

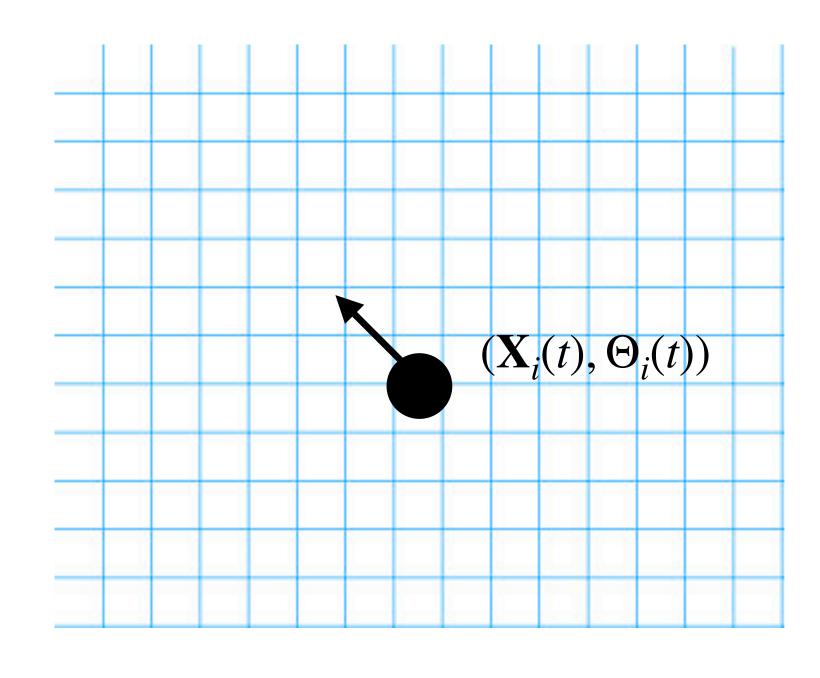
Collective behaviour of active particles with mean-field interaction

Oscar de Wit, PhD student, University of Cambridge

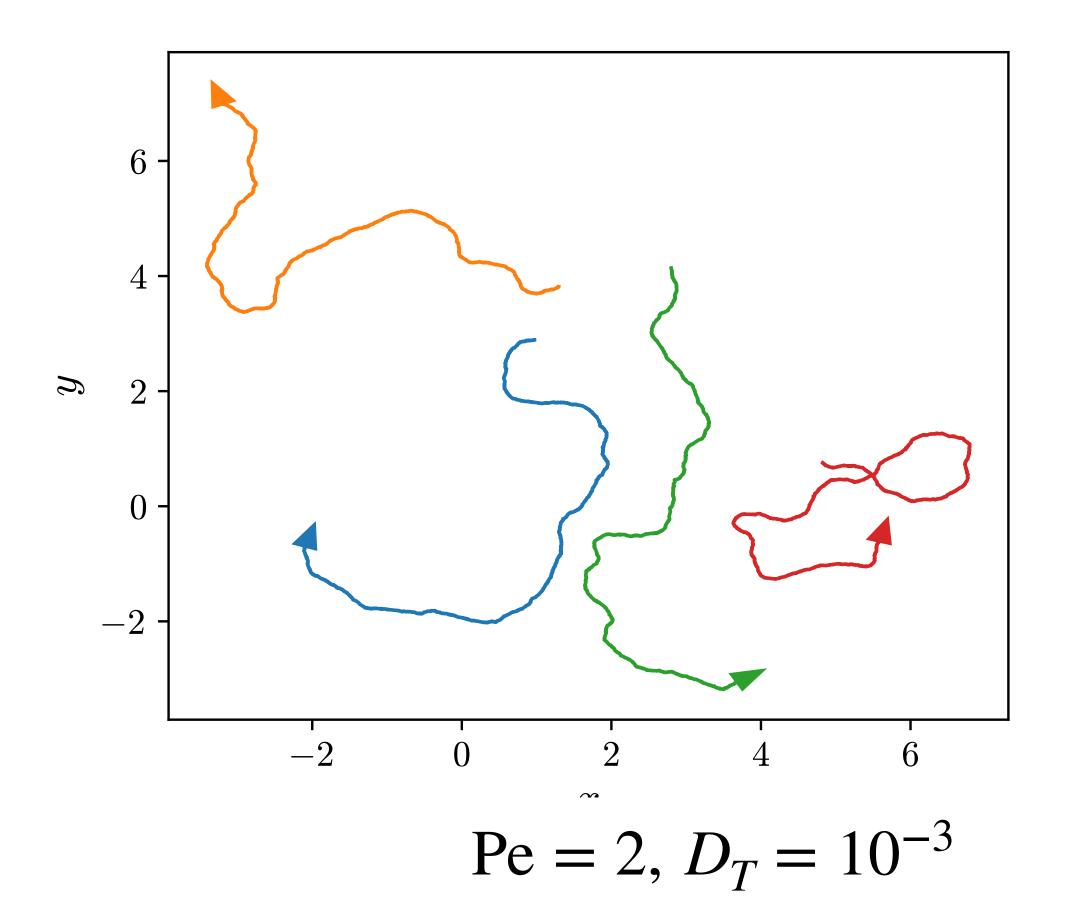
System of SDEs

$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\Theta_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$
$$d\Theta_{t}^{i,N} = \sqrt{2}dW_{t}^{i,N}$$

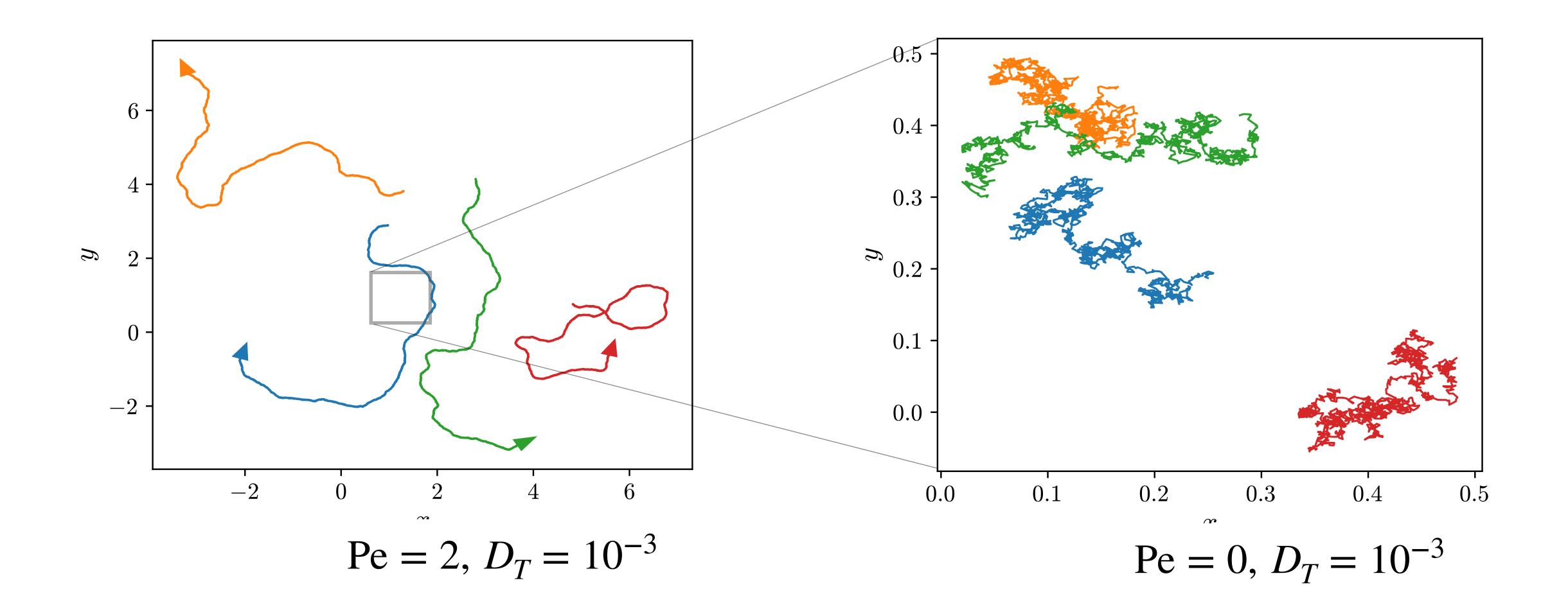
- Active Brownian Particles
- $(\mathbf{X}, \Theta) \in \mathbb{T}_L^2 \times \mathbb{T}_{2\pi}$, $\mathbf{e}(\Theta) = (\cos \Theta, \sin \Theta)$, N particles, Brownian motions \mathbf{W} and W, constants Pe, D_T



$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\boldsymbol{\Theta}_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$
$$d\boldsymbol{\Theta}_{t}^{i,N} = \sqrt{2}dW_{t}^{i,N}$$



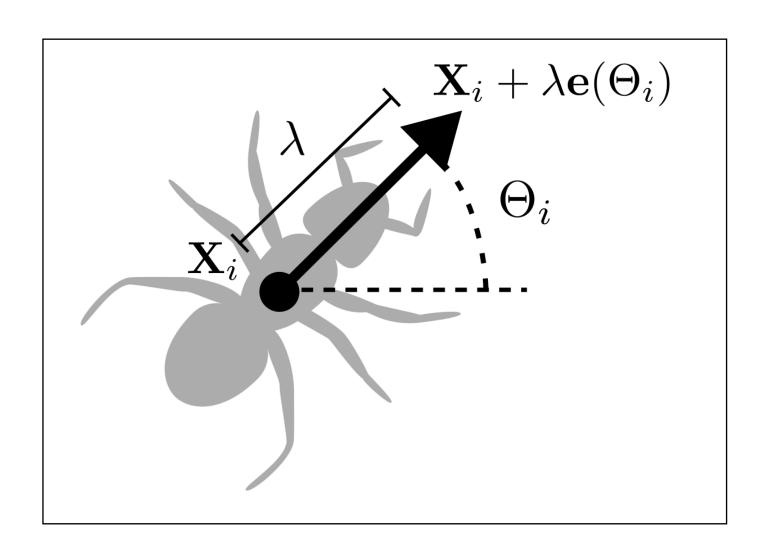
$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\boldsymbol{\Theta}_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$
$$d\boldsymbol{\Theta}_{t}^{i,N} = \sqrt{2}dW_{t}^{i,N}$$



System of SDEs

$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\Theta_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$

$$d\Theta_{t}^{i,N} = \gamma \mathbf{n}(\Theta_{t}^{i,N}) \cdot \frac{1}{N} \sum_{j \neq i} \nabla K(\mathbf{X}_{t}^{i,N} + \lambda \mathbf{e}(\Theta_{t}^{i,N}) - \mathbf{X}_{t}^{j,N})dt + \sqrt{2}dW_{t}^{i,N}$$

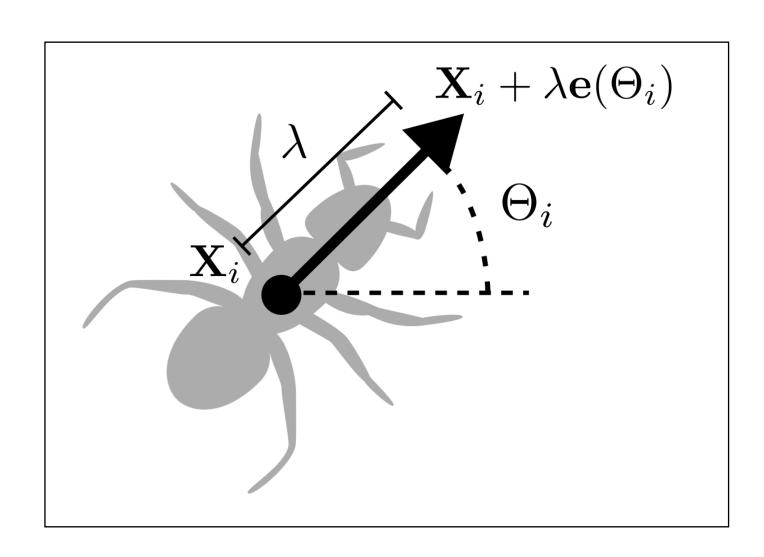


System of SDEs

$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\Theta_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$

$$d\Theta_{t}^{i,N} = \gamma \mathbf{n}(\Theta_{t}^{i,N}) \cdot \frac{1}{N} \sum_{j \neq i} \nabla K(\mathbf{X}_{t}^{i,N} + \lambda \mathbf{e}(\Theta_{t}^{i,N}) - \mathbf{X}_{t}^{j,N})dt + \sqrt{2}dW_{t}^{i,N}$$

Interaction via a torque on the orientation $\mathbf{n}(\theta) \cdot \nabla K = \mathbf{e}(\theta) \times \nabla K$ so that $\mathbf{e}(\theta) \to \nabla K$

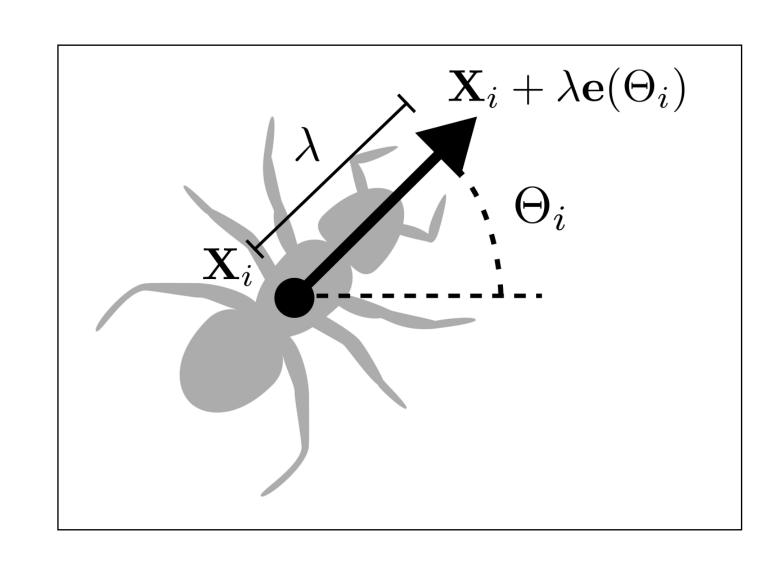


System of SDEs

$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\Theta_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$

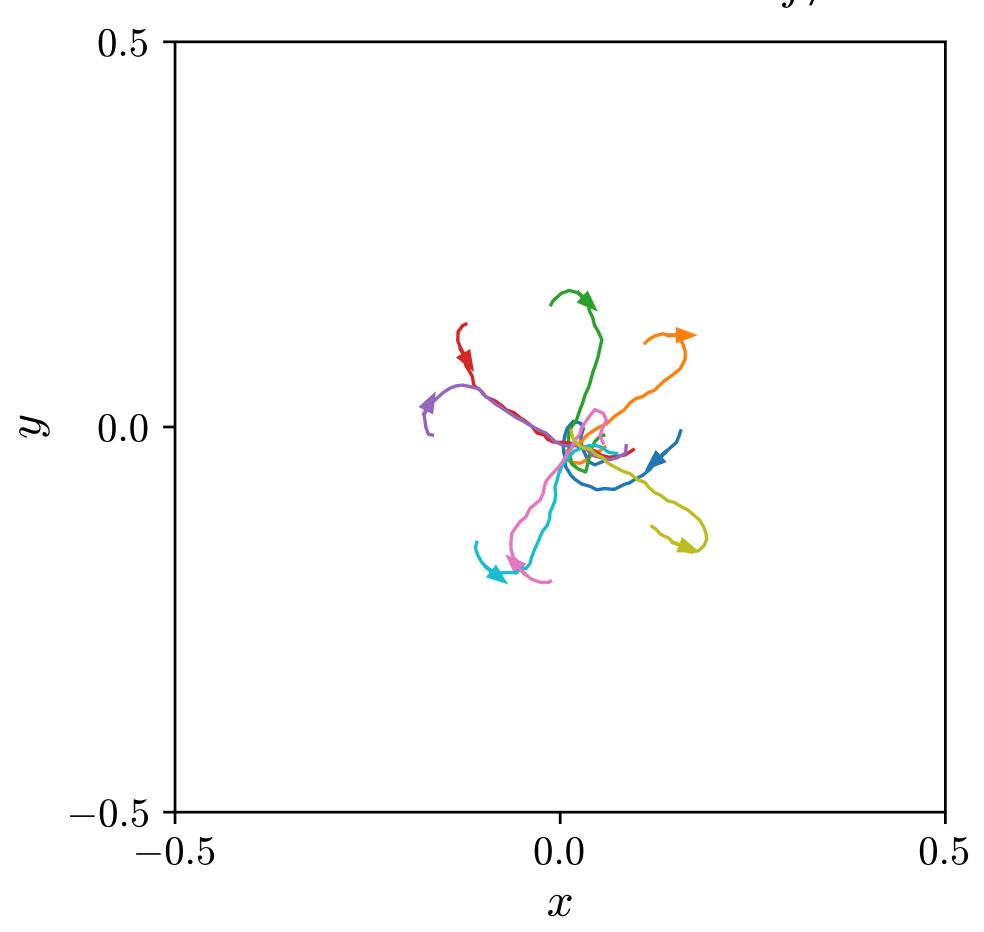
$$d\Theta_{t}^{i,N} = \gamma \mathbf{n}(\Theta_{t}^{i,N}) \cdot \frac{1}{N} \sum_{j \neq i} \nabla K(\mathbf{X}_{t}^{i,N} + \lambda \mathbf{e}(\Theta_{t}^{i,N}) - \mathbf{X}_{t}^{j,N})dt + \sqrt{2}dW_{t}^{i,N}$$

- Constants Pe, D_T , γ , λ , $\mathbf{n}(\theta) = (-\sin \theta, \cos \theta)^T$
- Vicsek model, Keller-Segel model, anticipation

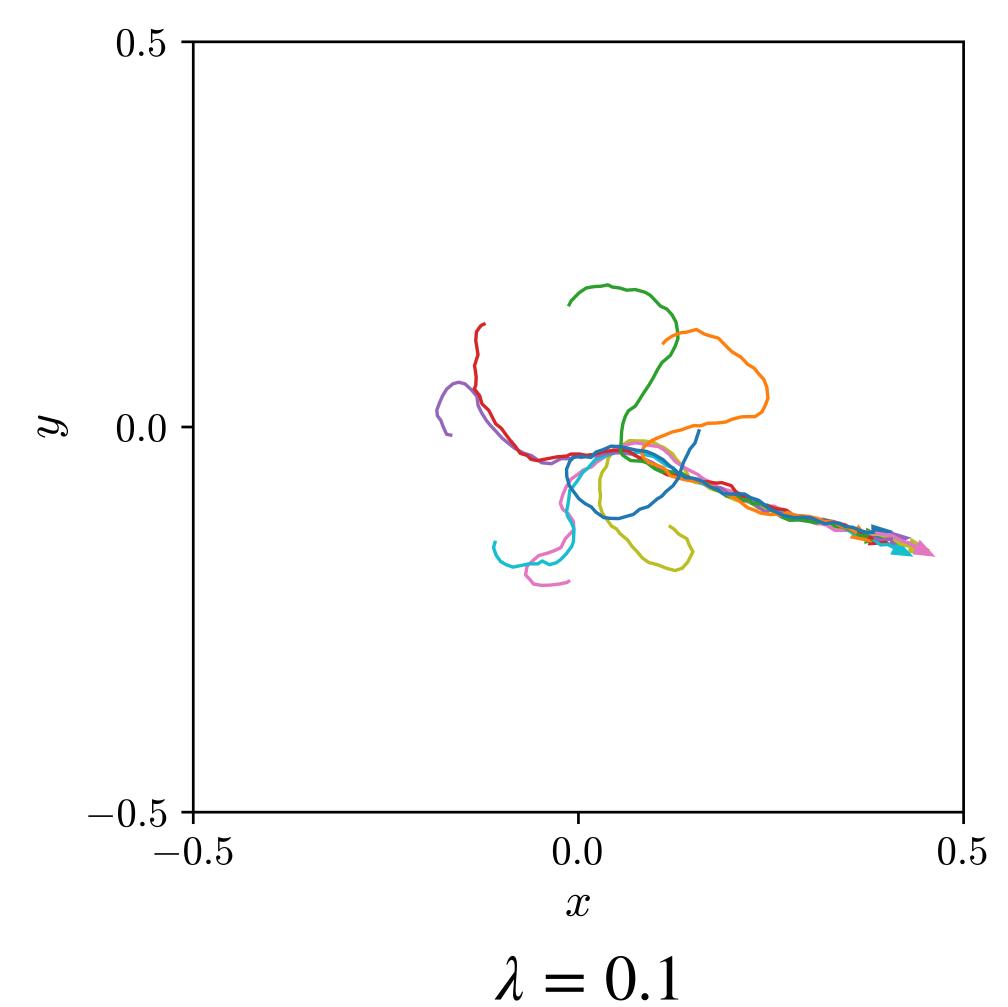


$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\Theta_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$

$$d\Theta_{t}^{i,N} = \gamma \mathbf{n}(\Theta_{t}^{i,N}) \cdot \frac{1}{N} \sum_{j \neq i} \nabla K(\mathbf{X}_{t}^{i,N} + \lambda \mathbf{e}(\Theta_{t}^{i,N}) - \mathbf{X}_{t}^{j,N})dt + \sqrt{2}dW_{t}^{i,N}$$

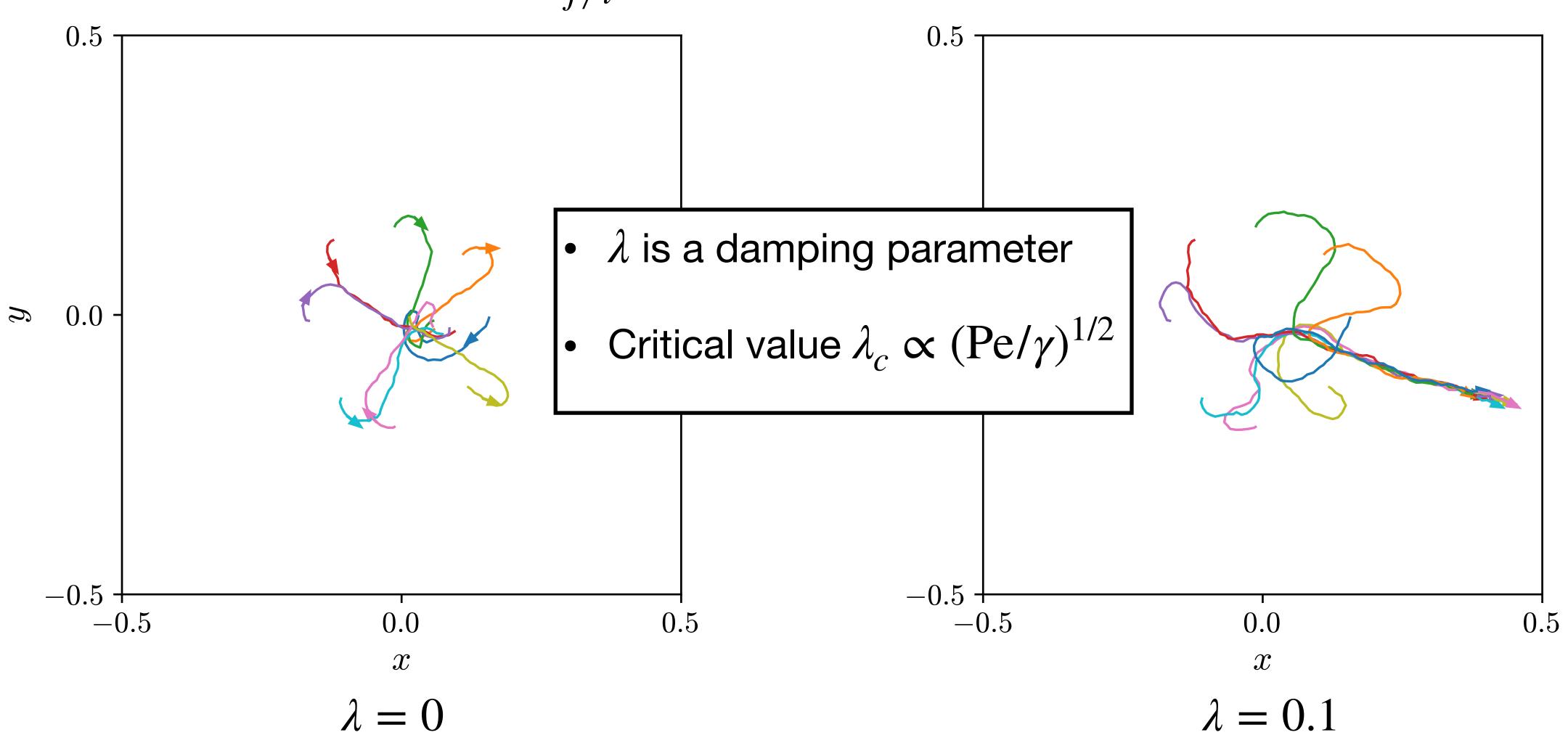


 $\lambda = 0$

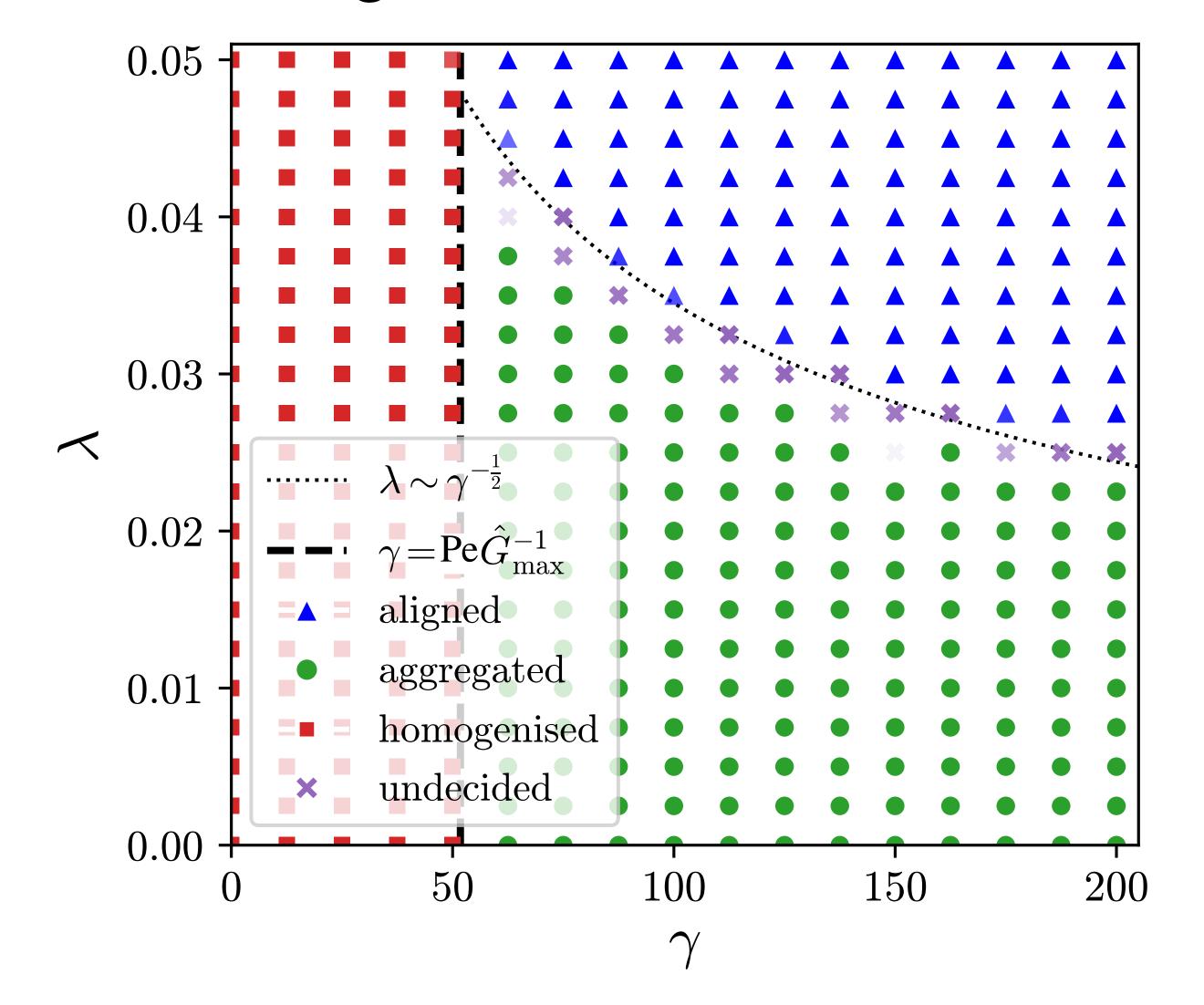


$$d\mathbf{X}_{t}^{i,N} = \operatorname{Pee}(\Theta_{t}^{i,N})dt + \sqrt{2D_{T}}d\mathbf{W}_{t}^{i,N}$$

$$d\Theta_{t}^{i,N} = \gamma \mathbf{n}(\Theta_{t}^{i,N}) \cdot \frac{1}{N} \sum_{j \neq i} \nabla K(\mathbf{X}_{t}^{i,N} + \lambda \mathbf{e}(\Theta_{t}^{i,N}) - \mathbf{X}_{t}^{j,N})dt + \sqrt{2}dW_{t}^{i,N}$$

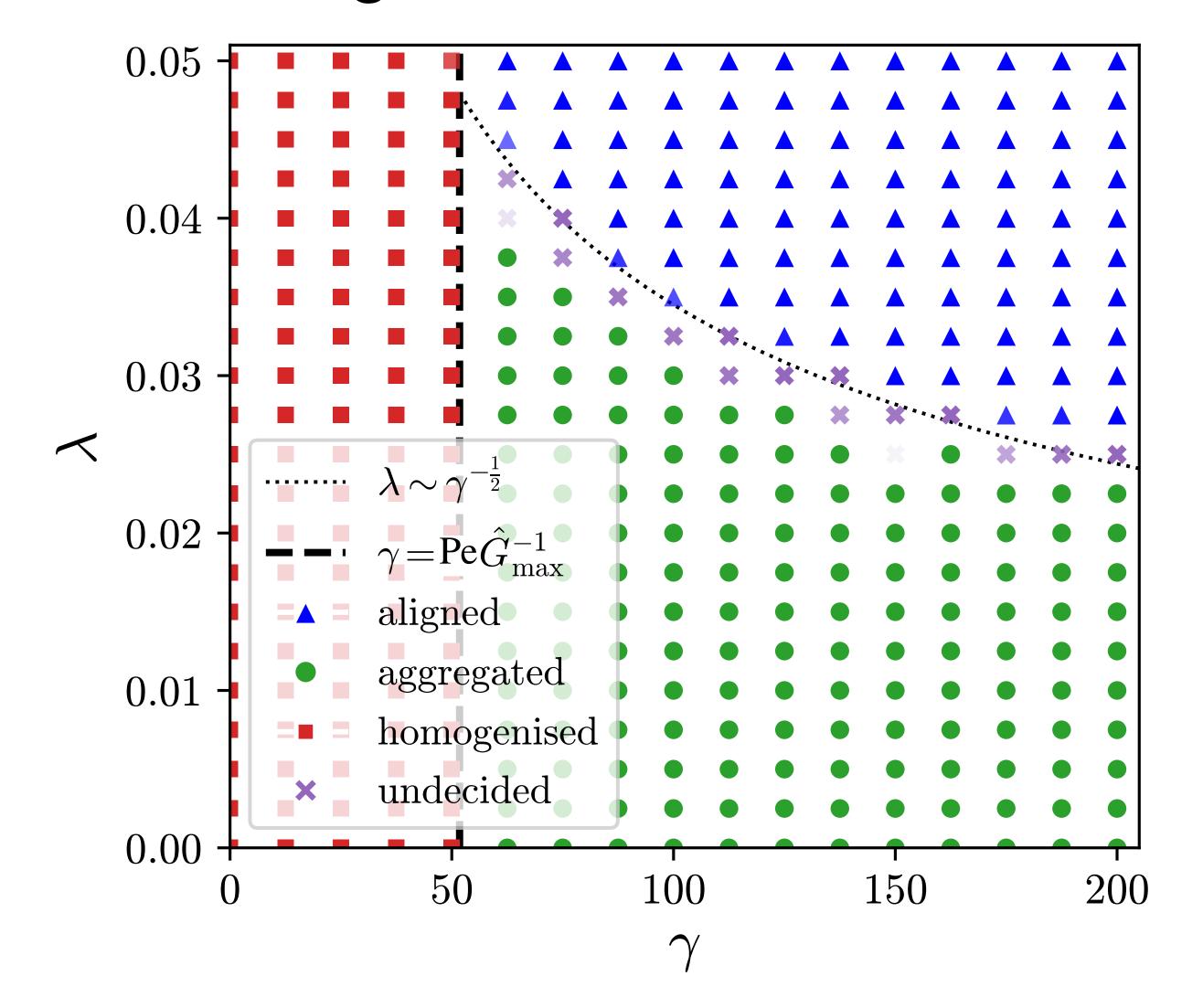


Phase diagram



- Classification via alignment $\langle e^{i\Theta_t^l} \rangle$ and aggregation $\langle |\mathbf{X}_t^i \mathbf{X}_t^{\mathrm{com}}| \rangle$ parameters (com=Center Of Mass)
- Dashed line: mean-field PDE linear (in)stability
- Dotted line: dimensional scaling of critical damping value

Phase diagram



Phase transitions

- 1. Subcritical to supercritical
- 2. Supercritical to supercritical

Propagation of chaos

- Globally Lipschitz K: classical result by McKean, MFL PDE $\left\{ \partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f \mathrm{Pe} \mathbf{e}_{\theta} f) + \partial_{\theta} (\partial_{\theta} f \gamma \mathbf{n}_{\theta} \cdot (\nabla K^* \rho)_{\lambda} f) \right.$
- Using notation $\rho(t, \mathbf{x}) = \int_0^{2\pi} f(t, \mathbf{x}, \theta) d\theta$ and $g_{\lambda}(\mathbf{x}, \theta) = g(\mathbf{x} + \lambda \mathbf{e}_{\theta})$
- Newtonian $K = -\frac{1}{2\pi} \log |\mathbf{x}|$: compactness mean-field limit (dW, thesis, 2025)

Dynamics

$$\left\{ \partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f - \mathrm{Pe} \mathbf{e}_{\theta} f) + \partial_{\theta} (\partial_{\theta} f - \gamma \mathbf{n}_{\theta} \cdot (\nabla K^* \rho)_{\lambda} f) \right\} \qquad \qquad \left\{ \partial_t f = \nabla \cdot \left(f \nabla \frac{\delta F}{\delta f} \right) \right\}$$

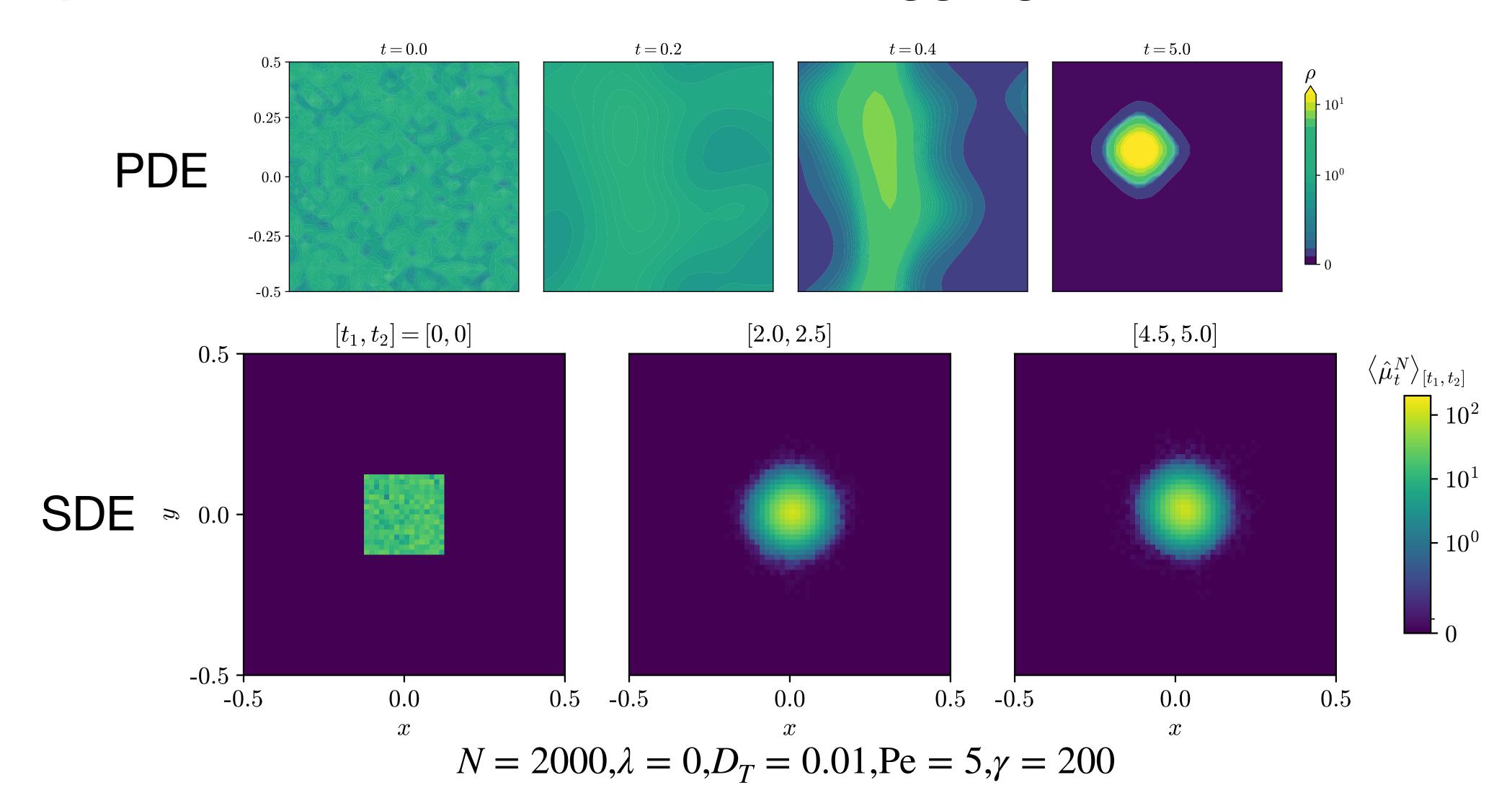
- **Subcritical**: in analogy with continuity gradient flows $f = \nabla \cdot \left(f \nabla \frac{\delta F}{\delta f} \right)$ [e.g. Carrillo, Gvalani, Wu, Delgadino, ...], convergence to homogeneous state and uniform-in-time propagation of chaos if and only if the homogeneous state is the unique stationary state?
- Supercritical: without anticipation ($\lambda = 0$), Kuramoto-like aggregation? [Bertini, Giacomin, Poquet, ...]
- Supercritical: for $\lambda > 0$ more than two types of attracting states?

Sub- and supercritical $\lambda \geq 0$

$$\begin{cases} \partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f - \text{Pe}\mathbf{e}_{\theta} f) + \partial_{\theta} (D_R \partial_{\theta} f - \gamma \mathbf{n}_{\theta} \cdot (\nabla c + \lambda \nabla^2 c \mathbf{e}_{\theta}) f) \\ 0 = \Delta_{\mathbf{x}} c - \alpha c + \rho \end{cases}$$

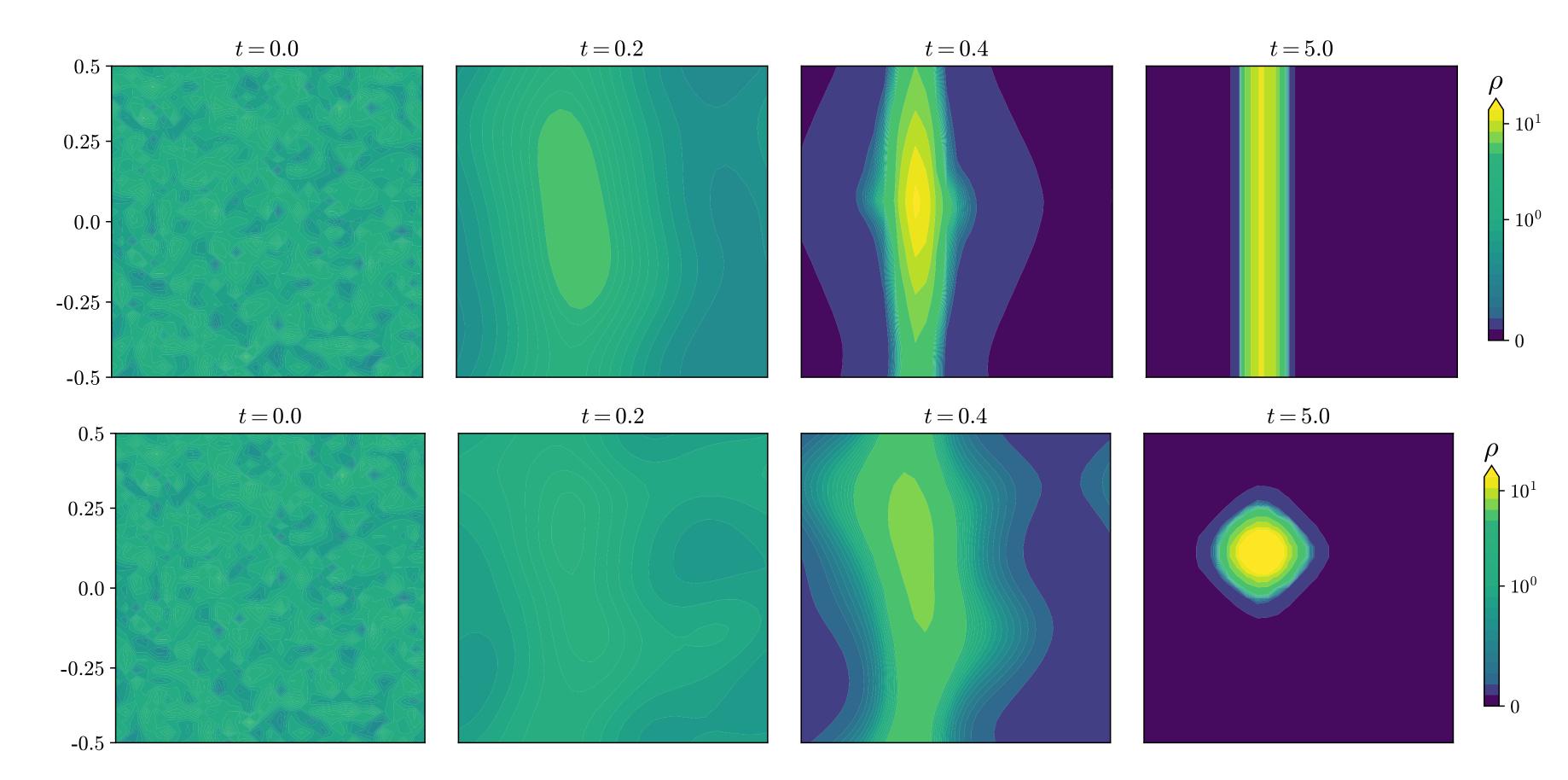
- **Theorem.** The PDE system defines a semidynamical system on a Banach space Y. The system possesses a compact global attractor $A \subset X$. Furthermore two distinct cases arise:
- 1. There exists a γ^* such that for any $0 \le \gamma < \gamma^*$ and $A = \{1/2\pi\}$.
- 2. If $\gamma > \text{Pe}\hat{K}_{\text{max}}^{-1}$ (linearly unstable) then $4 \leq \dim A$.
- Rakotomalala & dW, arxiv, (2025), submitted

Supercritical, $\lambda = 0$, Kuramoto-like aggregation?

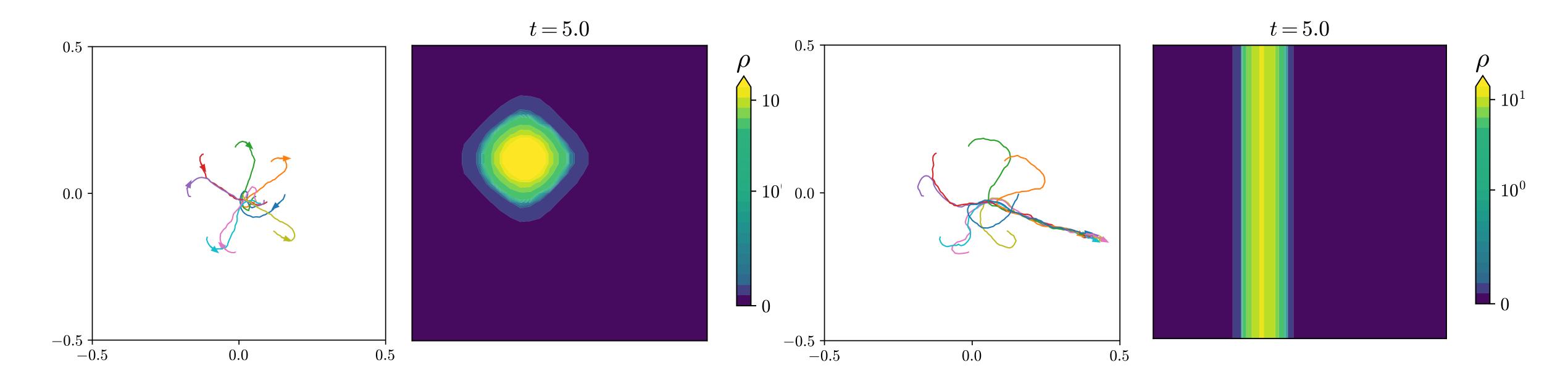


Supercritical, $\lambda \geq 0$

- Convergent finite volume scheme
- Bruna, Schmidtchen & dW (2025), ESAIM: M2AN, to appear



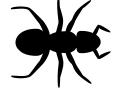
Supercritical, $\lambda \geq 0$, large deviations



To be continued...

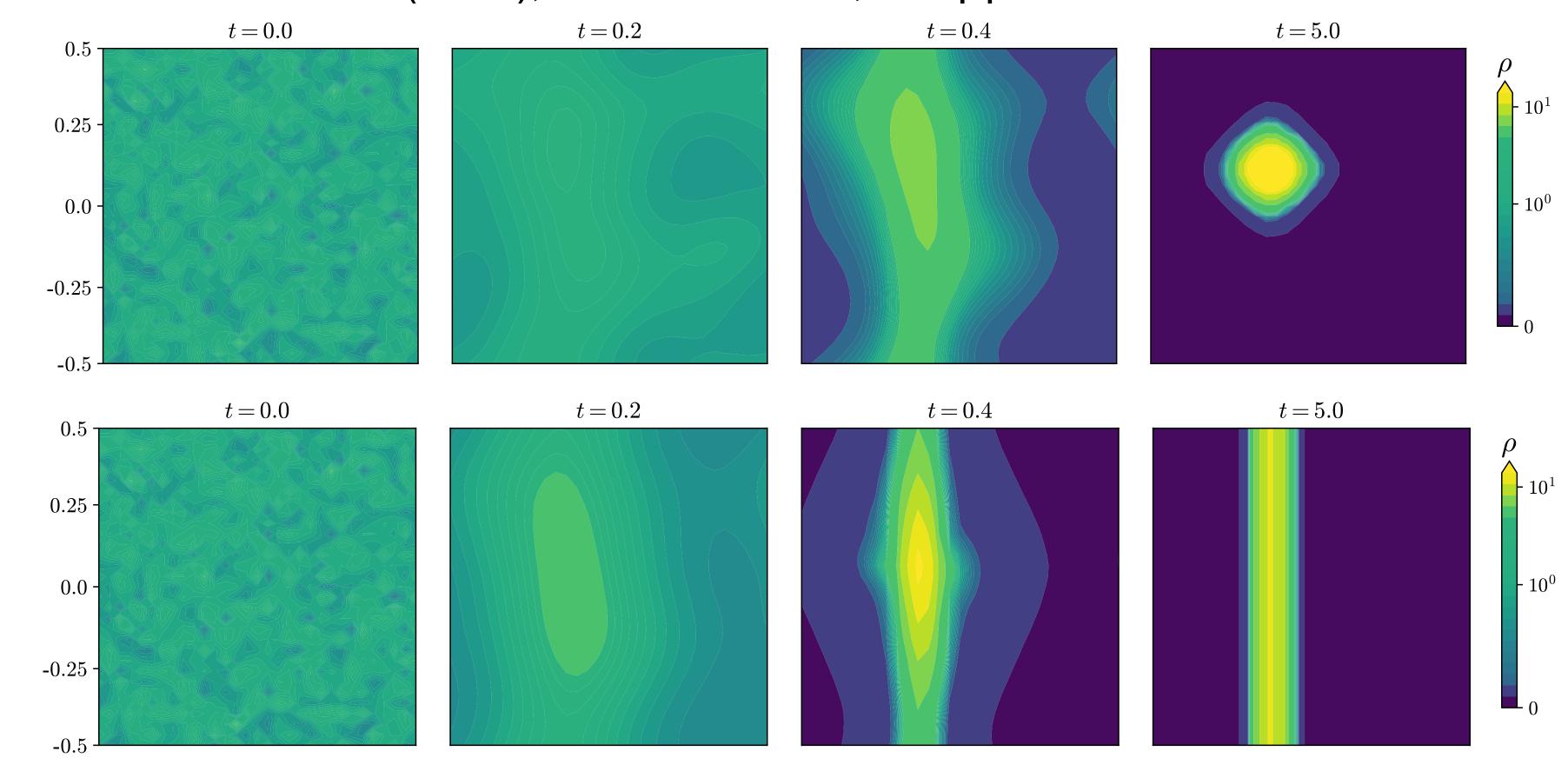
Thank you!

- Thanks to Maria Bruna, Martin Burger, Markus Schmidtchen and Matthias Rakotomalala
- Thank you IMAG and Granada

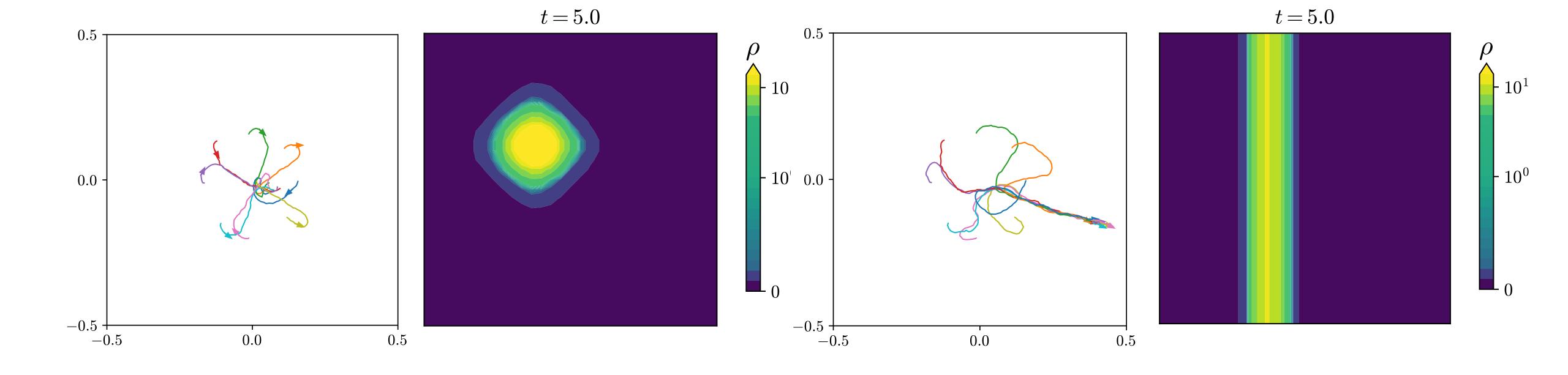


$$\partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f - \text{Pee}_{\theta} f) + \partial_{\theta} (\partial_{\theta} f - \gamma \mathbf{n}_{\theta} \cdot \nabla c_{\lambda} f), \quad 0 = \Delta c - \alpha c + \rho$$

- Convergent finite volume scheme
- Bruna, Schmidtchen & dW (2025), ESAIM: M2AN, to appear



$$\partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f - \text{Pe}\mathbf{e}_{\theta} f) + \partial_{\theta} (\partial_{\theta} f - \gamma \mathbf{n}_{\theta} \cdot \nabla c_{\lambda} f), \quad 0 = \Delta c - \alpha c + \rho$$



Globally Lipschitz interaction kernel

Theorem. (McKean.) Let $\mathbf{Z}_t^i = (\mathbf{X}_t^i, \Theta_t^i)$ be the solutions to the interacting particle system with globally Lipschitz kernel ∇K and let $\mathbf{\bar{Z}}_t^i$ be a solution to the associated McKean-Vlasov process, then

- For the random empirical measure $\mu_t^N = \frac{1}{N} \sum_i \delta_{\mathbf{Z}_t^i}$ we have $\mathbb{E}\left[W_1(\mu_t^N, f_t)\right] \leq \frac{C}{\sqrt{N}}$, where $\partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f \mathrm{Pe}\mathbf{e}_{\theta} f) + \partial_{\theta} (\partial_{\theta} f \gamma \mathbf{n}_{\theta} \cdot (\nabla K^* \rho)_{\lambda} f)$
- Using notation $\rho(t, \mathbf{x}) = \int_0^{2\pi} f(t, \mathbf{x}, \theta) d\theta$ and $g_{\lambda}(\mathbf{x}, \theta) = g(\mathbf{x} + \lambda \mathbf{e}_{\theta})$

Singular interaction kernel

Theorem. If $0 \le 2\lambda^2 + \frac{\lambda\gamma}{2\pi} < 8D_T$, the sequence of empirical measures $(\mu^N(t))_N$ converges to f(t) where f is the unique weak solution to

$$\begin{cases} \partial_t f = \nabla_{\mathbf{x}} \cdot (D_T \nabla_{\mathbf{x}} f - \text{Pe}\mathbf{e}_{\theta} f) + \partial_{\theta} (\partial_{\theta} f - \gamma \mathbf{n}_{\theta} \cdot \nabla_{\mathbf{x}} c_{\lambda} f), \\ 0 = \Delta_{\mathbf{x}} c - \alpha c + \rho. \end{cases}$$

•
$$\mu^{N}(t=0) \sim f(t=0) \in L^{\infty} \cap L^{1}(\mathbb{R}^{3}), \int |z|^{2} f(t=0) dz < \infty$$

• Fournier & Jourdain, Ann. Appl. Probab., (2017), Prokhorov's Theorem