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Setting of the problem

(Mn, g) closed Riemannian, n ≥ 3. (Mn, g,ΣgM) closed Spin, n ≥ 3.

Einstein �eld equation Dirac wave equation, ψ ∈ ΣgM

Ricg −
Rg

2
g = Dgψ = mψ, (mass m)

Critical points equation of Critical points equation of

E : G(M) −→ R

E(g) =
∫
M
Rg dvg

Fg : ΣgM −→ R

Fg(ψ) =

∫
M

⟨Dgψ,ψ⟩ −m|ψ|2 dvg

Sg = Fg
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Let Mn be closed, n ≥ 3, and g ∈ G(M), ψ ∈ ΣgM,λ > 0

The Dirac-Einstein functional is

E(g, ψ) =
∫
M

Rg + ⟨Dgψ,ψ⟩ − λ|ψ|2 dvg

Critical points of E solve the coupled Dirac-Einstein equations
Ricg −

Rg
2
g = Tg,ψ

Dgψ = λψ

with Tg,ψ(X,Y ) = −1

4
⟨X · ∇Y ψ + Y · ∇Xψ,ψ⟩, X, Y ∈ TM
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Conformal restriction

g0 ∈ G(M), [g0] =
{
g ∈ G(M), g = u

4
n−2 g0, u ∈ C∞(M), u > 0

}
For φ ∈ Σg0M , we set ψ = u

1−n
n−2φ ∈ ΣgM ⇒ Dgψ = u−

n+1
n−2Dg0φ

E (g, ψ) =

∫
M

uLg0u+ ⟨Dg0φ,φ⟩ − λu
2

n−2 |φ|2 dvg0 =: E(u, φ)

where Lg0u = −an∆g0u+Rg0u, an = 4(n−1)
n−2

Critical points of E solve the conformal Dirac-Einstein equations
Lg0u = λ

n−2 |φ|
2u

4−n
n−2

Dg0φ = λu
2

n−2φ
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Classi�cation result

Let
(
M3, g0,Σg0M

)
be a closed spin manifold of dimension three.

Let E : H1(M)×H
1
2 (Σg0M) → R

E(u, φ) =

∫
M

uLg0u+ ⟨Dg0φ,φ⟩ − u2|φ|2 dvg0

Critical points of E are (weak) solutions of


Lg0u = |φ|2u

Dg0φ = u2φ
(CDE)

Given a function F ∈ C1(X,R) on a Hilbert space X, a Palais-Smale
sequence for F at level c ∈ R is a sequence {xk} ⊆ X such that

F (xk)
R−−−−→

k → ∞
c

∇F (xk)
X−−−−→

k → ∞
0
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Theorem (A. Maalaoui, V. M.)

Suppose that (M3, g0) has a positive conformal Yamabe invariant Y M
[g0]

.
Let {(un, φn)} be a Palais-Smale sequence for E at level c ∈ R. Then there
exist u∞ ∈ C∞(M), φ∞ ∈ C∞(ΣM) with (u∞, φ∞) solution of (CDE), m
sequences of points x1

n, · · · , xm
n ∈ M such that limn→∞ xk

n = xk ∈ M , for
k = 1, . . . ,m and m sequences of real numbers R1

n, · · · , Rm
n converging to

zero, such that:

(i) un = u∞ +

m∑
k=1

u∗k
n + o(1)H1 , u∗k

n = exp∗
Rk

n,xn
(Uk

∞),

(ii) φn = φ∞ +
m∑

k=1

φ∗k
n + o(1)

H
1
2
, φ∗k

n = exp∗
Rk

n,xn
(Φk

∞),

(iii) E(un, φn) = E(u∞, φ∞) +
m∑

k=1

ER3(Uk
∞,Φk

∞) + o(1)R.

(Uk
∞,Φk

∞) are critical points of ER3 with the standard Euclidian metric.
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- H.C. Wente, Large solutions to the volume constrained Plateau problem,
Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).

- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres,
Ann. of Math. (2) 113, no. 1, 1-24, (1981).

- M. Struwe, A global compactness result for elliptic boundary value problems
involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).

- P.L. Lions, The concentration-compactness principle in the calculus of
variations. The limit case. I - II. Rev. Mat. Iberoamericana, 1, no. 1,
145-201, (1985) - no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies
that there are no harmonic spinors, that is the Dirac operator Dg0 has no kernel.

This follows from the conformal invariance of ker(Dg)

Dg0φ = u4Dgψ

and the Schrödinger-Lichnerowicz formula

D2
gψ = −∆gψ +

Rg

4
ψ
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Existence results - I

As in the Yamabe problem, one de�nes a conformal invariant IM[g0].

We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let
(
M3, g0,Σg0M

)
be a closed spin manifold of dimension three.

It holds:
IM[g0] ≤ IS

3

[gS ].

Moreover, if

IM[g0] < IS
3

[gS ],

then problem (CDE) has a non-trivial ground state solution.

- T. Aubin, Équations di�érentielles non linéaires et problème de
Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55
(1976), no. 3, 269-296.
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Existence results - II

Let us consider the following (CDES)


Lgsu = K|φ|2u

Dgsφ = Ku2φ

on S3

Theorem (C. Guidi, A. Maalaoui, V. M.)

Let k ∈ C2(S3) be Morse. Let us set h = k ◦ π−1
ste and assume the following

Bahri-Coron type conditions:

(i) ∆h(ξ) ̸= 0, ∀ ξ ∈ crit[h], (ii)
∑

ξ∈crit[h]
∆h(ξ)<0

(−1)m(h,ξ) ̸= −1,

Then, ∃ ε0 > 0 such that for K = 1 + εk and |ε| < ε0, the system (CDES)
has a solution.

- A.Ambrosetti, J.Garcia Azorero, I.Peral, Perturbation of −∆u + u(N+2)/(N−2) = 0, the

scalar curvature problem in RN and related topics, J. Funct. Anal. 165 (1999) 117-149.

- A.Malchiodi, F.Uguzzoni, A perturbation result for the Webster scalar curvature problem on
the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. 10, 983-997

- T.Isobe,A perturbation method for spinorial Yamabe type equations on Sm and its
application, Math. Ann. 355 (2013), no. 4, 1255-1299
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Classi�cation and existence results, ∂M ̸= ∅

(Mn, ∂M) compact with boundary, n ≥ 3, g ∈ G(M), ψ ∈ ΣgM

We consider the Dirac-Einstein functional

EB(g, ψ) =
∫
M

Rg + ⟨Dgψ,ψ⟩ − λ|ψ|2 dvg +
1

2

∫
∂M

hg dσg

where hg is the mean curvature of ∂M induced by g.

We proved the classi�cation of Palais-smale sequences and the Aubin
type existence result for the conformal restriction of EB, with n = 3.

- W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with
boundary, Calculus of Variations and Partial Di�erential Equations, 1, 62:18, 2023
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Thanks for the attention
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Dirac operator on Rn

Let (M, g) = (Rn, gE) equipped with the standard Euclidean metric.
The spinor bundle is given by

ΣgERn = ΣRn = Rn × CN , N = 2[
n
2 ]

A spinor is a function ψ : Rn → CN

There exist n complex constant matrices σk, N ×N , satisfying

σkσj + σjσk = −2δkjI

The Dirac operator can be written in the following way

DgEψ = Dψ =

n∑
k=1

σk∂xk
ψ
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ψ

(
D2ψ = −∆ψ

)
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Some examples.

n = 1. For x ∈ R, a spinor is ψ(x) = u(x) + iv(x) ∈ C, σ1 = i, so

Dψ = i∂xψ = −v′ + iu′, D2ψ = −∆ψ = −u′′ − iv′′

n = 2. For (x, y) ∈ R2, a spinor is ψ(x, y) =

(
ψ1(x, y)
ψ2(x, y)

)
∈ C2

σ1 =

(
0 1
−1 0

)
σ2 =

(
0 i
i 0

)

Dψ = σ1

(
∂xψ1

∂xψ2

)
+ σ2

(
∂yψ1

∂yψ2

)
=

(
∂xψ2 + i∂yψ2

−∂xψ1 + i∂yψ1

)

D2ψ = −∆ψ =

(
−∆ψ1

−∆ψ2

)
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(
ψ1(x, y)
ψ2(x, y)

)
∈ C2

σ1 =

(
0 1
−1 0

)
σ2 =

(
0 i
i 0

)

Dψ = σ1

(
∂xψ1

∂xψ2

)
+ σ2

(
∂yψ1

∂yψ2

)
=

(
∂xψ2 + i∂yψ2

−∂xψ1 + i∂yψ1

)

D2ψ = −∆ψ =

(
−∆ψ1

−∆ψ2

)
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n = 3. For (x, y, z) ∈ R3, a spinor is ψ(x, y, z) =

(
ψ1(x, y, z)
ψ2(x, y, z)

)
∈ C2

σ1 =

(
0 1
−1 0

)
σ2 =

(
0 i
i 0

)
σ3 =

(
−i 0
0 i

)
which are the classic Pauli matrices

Dψ = σ1∂xψ + σ2∂yψ + σ3∂zψ = Dxyψ +

(
−Dzψ1

Dzψ2

)

D2ψ = −∆ψ =

(
−∆xyzψ1

−∆xyzψ2

)
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Dirac-Einstein equations on R3

Consider R3 equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is

ER3 : H1(R3)×H
1
2 (ΣR3) → R

ER3(U,Ψ) =

∫
R3

a3|∇U |2 + ⟨DΨ,Ψ⟩ − U2|Ψ|2 dx, x ∈ R3, a3 = 8

Critical points of ER3 are solutions of −a3∆U = |Ψ|2U

DΨ = U2Ψ
(CDER3)
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Bubbles on R3

Let (U,Ψ) be a ground state solution of (CDER3), with U ≥ 0.

Then there exist λ > 0, x0 ∈ R3 and Ψ0 ∈ C2, |Ψ0| = 1√
2
such that:

U(x) = Uλ,x0
(x) =

(
2λ

λ2 + |x− x0|2

)1/2

Ψ(x) = Ψλ,x0,Ψ0(x) =

(
2λ

λ2 + |x− x0|2

)3/2 (
I3 −

(
x− x0
λ

))
·Ψ0
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