Examples

 $\ell = 0$: recover GJMS operators; $\ell = 2, k = 3$: Inserting $\tilde{I} = |\widetilde{Rm}|^2$, we have r = 10 r = 10 r = 10 $(r = 6)^2$

$$Du = \frac{n-10}{2}\Delta(|W|^2 u) + \frac{n-10}{2}|W|^2\Delta u) + (2\Delta|W|^2 - \frac{(n-6)^2}{2}J|W|^2)u.$$

Introduction 0000 CVIs

Polydifferential operators

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

§3 Applications of Ovsienko-Redou operators

2. Sharp fully nonlinear Sobolev inequalities:

Theorem (Case-L.- Yuan, work in progress)

Let $n \ge 5$ and $\varepsilon \ge 0$. Then

$$\int_{\mathcal{S}^n} \left[\left(\frac{16(n-1)}{3(n+2)} + \varepsilon \right) Q_4^g + \frac{16(n-4)^2}{9(n+2)} \sigma_2^g \right] \, d\textit{vol}_g \geq C_n \textit{Vol}_g(\mathcal{S}^n)^{\frac{n-4}{n}},$$

for all conformally flat metrics g on S^n . Moreover, equality holds if and only if g has constant sectional curvature.

CVIs

Polydifferential operators

§3 Applications of Ovsienko-Redou operators

2. Sharp fully nonlinear Sobolev inequalities:

Theorem (Case-L.- Yuan, work in progress)

Let $n \ge 5$ and $\varepsilon \ge 0$. Then

$$\int_{\mathcal{S}^n} \left[\left(\frac{16(n-1)}{3(n+2)} + \varepsilon \right) Q_4^g + \frac{16(n-4)^2}{9(n+2)} \sigma_2^g \right] \, d\textit{vol}_g \geq C_n \textit{Vol}_g(\mathcal{S}^n)^{\frac{n-4}{n}},$$

for all conformally flat metrics g on S^n . Moreover, equality holds if and only if g has constant sectional curvature.

Theorem (Case-L.- Yuan, work in progress)

Let $n \ge 5$ and $\varepsilon \ge 0$. Then

$$\int_{\mathbb{R}^n} \varepsilon (\Delta u^3)^2 + 4u^2 |\nabla^2 u^2|^2 + \frac{4(2n-5)}{n+2} u^2 (\Delta u^2)^2 \, dx \ge C_n \left(\int_{\mathbb{R}^n} |u|^{\frac{6n}{n-4}} \, dx \right)^{\frac{n-4}{n}}$$

for all $u \in S_{\varepsilon}$. Moreover, equality holds if and only if $u(x) = u_{a,\lambda,x_0}(x) := a(\lambda + |x - x_0|^2)^{-\frac{n-4}{6}}$.

Introduction	CVIs	Polydifferential operators
0000	000	0000000000

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ