On the conformal Dirac-Einstein equations

Martino Vittorio, Bologna

Granada - June 27th, 2023

INDEX

Motivations
Setting of the problem
Classification
Existence results
Manifolds with boundary

INDEX

Motivations
Setting of the problem

> Classification
> Existence results
> Manifolds with boundary

INDEX

Motivations
Setting of the problem
Classification
Existence results
Manifolds with boundary

INDEX

Motivations
Setting of the problem
Classification
Existence results

INDEX

Motivations
Setting of the problem
Classification
Existence results
Manifolds with boundary

Bosonic-Fermionic interaction

Bosonic-Fermionic interaction

D.R. Brill,J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)
J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)
G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)
F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999) E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000)

Bosonic-Fermionic interaction

D.R. Brill,J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)
J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)
G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)

Bosonic-Fermionic interaction

D.R. Brill,J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)
J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)
G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)
F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)
E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000)

Bosonic-Fermionic interaction

D.R. Brill,J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)
J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)
G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)
F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)
E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000).

Setting of the problem

\square

Setting of the problem

$\left(M^{n}, g\right)$ closed Riemannian, $n \geq 3$.

Einstein field equation

Critical points equation of $\mathcal{E}: \mathcal{G}(M) \longrightarrow \mathbb{m}$
$\varepsilon(g)=\int_{M} R_{g} d v_{g}$
$\left(M^{n}, g, \Sigma_{g} M\right)$ closed Spin, $n \geq 3$. Dirac wave equation, $\psi \in \Sigma_{g} M$ $D_{o} v=m \psi, \quad(\operatorname{mass} m)$
\square

Setting of the problem

$\left(M^{n}, g\right)$ closed Riemannian, $n \geq 3$.
$\left(M^{n}, g, \Sigma_{g} M\right)$ closed Spin, $n \geq 3$.

Einstein field equation (vacuum)
$R i c_{g}-\frac{R_{g}}{2} g=0, \quad g \in \mathcal{G}(M)$

Dirac wave equation, $\psi \in \Sigma_{g} M$

$$
D_{g} \psi=m \psi, \quad(\operatorname{mass} m)
$$

Critical points equation of

Setting of the problem

$\left(M^{n}, g\right)$ closed Riemannian, $n \geq 3 . \quad\left(M^{n}, g, \Sigma_{g} M\right)$ closed Spin, $n \geq 3$.

Einstein field equation (vacuum)

$$
\text { Ric }_{g}-\frac{R_{g}}{2} g=0, \quad g \in \mathcal{G}(M)
$$

Critical points equation of

$$
\begin{aligned}
\mathcal{E} & : \mathcal{G}(M) \longrightarrow \mathbb{R} \\
\mathcal{E}(g) & =\int_{M} R_{g} d v_{g}
\end{aligned}
$$

Dirac wave equation, $\psi \in \Sigma_{g} M$

$$
D_{g} \psi=m \psi, \quad(\operatorname{mass} m)
$$

Critical points equation of

$$
\begin{gathered}
\mathcal{F}_{g}: \Sigma_{g} M \longrightarrow \mathbb{R} \\
\mathcal{F}_{g}(\psi)=\int_{M}\left\langle D_{g} \psi, \psi\right\rangle-m|\psi|^{2} d v_{g}
\end{gathered}
$$

Setting of the problem

$\left(M^{n}, g\right)$ closed Riemannian, $n \geq 3 . \quad\left(M^{n}, g, \Sigma_{g} M\right)$ closed Spin, $n \geq 3$.

Einstein field equation (vacuum)

$$
R i c_{g}-\frac{R_{g}}{2} g=0, \quad g \in \mathcal{G}(M)
$$

Critical points equation of

$$
\begin{gathered}
\mathcal{E}: \mathcal{G}(M) \longrightarrow \mathbb{R} \\
\mathcal{E}(g)=\int_{M} R_{g} d v_{g}+S_{g}
\end{gathered}
$$

Dirac wave equation, $\psi \in \Sigma_{g} M$

$$
D_{g} \psi=m \psi, \quad(\operatorname{mass} m)
$$

Critical points equation of

$$
\begin{gathered}
\mathcal{F}_{g}: \Sigma_{g} M \longrightarrow \mathbb{R} \\
\mathcal{F}_{g}(\psi)=\int_{M}\left\langle D_{g} \psi, \psi\right\rangle-m|\psi|^{2} d v_{g}
\end{gathered}
$$

Setting of the problem

$\left(M^{n}, g\right)$ closed Riemannian, $n \geq 3 . \quad\left(M^{n}, g, \Sigma_{g} M\right)$ closed Spin, $n \geq 3$.

Einstein field equation (gravity)

$$
\operatorname{Ric}_{g}-\frac{R_{g}}{2} g=T_{g}, \quad g \in \mathcal{G}(M)
$$

Critical points equation of

$$
\begin{gathered}
\mathcal{E}: \mathcal{G}(M) \longrightarrow \mathbb{R} \\
\mathcal{E}(g)=\int_{M} R_{g} d v_{g}+S_{g}
\end{gathered}
$$

Dirac wave equation, $\psi \in \Sigma_{g} M$

$$
D_{g} \psi=m \psi, \quad(\operatorname{mass} m)
$$

Critical points equation of

$$
\begin{gathered}
\mathcal{F}_{g}: \Sigma_{g} M \longrightarrow \mathbb{R} \\
\mathcal{F}_{g}(\psi)=\int_{M}\left\langle D_{g} \psi, \psi\right\rangle-m|\psi|^{2} d v_{g}
\end{gathered}
$$

Setting of the problem

$\left(M^{n}, g\right)$ closed Riemannian, $n \geq 3 . \quad\left(M^{n}, g, \Sigma_{g} M\right)$ closed Spin, $n \geq 3$.

Einstein field equation (gravity)

$$
\operatorname{Ric}_{g}-\frac{R_{g}}{2} g=T_{g}, \quad g \in \mathcal{G}(M)
$$

Critical points equation of

$$
\mathcal{E}: \mathcal{G}(M) \longrightarrow \mathbb{R}
$$

$$
\mathcal{E}(g)=\int_{M} R_{g} d v_{g}+S_{g} \quad \mathcal{F}_{g}(\psi)=\int_{M}\left\langle D_{g} \psi, \psi\right\rangle-m|\psi|^{2} d v_{g}
$$

$$
S_{g}=\mathcal{F}_{g}
$$

Let M^{n} be closed, $n \geq 3$, and $g \in \mathcal{G}(M), \psi \in \Sigma_{g} M, \lambda>0$

The Dirac-Einstein functional is

Critical points of \mathcal{E} solve the coupled Dirac-Einstein equations

Let M^{n} be closed, $n \geq 3$, and $g \in \mathcal{G}(M), \psi \in \Sigma_{g} M, \lambda>0$
The Dirac-Einstein functional is

$$
\mathcal{E}(g, \psi)=\int_{M} R_{g}+\left\langle D_{g} \psi, \psi\right\rangle-\lambda|\psi|^{2} d v_{g}
$$

Critical points of \mathcal{E} solve the coupled Dirac-Einstein equations

Let M^{n} be closed, $n \geq 3$, and $g \in \mathcal{G}(M), \psi \in \Sigma_{g} M, \lambda>0$
The Dirac-Einstein functional is

$$
\mathcal{E}(g, \psi)=\int_{M} R_{g}+\left\langle D_{g} \psi, \psi\right\rangle-\lambda|\psi|^{2} d v_{g}
$$

Critical points of \mathcal{E} solve the coupled Dirac-Einstein equations

$$
\left\{\begin{array}{l}
R i c_{g}-\frac{R_{g}}{2} g=T_{g, \psi} \\
D_{g} \psi=\lambda \psi
\end{array}\right.
$$

with $\quad T_{g, \psi}(X, Y)=-\frac{1}{4}\left\langle X \cdot \nabla_{Y} \psi+Y \cdot \nabla_{X} \psi, \psi\right\rangle, \quad X, Y \in T M$

Conformal restriction

Conformal restriction

$$
g_{0} \in \mathcal{G}(M), \quad\left[g_{0}\right]=\left\{g \in \mathcal{G}(M), g=u^{\frac{4}{n-2}} g_{0}, u \in C^{\infty}(M), u>0\right\}
$$

Critical points of E solve the conformal Dirac-Einstein equations

Conformal restriction

$$
g_{0} \in \mathcal{G}(M), \quad\left[g_{0}\right]=\left\{g \in \mathcal{G}(M), g=u^{\frac{4}{n-2}} g_{0}, u \in C^{\infty}(M), u>0\right\}
$$

For $\varphi \in \Sigma_{g_{0}} M$, we set $\psi=u^{\frac{1-n}{n-2}} \varphi \in \Sigma_{g} M \Rightarrow D_{g} \psi=u^{-\frac{n+1}{n-2}} D_{g_{0}} \varphi$

Critical points of E solve the conformal Dirac-Einstein equations

Conformal restriction

$$
g_{0} \in \mathcal{G}(M), \quad\left[g_{0}\right]=\left\{g \in \mathcal{G}(M), g=u^{\frac{4}{n-2}} g_{0}, u \in C^{\infty}(M), u>0\right\}
$$

For $\varphi \in \Sigma_{g_{0}} M$, we set $\psi=u^{\frac{1-n}{n-2}} \varphi \in \Sigma_{g} M \Rightarrow D_{g} \psi=u^{-\frac{n+1}{n-2}} D_{g_{0}} \varphi$

$$
\mathcal{E}(g, \psi)=\int_{M} u L_{g_{0}} u+\left\langle D_{g_{0}} \varphi, \varphi\right\rangle-\lambda u^{\frac{2}{n-2}}|\varphi|^{2} d v_{g_{0}}=: E(u, \varphi)
$$

where

$$
L_{g_{0}} u=-a_{n} \Delta_{g_{0}} u+R_{g_{0}} u, \quad a_{n}=\frac{4(n-1)}{n-2}
$$

Critical points of E solve the conformal Dirac-Einstein equations

Conformal restriction

$$
g_{0} \in \mathcal{G}(M), \quad\left[g_{0}\right]=\left\{g \in \mathcal{G}(M), g=u^{\frac{4}{n-2}} g_{0}, u \in C^{\infty}(M), u>0\right\}
$$

For $\varphi \in \Sigma_{g_{0}} M$, we set $\psi=u^{\frac{1-n}{n-2}} \varphi \in \Sigma_{g} M \Rightarrow D_{g} \psi=u^{-\frac{n+1}{n-2}} D_{g_{0}} \varphi$

$$
\mathcal{E}(g, \psi)=\int_{M} u L_{g_{0}} u+\left\langle D_{g_{0}} \varphi, \varphi\right\rangle-\lambda u^{\frac{2}{n-2}}|\varphi|^{2} d v_{g_{0}}=: E(u, \varphi)
$$

where

$$
L_{g_{0}} u=-a_{n} \Delta_{g_{0}} u+R_{g_{0}} u, \quad a_{n}=\frac{4(n-1)}{n-2}
$$

Critical points of E solve the conformal Dirac-Einstein equations

$$
\left\{\begin{array}{l}
L_{g_{0}} u=\frac{\lambda}{n-2}|\varphi|^{2} u^{\frac{4-n}{n-2}} \\
D_{g_{0}} \varphi=\lambda u^{\frac{2}{n-2}} \varphi
\end{array}\right.
$$

Classification result

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three.

Let

$$
\begin{gathered}
E: H^{1}(M) \times H^{\frac{1}{2}}\left(\Sigma_{g_{0}} M\right) \rightarrow \mathbb{R} \\
E(u, \varphi)=\int_{M} u L_{g_{0}} u+\left\langle D_{g_{0}} \varphi, \varphi\right\rangle-u^{2}|\varphi|^{2} d v_{g_{0}}
\end{gathered}
$$

Critical points of E are (weak) solutions of $\left\{\begin{array}{l}L_{g_{0}} u=|\varphi|^{2} u \\ D_{g_{0}} \varphi=u^{2} \varphi\end{array}(C D E)\right.$
Given a function $F \in C^{1}(X, \mathbb{R})$ on a Hilbert space X, a Palais-Smale sequence for F at level $c \in \mathbb{R}$ is a sequence $\left\{x_{k}\right\} \subseteq X$ such that

Classification result

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three.

Critical points of E are (weak) solutions of

Given a function $F \in C^{1}(X, \mathbb{R})$ on a Hilbert space X, a Palais-Smale sequence for F at level $c \in \mathbb{R}$ is a sequence $\left\{x_{k}\right\} \subseteq X$ such that

Classification result

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three.

Let

$$
\begin{gathered}
E: H^{1}(M) \times H^{\frac{1}{2}}\left(\Sigma_{g_{0}} M\right) \rightarrow \mathbb{R} \\
E(u, \varphi)=\int_{M} u L_{g_{0}} u+\left\langle D_{g_{0}} \varphi, \varphi\right\rangle-u^{2}|\varphi|^{2} d v_{g_{0}}
\end{gathered}
$$

Critical points of E are (weak) solutions of

Given a function $F \in C^{1}(X, \mathbb{R})$ on a Hilbert space X, a Palais-Smale sequence for F at level $c \in \mathbb{R}$ is a sequence $\left\{x_{k}\right\} \subseteq X$ such that

Classification result

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three.

Let

$$
E: H^{1}(M) \times H^{\frac{1}{2}}\left(\Sigma_{g_{0}} M\right) \rightarrow \mathbb{R}
$$

$$
E(u, \varphi)=\int_{M} u L_{g_{0}} u+\left\langle D_{g_{0}} \varphi, \varphi\right\rangle-u^{2}|\varphi|^{2} d v_{g_{0}}
$$

Critical points of E are (weak) solutions of $\left\{\begin{array}{l}L_{g_{0}} u=|\varphi|^{2} u \\ D_{g_{0}} \varphi=u^{2} \varphi\end{array}\right.$
Given a function $F \in C^{1}(X, \mathbb{R})$ on a Hilbert space X, a Palais-Smale sequence for F at level $c \in \mathbb{R}$ is a sequence $\left\{x_{k}\right\} \subseteq X$ such that

Classification result

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three.

Let

$$
\begin{gathered}
E: H^{1}(M) \times H^{\frac{1}{2}}\left(\Sigma_{g_{0}} M\right) \rightarrow \mathbb{R} \\
E(u, \varphi)=\int_{M} u L_{g_{0}} u+\left\langle D_{g_{0}} \varphi, \varphi\right\rangle-u^{2}|\varphi|^{2} d v_{g_{0}}
\end{gathered}
$$

Critical points of E are (weak) solutions of $\left\{\begin{array}{l}L_{g_{0}} u=|\varphi|^{2} u \\ D_{g_{0}} \varphi=u^{2} \varphi\end{array}\right.$

Given a function $F \in C^{1}(X, \mathbb{R})$ on a Hilbert space X, a Palais-Smale sequence for F at level $c \in \mathbb{R}$ is a sequence $\left\{x_{k}\right\} \subseteq X$ such that

$$
\left\{\begin{array}{l}
F\left(x_{k}\right) \xrightarrow[k \rightarrow \infty]{\mathbb{R}} c \\
\nabla F\left(x_{k}\right) \xrightarrow[k \rightarrow \infty]{X} 0
\end{array}\right.
$$

Theorem (A. Maalaoui, V. M.)

Suppose that $\left(M^{3}, g_{0}\right)$ has a positive conformal Yamabe invariant $Y_{\left[g_{0}\right]}^{M}$. Let $\left\{\left(u_{n}, \varphi_{n}\right)\right\}$ be a Palais-Smale sequence for E at level $c \in \mathbb{R}$. Then there exist $u_{\infty} \in C^{\infty}(M), \varphi_{\infty} \in C^{\infty}(\Sigma M)$ with ($u_{\infty}, \varphi_{\infty}$) solution of (CDE), m sequences of points $x_{n}^{1}, \cdots, x_{n}^{m} \in M$ such that $\lim _{n \rightarrow \infty} x_{n}^{k}=x^{k} \in M$, for $k=1, \ldots, m$ and m sequences of real numbers $R_{n}^{1}, \cdots, R_{n}^{m}$ converging to zero, such that:
(i) $u_{n}=u_{\infty}+\sum_{k=1}^{m} u_{n}^{* k}+o(1)_{H^{1}}, \quad u_{n}^{* k}=\exp _{R_{n}^{k}, x_{n}}^{*}\left(U_{\infty}^{k}\right)$,
(ii) $\varphi_{n}=\varphi_{\infty}+\sum_{k=1}^{m} \varphi_{n}^{* k}+o(1)_{H^{\frac{1}{2}}}, \quad \varphi_{n}^{* k}=\exp _{R_{n}^{k}, x_{n}}^{*}\left(\Phi_{\infty}^{k}\right)$,
(iii) $E\left(u_{n}, \varphi_{n}\right)=E\left(u_{\infty}, \varphi_{\infty}\right)+\sum_{k=1}^{m} E_{\mathbb{R}^{3}}\left(U_{\infty}^{k}, \Phi_{\infty}^{k}\right)+o(1)_{\mathbb{R}}$.
$\left(U_{\infty}^{k}, \Phi_{\infty}^{k}\right)$ are critical points of $E_{\mathbb{R}^{3}}$ with the standard Euclidian metric.

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I - II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) - no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator $D_{g_{0}}$ has no kernel.

This follows from the conformal invariance of $\operatorname{ker}\left(D_{g}\right)$
and the Schrödinger-Lichnerowicz formula

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I - II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) - no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator $D_{g_{0}}$ has no kernel.

This follows from the conformal invariance of $k e r\left(D_{g}\right)$
and the Schrödinger-Lichnerowicz formula

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I - II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) - no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator $D_{g_{0}}$ has no kernel.

This follows from the conformal invariance of $\operatorname{ker}\left(D_{g}\right)$

$$
D_{g_{0}} \varphi=u^{4} D_{g} \psi
$$

and the Schrödinger-Lichnerowicz formula

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I - II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) - no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator $D_{g_{0}}$ has no kernel.

This follows from the conformal invariance of $\operatorname{ker}\left(D_{g}\right)$

$$
D_{g_{0}} \varphi=u^{4} D_{g} \psi
$$

and the Schrödinger-Lichnerowicz formula

$$
D_{g}^{2} \psi=-\Delta_{g} \psi+\frac{R_{g}}{4} \psi
$$

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I - II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) - no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator $D_{g_{0}}$ has no kernel.

This follows from the conformal invariance of $\operatorname{ker}\left(D_{g}\right)$

$$
D_{g_{0}} \varphi=u^{4} D_{g} \psi
$$

and the Schrödinger-Lichnerowicz formula $\quad\left(Y_{\left[g_{0}\right]}^{M}>0 \Rightarrow \exists g \in\left[g_{0}\right]\right.$, s.t. $\left.R_{g}>0\right)$

$$
D_{g}^{2} \psi=-\Delta_{g} \psi+\frac{R_{g}}{4} \psi
$$

Existence results - I

As in the Yamabe problem, one defines a conformal invariant $I_{\left[g_{0}\right]}^{M}$.

We have the following Aubin type result:

Theorem (A Maratanin W. M.)

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three. It holds:

Moreover, if

then problem (CDE) has a non-trivial ground state solution.

```
T. Aubin, Équations différentielles non linéaires et problème de
    Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55
    (1976), no. 3, 269-296.
```


Existence results - I

As in the Yamabe problem, one defines a conformal invariant $I_{\left[g_{0}\right]}^{M}$.

We have the following Aubin type result:

Theovem (A Manlanti, V. M)
Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three.
It holds

Moreover, if
then problem (CDE) has a non-trivial ground state solution.
T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55 (1976), no. 3, 269-296.

Existence results - I

As in the Yamabe problem, one defines a conformal invariant $I_{\left[g_{0}\right]}^{M}$.
We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three. It holds:

$$
I_{\left[g_{0}\right]}^{M} \leq I_{\left[g_{S}\right]}^{S^{3}}
$$

Moreover, if

$$
I_{\left[g_{0}\right]}^{M}<I_{\left[g_{S}\right]}^{S^{3}}
$$

then problem (CDE) has a non-trivial ground state solution.
> T. Aubin, Équations différentielles non linéaires et problème de

> Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55 (1976), no. 3, 269-296.

Existence results - I

As in the Yamabe problem, one defines a conformal invariant $I_{\left[g_{0}\right]}^{M}$.
We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let $\left(M^{3}, g_{0}, \Sigma_{g_{0}} M\right)$ be a closed spin manifold of dimension three. It holds:

$$
I_{\left[g_{0}\right]}^{M} \leq I_{\left[g_{S}\right]}^{S^{3}}
$$

Moreover, if

$$
I_{\left[g_{0}\right]}^{M}<I_{\left[g_{S}\right]}^{S^{3}}
$$

then problem (CDE) has a non-trivial ground state solution.

- T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55 (1976), no. 3, 269-296.

Existence results - II

Theorem (C. Guidi, A. Maalaoui, V. M.)


```
Bahri-Coron type conditions:
```

Bahri-Coron type conditions:
(i)}\Deltah(\xi)\not=0,\forall\xi\in\operatorname{crit}[h]

```

```

Then, $\exists \varepsilon_{0}>0$ such that for $K=1+\varepsilon k$ and $|\varepsilon|<\varepsilon_{0}$, the system (CDES) has a solution.
A.Ambrosetti, J.Carcia Azorero, I.Peral, Perturbation of $-\Delta u+u^{(N+2) /(N-2)}=0$, the
scalar curvature problem in \mathbb{R}^{N} and related topics, J. Funct. Anal. $165(1999) 117-149$.
A.Malchiodi, F.Uguzzoni, A perturbation result for the Wester scalar curvature problem on
the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. $10,983-997$
T.Isobe, A perturbation method for spinorial Yamabe type equations on S^{m} and its
application, Math. Ann. 355 (2013), no. 4, 1255-1299

```

\section*{Existence results - II}

Let us consider the following (CDES) \(\left\{\begin{array}{l}L_{g_{s}} u=K|\varphi|^{2} u \\ D_{g_{s}} \varphi=K u^{2} \varphi\end{array} \quad\right.\) on \(\mathbb{S}^{3}\)

\section*{Theorem (C. Guidi, A. Maalaoui, V. M.)}

Let \(k \in C^{2}\left(\mathbb{S}^{3}\right)\) be Morse. Let us set \(h=k \circ \pi^{-1}\) and assume the following Bahri-Coron type conditions.

Then, \(\exists \varepsilon_{0}>0\) such that for \(K=1+\varepsilon k\) and \(|\varepsilon|<\varepsilon_{0}\), the system (CDES) has a solution.

\section*{Existence results - II}

Let us consider the following \((C D E S)\left\{\begin{array}{l}L_{g_{s}} u=K|\varphi|^{2} u \\ D_{g_{s}} \varphi=K u^{2} \varphi\end{array} \quad\right.\) on \(\mathbb{S}^{3}\)

\section*{Theorem (C. Guidi, A. Maalaoui, V. M.)}

Let \(k \in C^{2}\left(\mathbb{S}^{3}\right)\) be Morse. Let us set \(h=k \circ \pi_{\text {ste }}^{-1}\) and assume the following Bahri-Coron type conditions:
\[
\text { (i) } \Delta h(\xi) \neq 0, \forall \xi \in \operatorname{crit}[h], \quad \text { (ii) } \sum_{\substack{\xi \in \operatorname{crit}[h] \\ \Delta h(\xi)<0}}(-1)^{m(h, \xi)} \neq-1,
\]

Then, \(\exists \varepsilon_{0}>0\) such that for \(K=1+\varepsilon k\) and \(|\varepsilon|<\varepsilon_{0}\), the system (CDES) has a solution.

\section*{Existence results - II}

Let us consider the following

\[
D_{g_{s}} \varphi=K u^{2} \varphi
\]

\section*{Theorem (C. Guidi, A. Maalaoui, V. M.)}

Let \(k \in C^{2}\left(\mathbb{S}^{3}\right)\) be Morse. Let us set \(h=k \circ \pi_{\text {ste }}^{-1}\) and assume the following Bahri-Coron type conditions:
\[
\text { (i) } \Delta h(\xi) \neq 0, \forall \xi \in \operatorname{crit}[h], \quad \text { (ii) } \sum_{\substack{\xi \in \operatorname{crit}[h] \\ \Delta h(\xi)<0}}(-1)^{m(h, \xi)} \neq-1,
\]

Then, \(\exists \varepsilon_{0}>0\) such that for \(K=1+\varepsilon k\) and \(|\varepsilon|<\varepsilon_{0}\), the system (CDES) has a solution.
- A.Ambrosetti, J.Garcia Azorero, I.Peral, Perturbation of \(-\Delta u+u^{(N+2) /(N-2)}=0\), the scalar curvature problem in \(\mathbb{R}^{N}\) and related topics, J. Funct. Anal. 165 (1999) 117-149.
- A.Malchiodi, F.Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. 10, 983-997
- T.Isobe, A perturbation method for spinorial Yamabe type equations on \(S^{m}\) and its application, Math. Ann. 355 (2013), no. 4, 1255-1299

\section*{Classification and existence results, \(\partial M \neq \emptyset\)}
\(\left(M^{n}, \partial M\right)\) compact with boundary, \(n \geq 3, g \in \mathcal{G}(M), \psi \in \Sigma_{g} M\)

We consider the Dirac-Einstein functional

where \(h_{g}\) is the mean curvature of \(\partial M\) induced by \(g\).

We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of \(\mathcal{E}_{\mathcal{B}}\), with \(n=3\).

\footnotetext{
W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstin equations on manifolds with
}
boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023

Classification and existence results, \(\partial M \neq \emptyset\)
\(\left(M^{n}, \partial M\right)\) compact with boundary, \(n \geq 3, g \in \mathcal{G}(M), \psi \in \Sigma_{g} M\)
We consider the Dirac-Einstein functional

where \(h_{g}\) is the mean curvature of \(\partial M\) induced by \(g\).

We proved the classification of Palais-smale sequences and the Aubin
type existence result for the conformal restriction of \(\mathcal{E}_{\mathcal{B}}\), with \(n=3\).
W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with
boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023

\section*{Classification and existence results, \(\partial M \neq \emptyset\)}
( \(\left.M^{n}, \partial M\right)\) compact with boundary, \(n \geq 3, g \in \mathcal{G}(M), \psi \in \Sigma_{g} M\)
We consider the Dirac-Einstein functional
\[
\mathcal{E}_{\mathcal{B}}(g, \psi)=\int_{M} R_{g}+\left\langle D_{g} \psi, \psi\right\rangle-\lambda|\psi|^{2} d v_{g}+\frac{1}{2} \int_{\partial M} h_{g} d \sigma_{g}
\]
where \(h_{g}\) is the mean curvature of \(\partial M\) induced by \(g\).
We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of \(\mathcal{E}_{\mathcal{B}}\), with \(n=3\).

\section*{Classification and existence results, \(\partial M \neq \emptyset\)}
\(\left(M^{n}, \partial M\right)\) compact with boundary, \(n \geq 3, g \in \mathcal{G}(M), \psi \in \Sigma_{g} M\)
We consider the Dirac-Einstein functional
\[
\mathcal{E}_{\mathcal{B}}(g, \psi)=\int_{M} R_{g}+\left\langle D_{g} \psi, \psi\right\rangle-\lambda|\psi|^{2} d v_{g}+\frac{1}{2} \int_{\partial M} h_{g} d \sigma_{g}
\]
where \(h_{g}\) is the mean curvature of \(\partial M\) induced by \(g\).

We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of \(\mathcal{E}_{\mathcal{B}}\), with \(n=3\).
- W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023

\section*{Thanks for the attention}

\section*{Dirac operator on \(\mathbb{R}^{n}\)}


A spinor is a function \(\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}\)

There exist \(n\) complex constant matrices \(\sigma_{k}, N \times N\), satisfying
\[
\sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{k}=-2 \delta_{k j} I
\]

The Dirac operator can be written in the following way


\section*{Dirac operator on \(\mathbb{R}^{n}\)}

Let \((M, g)=\left(\mathbb{R}^{n}, g_{E}\right)\) equipped with the standard Euclidean metric. The spinor bundle is given by
\[
\Sigma_{g_{E}} \mathbb{R}^{n}=\Sigma \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{C}^{N}, \quad N=2^{\left[\frac{n}{2}\right]}
\]

\section*{A spinor is a function \(\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}\)}

There exist \(n\) complex constant matrices \(\sigma_{k}, N \times N\), satisfying
\[
\sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{k}=-2 \delta_{k j} I
\]

\section*{The Dirac operator can be written in the following way}


\section*{Dirac operator on \(\mathbb{R}^{n}\)}

Let \((M, g)=\left(\mathbb{R}^{n}, g_{E}\right)\) equipped with the standard Euclidean metric. The spinor bundle is given by
\[
\Sigma_{g_{E}} \mathbb{R}^{n}=\Sigma \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{C}^{N}, \quad N=2^{\left[\frac{n}{2}\right]}
\]

A spinor is a function \(\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}\)
There exist \(n\) complex constant matrices \(\sigma_{k}, N \times N\), satisfying
\[
\sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{k}=-2 \delta_{k j} I
\]

\section*{The Dirac operator can be written in the following way}


\section*{Dirac operator on \(\mathbb{R}^{n}\)}

Let \((M, g)=\left(\mathbb{R}^{n}, g_{E}\right)\) equipped with the standard Euclidean metric. The spinor bundle is given by
\[
\Sigma_{g_{E}} \mathbb{R}^{n}=\Sigma \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{C}^{N}, \quad N=2^{\left[\frac{n}{2}\right]}
\]

A spinor is a function \(\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}\)
There exist \(n\) complex constant matrices \(\sigma_{k}, N \times N\), satisfying
\[
\sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{k}=-2 \delta_{k j} I
\]

The Dirac operator can be written in the following way

\section*{Dirac operator on \(\mathbb{R}^{n}\)}

Let \((M, g)=\left(\mathbb{R}^{n}, g_{E}\right)\) equipped with the standard Euclidean metric. The spinor bundle is given by
\[
\Sigma_{g_{E}} \mathbb{R}^{n}=\Sigma \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{C}^{N}, \quad N=2^{\left[\frac{n}{2}\right]}
\]

A spinor is a function \(\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}\)
There exist \(n\) complex constant matrices \(\sigma_{k}, N \times N\), satisfying
\[
\sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{k}=-2 \delta_{k j} I
\]

The Dirac operator can be written in the following way
\[
D_{g_{E}} \psi=D \psi=\sum_{k=1}^{n} \sigma_{k} \partial_{x_{k}} \psi
\]

\section*{Dirac operator on \(\mathbb{R}^{n}\)}

Let \((M, g)=\left(\mathbb{R}^{n}, g_{E}\right)\) equipped with the standard Euclidean metric. The spinor bundle is given by
\[
\Sigma_{g_{E}} \mathbb{R}^{n}=\Sigma \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{C}^{N}, \quad N=2^{\left[\frac{n}{2}\right]}
\]

A spinor is a function \(\psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}\)
There exist \(n\) complex constant matrices \(\sigma_{k}, N \times N\), satisfying
\[
\sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{k}=-2 \delta_{k j} I
\]

The Dirac operator can be written in the following way
\[
D_{g_{E}} \psi=D \psi=\sum_{k=1}^{n} \sigma_{k} \partial_{x_{k}} \psi \quad\left(D^{2} \psi=-\Delta \psi\right)
\]

\section*{Some examples.}
\[
\begin{aligned}
& n=1 \text {. For } x \in \mathbb{R} \text {, a spinor is } \psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i \text {, so } \\
& D \psi=i \partial_{x} \psi=-v^{\prime}+i u^{\prime}, \quad D^{2} \psi=-\Delta \psi=-u^{\prime \prime}-i v^{\prime \prime} \\
& n=2 \text {. For }(x, y) \in \mathbb{R}^{2} \text {, a spinor is } \psi(x, y)=\binom{\psi_{1}(x, y)}{\psi_{2}(x, y)} \in \mathbb{C}^{2} \\
& \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \\
& D \psi=\sigma_{1}\binom{\partial_{x} \psi_{1}}{\partial_{x} \psi_{2}}+\sigma_{2}\binom{\partial_{y} \psi_{1}}{\partial_{y} \psi_{2}}=\binom{\partial_{x} \psi_{2}+i \partial_{y} \psi_{2}}{-\partial_{x} \psi_{1}+i \partial_{y} \psi_{1}} \\
& D^{2} \psi=-\Delta \psi=\binom{-\Delta \psi_{1}}{-\Delta \psi_{2}}
\end{aligned}
\]

\section*{Some examples.}
\(n=1\). For \(x \in \mathbb{R}\), a spinor is \(\psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i\), so


\section*{Some examples.}
\(n=1\). For \(x \in \mathbb{R}\), a spinor is \(\psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i\), so
\[
D \psi=i \partial_{x} \psi=-v^{\prime}+i u^{\prime}, \quad D^{2} \psi=-\Delta \psi=-u^{\prime \prime}-i v^{\prime \prime}
\]


\section*{Some examples.}
\(n=1\). For \(x \in \mathbb{R}\), a spinor is \(\psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i\), so
\[
D \psi=i \partial_{x} \psi=-v^{\prime}+i u^{\prime}, \quad D^{2} \psi=-\Delta \psi=-u^{\prime \prime}-i v^{\prime \prime}
\]
\(n=2\). For \((x, y) \in \mathbb{R}^{2}\), a spinor is \(\psi(x, y)=\binom{\psi_{1}(x, y)}{\psi_{2}(x, y)} \in \mathbb{C}^{2}\)


\section*{Some examples.}
\(n=1\). For \(x \in \mathbb{R}\), a spinor is \(\psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i\), so
\[
D \psi=i \partial_{x} \psi=-v^{\prime}+i u^{\prime}, \quad D^{2} \psi=-\Delta \psi=-u^{\prime \prime}-i v^{\prime \prime}
\]
\(n=2\). For \((x, y) \in \mathbb{R}^{2}\), a spinor is \(\psi(x, y)=\binom{\psi_{1}(x, y)}{\psi_{2}(x, y)} \in \mathbb{C}^{2}\)
\[
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
\]


\section*{Some examples.}
\(n=1\). For \(x \in \mathbb{R}\), a spinor is \(\psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i\), so
\[
D \psi=i \partial_{x} \psi=-v^{\prime}+i u^{\prime}, \quad D^{2} \psi=-\Delta \psi=-u^{\prime \prime}-i v^{\prime \prime}
\]
\(n=2\). For \((x, y) \in \mathbb{R}^{2}\), a spinor is \(\psi(x, y)=\binom{\psi_{1}(x, y)}{\psi_{2}(x, y)} \in \mathbb{C}^{2}\)
\[
\begin{gathered}
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \\
D \psi=\sigma_{1}\binom{\partial_{x} \psi_{1}}{\partial_{x} \psi_{2}}+\sigma_{2}\binom{\partial_{y} \psi_{1}}{\partial_{y} \psi_{2}}=\binom{\partial_{x} \psi_{2}+i \partial_{y} \psi_{2}}{-\partial_{x} \psi_{1}+i \partial_{y} \psi_{1}}
\end{gathered}
\]

\section*{Some examples.}
\(n=1\). For \(x \in \mathbb{R}\), a spinor is \(\psi(x)=u(x)+i v(x) \in \mathbb{C}, \sigma_{1}=i\), so
\[
D \psi=i \partial_{x} \psi=-v^{\prime}+i u^{\prime}, \quad D^{2} \psi=-\Delta \psi=-u^{\prime \prime}-i v^{\prime \prime}
\]
\(n=2\). For \((x, y) \in \mathbb{R}^{2}\), a spinor is \(\psi(x, y)=\binom{\psi_{1}(x, y)}{\psi_{2}(x, y)} \in \mathbb{C}^{2}\)
\[
\begin{gathered}
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \\
D \psi=\sigma_{1}\binom{\partial_{x} \psi_{1}}{\partial_{x} \psi_{2}}+\sigma_{2}\binom{\partial_{y} \psi_{1}}{\partial_{y} \psi_{2}}=\binom{\partial_{x} \psi_{2}+i \partial_{y} \psi_{2}}{-\partial_{x} \psi_{1}+i \partial_{y} \psi_{1}} \\
D^{2} \psi=-\Delta \psi=\binom{-\Delta \psi_{1}}{-\Delta \psi_{2}}
\end{gathered}
\]
\[
n=3 . \text { For }(x, y, z) \in \mathbb{R}^{3}, \text { a spinor is } \psi(x, y, z)=\binom{\psi_{1}(x, y, z)}{\psi_{2}(x, y, z)} \in \mathbb{C}^{2}
\]


\section*{which are the classic Pauli matrices}

\[
D^{2} \psi=-\Delta \psi=\binom{-\Delta_{x y z} \psi_{1}}{-\Delta_{x y z} \psi_{2}}
\]
\(n=3\). For \((x, y, z) \in \mathbb{R}^{3}\), a spinor is \(\psi(x, y, z)=\binom{\psi_{1}(x, y, z)}{\psi_{2}(x, y, z)} \in \mathbb{C}^{2}\)
\[
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
\]
which are the classic Pauli matrices

\(n=3\). For \((x, y, z) \in \mathbb{R}^{3}\), a spinor is \(\psi(x, y, z)=\binom{\psi_{1}(x, y, z)}{\psi_{2}(x, y, z)} \in \mathbb{C}^{2}\)
\[
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
\]
which are the classic Pauli matrices
\[
D \psi=\sigma_{1} \partial_{x} \psi+\sigma_{2} \partial_{y} \psi+\sigma_{3} \partial_{z} \psi=D_{x y} \psi+\binom{-D_{z} \psi_{1}}{D_{z} \psi_{2}}
\]
\(n=3\). For \((x, y, z) \in \mathbb{R}^{3}\), a spinor is \(\psi(x, y, z)=\binom{\psi_{1}(x, y, z)}{\psi_{2}(x, y, z)} \in \mathbb{C}^{2}\)
\[
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
\]
which are the classic Pauli matrices
\[
\begin{gathered}
D \psi=\sigma_{1} \partial_{x} \psi+\sigma_{2} \partial_{y} \psi+\sigma_{3} \partial_{z} \psi=D_{x y} \psi+\binom{-D_{z} \psi_{1}}{D_{z} \psi_{2}} \\
D^{2} \psi=-\Delta \psi=\binom{-\Delta_{x y z} \psi_{1}}{-\Delta_{x y z} \psi_{2}}
\end{gathered}
\]

\title{
Dirac-Einstein equations on \(\mathbb{R}^{3}\)
}

\section*{Consider \(\mathbb{R}^{3}\) equipped with the standard Euclidean metric.}

The conformal Dirac-Einstein functional is
\[
E_{\mathbb{R}^{3}}: H^{1}\left(\mathbb{R}^{3}\right) \times H^{\frac{1}{2}}\left(\Sigma \mathbb{R}^{3}\right) \rightarrow \mathbb{R}
\]
\(E_{\mathbb{R}^{3}}(U, \Psi)=\int_{\mathbb{R}^{3}} a_{3}|\nabla U|^{2}+\langle D \Psi, \Psi\rangle-U^{2}|\Psi|^{2} d x\),

Critical points of \(E_{\mathbb{R}^{3}}\) are solutions of


\section*{Dirac-Einstein equations on \(\mathbb{R}^{3}\)}

Consider \(\mathbb{R}^{3}\) equipped with the standard Euclidean metric.

\section*{The conformal Dirac-Einstein functional is}


Critical points of \(E_{\mathbb{R}^{3}}\) are solutions of


\section*{Dirac-Einstein equations on \(\mathbb{R}^{3}\)}

Consider \(\mathbb{R}^{3}\) equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is
\[
\begin{gathered}
E_{\mathbb{R}^{3}}: H^{1}\left(\mathbb{R}^{3}\right) \times H^{\frac{1}{2}}\left(\Sigma \mathbb{R}^{3}\right) \rightarrow \mathbb{R} \\
E_{\mathbb{R}^{3}}(U, \Psi)=\int_{\mathbb{R}^{3}} a_{3}|\nabla U|^{2}+\langle D \Psi, \Psi\rangle-U^{2}|\Psi|^{2} d x, \quad x \in \mathbb{R}^{3}, a_{3}=8
\end{gathered}
\]

Critical points of \(E_{\mathbb{R}^{3}}\) are solutions of


\section*{Dirac-Einstein equations on \(\mathbb{R}^{3}\)}

Consider \(\mathbb{R}^{3}\) equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is
\[
\begin{gathered}
E_{\mathbb{R}^{3}}: H^{1}\left(\mathbb{R}^{3}\right) \times H^{\frac{1}{2}}\left(\Sigma \mathbb{R}^{3}\right) \rightarrow \mathbb{R} \\
E_{\mathbb{R}^{3}}(U, \Psi)=\int_{\mathbb{R}^{3}} a_{3}|\nabla U|^{2}+\langle D \Psi, \Psi\rangle-U^{2}|\Psi|^{2} d x, \quad x \in \mathbb{R}^{3}, a_{3}=8
\end{gathered}
\]

Critical points of \(E_{\mathbb{R}^{3}}\) are solutions of
\[
\left\{\begin{array}{c}
-a_{3} \Delta U=|\Psi|^{2} U \\
D \Psi=U^{2} \Psi
\end{array} \quad\left(C D E_{\mathbb{R}^{3}}\right)\right.
\]

\section*{Bubbles on \(\mathbb{R}^{3}\)}

Let \((U, \Psi)\) be a ground state solution of \(\left(C D E_{\mathbb{R}^{3}}\right)\), with \(U \geq 0\).

Then there exist \(\lambda>0, x_{0} \in \mathbb{R}^{3}\) and \(\Psi_{0} \in \mathbb{C}^{2},\left|\Psi_{0}\right|=\frac{1}{\sqrt{2}}\) such that:
\[
U(x)=U_{\lambda, x_{0}}(x)=\left(\frac{2 \lambda}{\lambda^{2}+\left|x-x_{0}\right|^{2}}\right)^{1 / 2}
\]


\section*{Bubbles on \(\mathbb{R}^{3}\)}

Let \((U, \Psi)\) be a ground state solution of \(\left(C D E_{\mathbb{R}^{3}}\right)\), with \(U \geq 0\). Then there exist \(\lambda>0, x_{0} \in \mathbb{R}^{3}\) and \(\Psi_{0} \in \mathbb{C}^{2},\left|\Psi_{0}\right|=\frac{1}{\sqrt{2}}\) such that:


\section*{Bubbles on \(\mathbb{R}^{3}\)}

Let \((U, \Psi)\) be a ground state solution of \(\left(C D E_{\mathbb{R}^{3}}\right)\), with \(U \geq 0\).
Then there exist \(\lambda>0, x_{0} \in \mathbb{R}^{3}\) and \(\Psi_{0} \in \mathbb{C}^{2},\left|\Psi_{0}\right|=\frac{1}{\sqrt{2}}\) such that:
\[
\begin{gathered}
U(x)=U_{\lambda, x_{0}}(x)=\left(\frac{2 \lambda}{\lambda^{2}+\left|x-x_{0}\right|^{2}}\right)^{1 / 2} \\
\Psi(x)=\Psi_{\lambda, x_{0}, \Psi_{0}}(x)=\left(\frac{2 \lambda}{\lambda^{2}+\left|x-x_{0}\right|^{2}}\right)^{3 / 2}\left(I_{3}-\left(\frac{x-x_{0}}{\lambda}\right)\right) \cdot \Psi_{0}
\end{gathered}
\]```

