On the conformal Dirac-Einstein equations

Martino Vittorio, Bologna

Granada - June 27th, 2023

INDEX

Motivations

Setting of the problem Classification Existence results Manifolds with boundary

INDEX

Motivations Setting of the problem

Classification

Existence results Manifolds with boundary

INDEX

Motivations Setting of the problem Classification

Existence results Manifolds with boundary

INDEX

Motivations Setting of the problem Classification Existence results Manifolds with boundary

INDEX

Motivations Setting of the problem Classification Existence results Manifolds with boundary

Bosonic-Fermionic interaction

D.R. Brill, J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)

J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)

G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)

F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)

E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin-Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000).

D.R. Brill, J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)

J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)

G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)

F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)

E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000).

D.R. Brill, J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)

J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)

G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)

F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)

E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000).

D.R. Brill, J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)

J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)

G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)

F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)

E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000).

D.R. Brill, J.A. Wheeler, Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479, (1957)

J. York, Role of conformal three-geometry in the dynamics of gravitation, Phys. Rev. Lett. 28, 1082-1085, (1972)

G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15, 2752-2756, (1977)

F. Finster, J. Smoller, S.T. Yau, Particle-like solutions of the Einstein-Dirac equations, Physical Review. D. Particles and Fields. Third Series 59 (1999)

E.C. Kim, T. Friedrich, The Einstein-Dirac Equation on Riemannian Spin Manifolds, J. of Geometry and Physics, 33(1-2), 128-172, (2000).

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$.

Einstein field equation R_q

$$Ric_g - \frac{n_g}{2}g =$$

 $(M^n, g, \Sigma_g M)$ closed Spin, $n \ge 3$.

Dirac wave equation, $\psi \in \Sigma_g M$ $D_g \psi = m \psi, \quad ({
m mass } m)$

Critical points equation of

$$\mathcal{E}:\mathcal{G}(M)\longrightarrow\mathbb{R}$$

Critical points equation of

$$\mathcal{E}(g) = \int_M R_g \, dv_g \qquad \qquad \mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi \rangle - m |\psi|^2 \, dv_g$$

$$S_g = \mathcal{F}_g$$

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$.

 $(M^n, g, \Sigma_g M)$ closed Spin, $n \ge 3$.

Einstein field equation R_a

$$Ric_g - \frac{\kappa_g}{2}g =$$

Dirac wave equation, $\psi\in\Sigma_g M$ $D_g\psi=m\psi, \quad ({
m mass}\ m)$

Critical points equation of

$$\mathcal{E}:\mathcal{G}(M)\longrightarrow\mathbb{R}$$

Critical points equation of

$$\mathcal{E}(g) = \int_M R_g \, dv_g \qquad \qquad \mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi \rangle - m |\psi|^2 \, dv_g$$

$$S_g = \mathcal{F}_g$$

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$.

$$(M^n, g, \Sigma_g M)$$
 closed Spin, $n \ge 3$.

Einstein field equation (vacuum) $Ric_g - \frac{R_g}{2}g = 0, \quad g \in \mathcal{G}(M)$ Dirac wave equation, $\psi \in \Sigma_g M$ $D_g \psi = m \psi, \quad ({\rm mass} \ m)$

Critical points equation of

$$\mathcal{E}:\mathcal{G}(M)\longrightarrow\mathbb{R}$$

$$\mathcal{E}(g) = \int_M R_g \ dv_g$$

Critical points equation of

$$\mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi
angle - m |\psi|^2 \; dv_g$$

$$S_{oldsymbol{g}}=\mathcal{F}_{g}$$

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$. $(M^n, g, \Sigma_q M)$ closed Spin, $n \ge 3$.

Einstein field equation (vacuum) $Ric_g - \frac{R_g}{2}g = 0, \quad g \in \mathcal{G}(M)$ Dirac wave equation, $\psi \in \Sigma_g M$ $D_g \psi = m \psi, \quad ({\rm mass}\ m)$

Critical points equation of

$$\mathcal{E}: \mathcal{G}(M) \longrightarrow \mathbb{R}$$
$$\mathcal{E}(g) = \int_M R_g \ dv_g$$

Critical points equation of

$$\mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi
angle - m |\psi|^2 \ dv_g$$

$$S_g = \mathcal{F}_g$$

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$. $(M^n, g, \Sigma_q M)$ closed Spin, $n \ge 3$.

Einstein field equation (vacuum) $Ric_g - \frac{R_g}{2}g = 0, \quad g \in \mathcal{G}(M)$ Dirac wave equation, $\psi \in \Sigma_g M$ $D_g \psi = m \psi, \quad ({\rm mass}\ m)$

Critical points equation of

Critical points equation of

 $\mathcal{E}:\mathcal{G}(M)\longrightarrow\mathbb{R}$ $\mathcal{F}_g:\Sigma_g M\longrightarrow\mathbb{R}$

$$\mathcal{E}(g) = \int_M R_g \, dv_g + \frac{S_g}{2} \qquad \qquad \mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi \rangle - m |\psi|^2 \, dv_g$$

$$S_g = \mathcal{F}_g$$

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$. $(M^n, g, \Sigma_q M)$ closed Spin, $n \ge 3$.

Einstein field equation (gravity) $Ric_g - \frac{R_g}{2}g = T_g, \quad g \in \mathcal{G}(M)$ Dirac wave equation, $\psi \in \Sigma_g M$ $D_g \psi = m \psi, \quad ({\rm mass} \ m)$

Critical points equation of

Critical points equation of

 $\mathcal{E}:\mathcal{G}(M)\longrightarrow\mathbb{R}$ $\mathcal{F}_g:\Sigma_g M\longrightarrow\mathbb{R}$

$$\mathcal{E}(g) = \int_M R_g \, dv_g + \frac{S_g}{2} \qquad \qquad \mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi \rangle - m |\psi|^2 \, dv_g$$

$$S_{oldsymbol{g}}=\mathcal{F}_{g}$$

Setting of the problem

 (M^n, g) closed Riemannian, $n \ge 3$. $(M^n, g, \Sigma_q M)$ closed Spin, $n \ge 3$.

Einstein field equation (gravity) $Ric_g - \frac{R_g}{2}g = T_g, \quad g \in \mathcal{G}(M)$ Dirac wave equation, $\psi \in \Sigma_g M$ $D_g \psi = m \psi, \quad ({\rm mass}\ m)$

Critical points equation of

Critical points equation of

 $\mathcal{E}:\mathcal{G}(M)\longrightarrow\mathbb{R}$ $\mathcal{F}_g:\Sigma_g M\longrightarrow\mathbb{R}$

 $\mathcal{E}(g) = \int_M R_g \, dv_g + \frac{S_g}{2} \qquad \qquad \mathcal{F}_g(\psi) = \int_M \langle D_g \psi, \psi \rangle - m |\psi|^2 \, dv_g$

$$S_g = \mathcal{F}_g$$

Let M^n be closed, $n \ge 3$, and $g \in \mathcal{G}(M), \psi \in \Sigma_g M, \lambda > 0$

The Dirac-Einstein functional is

$$\mathcal{E}(g,\psi) = \int_M R_g + \langle D_g \psi, \psi \rangle - \lambda |\psi|^2 \ dv_g$$

Critical points of $\mathcal E$ solve the coupled Dirac-Einstein equations

$$\begin{cases} Ric_g - \frac{R_g}{2}g = T_{g,\psi} \\ D_g\psi = \lambda\psi \end{cases}$$

with $T_{g,\psi}(X,Y) = -\frac{1}{4} \langle X \cdot \nabla_Y \psi + Y \cdot \nabla_X \psi, \psi \rangle, \quad X,Y \in TM$

Let M^n be closed, $n \ge 3$, and $g \in \mathcal{G}(M), \psi \in \Sigma_g M, \lambda > 0$

The Dirac-Einstein functional is

$$\mathcal{E}(g,\psi) = \int_M R_g + \langle D_g \psi, \psi \rangle - \lambda |\psi|^2 \, dv_g$$

Critical points of \mathcal{E} solve the coupled Dirac-Einstein equations

$$\begin{cases} Ric_g - \frac{R_g}{2}g = T_{g,\psi} \\ D_g\psi = \lambda\psi \end{cases}$$

with $T_{g,\psi}(X,Y) = -\frac{1}{4} \langle X \cdot \nabla_Y \psi + Y \cdot \nabla_X \psi, \psi \rangle, \quad X,Y \in TM$

Let M^n be closed, $n \ge 3$, and $g \in \mathcal{G}(M), \psi \in \Sigma_g M, \lambda > 0$

The Dirac-Einstein functional is

$$\mathcal{E}(g,\psi) = \int_M R_g + \langle D_g \psi, \psi \rangle - \lambda |\psi|^2 \ dv_g$$

Critical points of $\mathcal E$ solve the coupled Dirac-Einstein equations

$$\left\{ \begin{array}{l} Ric_g - \frac{R_g}{2}g = T_{g,\psi} \\ D_g\psi = \lambda\psi \end{array} \right.$$
 with $T_{g,\psi}(X,Y) = -\frac{1}{4}\langle X \cdot \nabla_Y \psi + Y \cdot \nabla_X \psi, \psi \rangle, \quad X,Y \in TM$

Conformal restriction

$$g_0 \in \mathcal{G}(M), \quad [g_0] = \left\{ g \in \mathcal{G}(M), \ g = u^{\frac{4}{n-2}} g_0, \ u \in C^{\infty}(M), \ u > 0 \right\}$$

For $\varphi \in \Sigma_{g_0} M$, we set $\psi = u^{\frac{1-n}{n-2}} \varphi \in \Sigma_g M \Rightarrow D_g \psi = u^{-\frac{n+1}{n-2}} D_{g_0} \varphi$

$$\mathcal{E}(g,\psi) = \int_{M} u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - \lambda u^{\frac{2}{n-2}} |\varphi|^2 \, dv_{g_0} =: E(u,\varphi)$$

where $L_{g_0}u = -a_n \Delta_{g_0}u + R_{g_0}u, \qquad a_n = \frac{4(n-1)}{n-2}$

$$\begin{cases} L_{g_0} u = \frac{\lambda}{n-2} |\varphi|^2 u^{\frac{4-n}{n-2}} \\ D_{g_0} \varphi = \lambda u^{\frac{2}{n-2}} \varphi \end{cases}$$

Conformal restriction

$$g_0 \in \mathcal{G}(M), \quad [g_0] = \left\{ g \in \mathcal{G}(M), \ g = u^{\frac{4}{n-2}}g_0, \ u \in C^{\infty}(M), \ u > 0 \right\}$$

For
$$\varphi \in \Sigma_{g_0} M$$
, we set $\psi = u^{\frac{1-n}{n-2}} \varphi \in \Sigma_g M \Rightarrow D_g \psi = u^{-\frac{n+1}{n-2}} D_{g_0} \varphi$

$$\mathcal{E}(g,\psi) = \int_{M} u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - \lambda u^{\frac{2}{n-2}} |\varphi|^2 \, dv_{g_0} =: E(u,\varphi)$$

where $L_{g_0}u = -a_n \Delta_{g_0}u + R_{g_0}u, \qquad a_n = \frac{4(n-1)}{n-2}$

$$\begin{cases} L_{g_0} u = \frac{\lambda}{n-2} |\varphi|^2 u^{\frac{4-n}{n-2}} \\ D_{g_0} \varphi = \lambda u^{\frac{2}{n-2}} \varphi \end{cases}$$

Conformal restriction

$$g_0 \in \mathcal{G}(M), \quad [g_0] = \left\{ g \in \mathcal{G}(M), \ g = u^{\frac{4}{n-2}} g_0, \ u \in C^{\infty}(M), \ u > 0 \right\}$$

For
$$\varphi \in \Sigma_{g_0} M$$
, we set $\psi = u^{\frac{1-n}{n-2}} \varphi \in \Sigma_g M \Rightarrow D_g \psi = u^{-\frac{n+1}{n-2}} D_{g_0} \varphi$

$$\mathcal{E}(g,\psi) = \int_{M} u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - \lambda u^{\frac{2}{n-2}} |\varphi|^2 \, dv_{g_0} =: E(u,\varphi)$$

where $L_{g_0}u = -a_n \Delta_{g_0}u + R_{g_0}u, \qquad a_n = \frac{4(n-1)}{n-2}$

$$\begin{cases} L_{g_0} u = \frac{\lambda}{n-2} |\varphi|^2 u^{\frac{4-n}{n-2}} \\ D_{g_0} \varphi = \lambda u^{\frac{2}{n-2}} \varphi \end{cases}$$

Conformal restriction

$$g_0 \in \mathcal{G}(M), \quad [g_0] = \left\{ g \in \mathcal{G}(M), \ g = u^{\frac{4}{n-2}}g_0, \ u \in C^{\infty}(M), \ u > 0 \right\}$$

For
$$\varphi \in \Sigma_{g_0} M$$
, we set $\psi = u^{\frac{1-n}{n-2}} \varphi \in \Sigma_g M \Rightarrow D_g \psi = u^{-\frac{n+1}{n-2}} D_{g_0} \varphi$

$$\mathcal{E}\left(g,\psi\right) = \int_{M} u L_{g_{0}} u + \langle D_{g_{0}}\varphi,\varphi\rangle - \lambda u^{\frac{2}{n-2}} |\varphi|^{2} dv_{g_{0}} =: E(u,\varphi)$$

where
$$L_{g_0}u = -a_n \Delta_{g_0}u + R_{g_0}u, \qquad a_n = \frac{4(n-1)}{n-2}$$

$$\begin{cases} L_{g_0} u = \frac{\lambda}{n-2} |\varphi|^2 u^{\frac{4-n}{n-2}} \\ D_{g_0} \varphi = \lambda u^{\frac{2}{n-2}} \varphi \end{cases}$$

Conformal restriction

$$g_0 \in \mathcal{G}(M), \quad [g_0] = \left\{ g \in \mathcal{G}(M), \ g = u^{\frac{4}{n-2}} g_0, \ u \in C^{\infty}(M), \ u > 0 \right\}$$

For
$$\varphi \in \Sigma_{g_0} M$$
, we set $\psi = u^{\frac{1-n}{n-2}} \varphi \in \Sigma_g M \Rightarrow D_g \psi = u^{-\frac{n+1}{n-2}} D_{g_0} \varphi$

$$\mathcal{E}(g,\psi) = \int_{M} u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - \lambda u^{\frac{2}{n-2}} |\varphi|^2 \, dv_{g_0} =: E(u,\varphi)$$

where $L_{g_0}u = -a_n \Delta_{g_0}u + R_{g_0}u, \qquad a_n = \frac{4(n-1)}{n-2}$

$$\begin{cases} L_{g_0}u = \frac{\lambda}{n-2}|\varphi|^2 u^{\frac{4-n}{n-2}}\\\\ D_{g_0}\varphi = \lambda u^{\frac{2}{n-2}}\varphi \end{cases}$$

Classification result

Let $(M^3, g_0, \Sigma_{g_0} M)$ be a closed spin manifold of dimension three.

Let $E: H^1(M) \times H^{\frac{1}{2}}(\Sigma_{g_0}M) \to \mathbb{R}$

$$E(u,\varphi) = \int_M u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - u^2 |\varphi|^2 \, dv_{g_0}$$

Critical points of E are (weak) solutions of

$$\begin{cases} L_{g_0} u = |\varphi|^2 u \\ D_{g_0} \varphi = u^2 \varphi \end{cases} (CDE)$$

$$\begin{cases} F(x_k) \xrightarrow{\mathbb{R}} c \\ k \to \infty \end{cases} c \\ \nabla F(x_k) \xrightarrow{X} c \\ k \to \infty \end{cases} 0$$

Let $(M^3, g_0, \Sigma_{g_0} M)$ be a closed spin manifold of dimension three.

Let
$$E: H^1(M) \times H^{\frac{1}{2}}(\Sigma_{g_0}M) \to \mathbb{R}$$

$$E(u,\varphi) = \int_M u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - u^2 |\varphi|^2 \, dv_{g_0}$$

Critical points of E are (weak) solutions of

$$\begin{cases} L_{g_0} u = |\varphi|^2 u \\ D_{g_0} \varphi = u^2 \varphi \end{cases} (CDE)$$

$$\begin{cases} F(x_k) \xrightarrow{\mathbb{R}} c \\ k \to \infty \end{cases} c \\ \nabla F(x_k) \xrightarrow{X} c \\ k \to \infty \end{cases} 0$$

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three.

Let
$$E: H^1(M) \times H^{\frac{1}{2}}(\Sigma_{g_0}M) \to \mathbb{R}$$

$$E(u,\varphi) = \int_M u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - u^2 |\varphi|^2 \, dv_{g_0}$$

Critical points of E are (weak) solutions of

$$\begin{cases} L_{g_0} u = |\varphi|^2 u \\ D_{g_0} \varphi = u^2 \varphi \end{cases} (CDE)$$

$$\begin{cases} F(x_k) \xrightarrow{\mathbb{R}} c \\ k \to \infty \end{cases} c \\ \nabla F(x_k) \xrightarrow{X} c \\ k \to \infty \end{cases} 0$$

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three.

Let $E: H^1(M) \times H^{\frac{1}{2}}(\Sigma_{g_0}M) \to \mathbb{R}$

$$E(u,\varphi) = \int_M u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - u^2 |\varphi|^2 \, dv_{g_0}$$

Critical points of E are (weak) solutions of

$$\begin{cases} L_{g_0} u = |\varphi|^2 u \\ D_{g_0} \varphi = u^2 \varphi \end{cases} (CDE)$$

$$\begin{cases} F(x_k) \xrightarrow{\mathbb{R}} c \\ k \to \infty \end{cases} c \\ \nabla F(x_k) \xrightarrow{X} c \\ k \to \infty \end{cases} 0$$

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three.

Let $E: H^1(M) \times H^{\frac{1}{2}}(\Sigma_{g_0}M) \to \mathbb{R}$

$$E(u,\varphi) = \int_M u L_{g_0} u + \langle D_{g_0}\varphi,\varphi\rangle - u^2 |\varphi|^2 \, dv_{g_0}$$

Critical points of E are (weak) solutions of $\left\{ \right.$

$$L_{g_0}u = |\varphi|^2 u$$

$$(CDE)$$

$$D_{g_0}\varphi = u^2\varphi$$

$$\begin{cases} F(x_k) \xrightarrow{\mathbb{R}} c \\ \nabla F(x_k) \xrightarrow{X} \phi 0 \end{cases}$$

Theorem (A. Maalaoui, V. M.)

Suppose that (M^3, g_0) has a positive conformal Yamabe invariant $Y_{[g_0]}^M$. Let $\{(u_n, \varphi_n)\}$ be a Palais-Smale sequence for E at level $c \in \mathbb{R}$. Then there exist $u_{\infty} \in C^{\infty}(M)$, $\varphi_{\infty} \in C^{\infty}(\Sigma M)$ with $(u_{\infty}, \varphi_{\infty})$ solution of (CDE), m sequences of points $x_n^1, \dots, x_n^m \in M$ such that $\lim_{n\to\infty} x_n^k = x^k \in M$, for $k = 1, \dots, m$ and m sequences of real numbers R_n^1, \dots, R_n^m converging to zero, such that:

(i)
$$u_n = u_\infty + \sum_{k=1}^m u_n^{*k} + o(1)_{H^1}, \quad u_n^{*k} = \exp_{R_n^k, x_n}^* (U_\infty^k),$$

(ii) $\varphi_n = \varphi_\infty + \sum_{k=1}^m \varphi_n^{*k} + o(1)_{H^{\frac{1}{2}}}, \quad \varphi_n^{*k} = \exp_{R_n^k, x_n}^* (\Phi_\infty^k),$

(iii)
$$E(u_n,\varphi_n) = E(u_\infty,\varphi_\infty) + \sum_{k=1}^m E_{\mathbb{R}^3}(U_\infty^k,\Phi_\infty^k) + o(1)_{\mathbb{R}}.$$

 $(U_{\infty}^k, \Phi_{\infty}^k)$ are critical points of $E_{\mathbb{R}^3}$ with the standard Euclidian metric.

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) no. 2, 45-121, (1985).

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator D_{q_0} has no kernel.

This follows from the conformal invariance of $ker(D_g)$

$$D_{g_0}\varphi = u^4 D_g \psi$$

$$D_g^2\psi = -\Delta_g\psi + \frac{R_g}{4}\psi$$

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) no. 2, 45-121, (1985).

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator D_{g_0} has no kernel.

This follows from the conformal invariance of $ker(D_g)$

$$D_{g_0}\varphi = u^4 D_g \psi$$

$$D_g^2 \psi = -\Delta_g \psi + \frac{R_g}{4} \psi$$

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) no. 2, 45-121, (1985).

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator D_{q_0} has no kernel.

This follows from the conformal invariance of $ker(D_g)$

$$D_{g_0}\varphi=u^4D_g\psi$$

$$D_g^2\psi = -\Delta_g\psi + \frac{R_g}{4}\psi$$

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) no. 2, 45-121, (1985).

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator D_{g_0} has no kernel.

This follows from the conformal invariance of $ker(D_g)$

$$D_{g_0}\varphi = u^4 D_g \psi$$

$$D_g^2\psi = -\Delta_g\psi + \frac{R_g}{4}\psi$$

- H.C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75, no. 1, 59-77, (1980/81).
- J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113, no. 1, 1-24, (1981).
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, no. 4, 511-517, (1984).
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I II. Rev. Mat. Iberoamericana, 1, no. 1, 145-201, (1985) no. 2, 45-121, (1985).

Remark.

The assumption on M of having a positive conformal Yamabe invariant implies that there are no harmonic spinors, that is the Dirac operator D_{g_0} has no kernel.

This follows from the conformal invariance of $ker(D_g)$

$$D_{g_0}\varphi = u^4 D_g \psi$$

and the Schrödinger-Lichnerowicz formula $\left(Y_{[g_0]}^M > 0 \Rightarrow \exists g \in [g_0], s.t.R_g > 0\right)$

$$D_g^2\psi = -\Delta_g\psi + \frac{R_g}{4}\psi$$

As in the Yamabe problem, one defines a conformal invariant $I^{M}_{[g_{0}]}$.

We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three. It holds:

$$I^{M}_{[g_0]} \le I^{S^3}_{[g_S]}.$$

Moreover, if

$$I^{M}_{[g_0]} < I^{S^3}_{[g_S]},$$

then problem (CDE) has a non-trivial ground state solution.

As in the Yamabe problem, one defines a conformal invariant $I^{M}_{[q_0]}$.

We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three. It holds:

$$I^{M}_{[g_0]} \le I^{S^3}_{[g_S]}.$$

Moreover, if

$$I^{M}_{[g_0]} < I^{S^3}_{[g_S]},$$

then problem (CDE) has a non-trivial ground state solution.

As in the Yamabe problem, one defines a conformal invariant $I^{M}_{[g_{0}]}$.

We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three. It holds:

$$I^M_{[g_0]} \le I^{S^3}_{[g_S]}.$$

Moreover, if

$$I^M_{[g_0]} < I^{S^3}_{[g_S]},$$

then problem (CDE) has a non-trivial ground state solution.

As in the Yamabe problem, one defines a conformal invariant $I^{M}_{[g_{0}]}$.

We have the following Aubin type result:

Theorem (A. Maalaoui, V. M.)

Let $(M^3, g_0, \Sigma_{g_0}M)$ be a closed spin manifold of dimension three. It holds:

$$I^M_{[g_0]} \le I^{S^3}_{[g_S]}.$$

Moreover, if

$$I^{M}_{[g_0]} < I^{S^3}_{[g_S]},$$

then problem (CDE) has a non-trivial ground state solution.

Existence results - II

Let us consider the following (CD)

$$\begin{cases} L_{g_s} u = K |\varphi|^2 u \\ 0 \\ D_{g_s} \varphi = K u^2 \varphi \end{cases}$$

Theorem (C. Guidi, A. Maalaoui, V. M.)

Let $k \in C^2(\mathbb{S}^3)$ be Morse. Let us set $h = k \circ \pi_{ste}^{-1}$ and assume the following Bahri-Coron type conditions:

(i)
$$\Delta h(\xi) \neq 0, \ \forall \ \xi \in \operatorname{crit}[h],$$
 (ii) $\sum_{\substack{\xi \in \operatorname{crit}[h] \\ \Delta h(\xi) < 0}} (-1)^{m(h,\xi)} \neq -1,$

- A.Ambrosetti, J.Garcia Azorero, I.Peral, Perturbation of −Δu + u^(N+2)/(N-2) = 0, the scalar curvature problem in ℝ^N and related topics, J. Funct. Anal. 165 (1999) 117-149.
- A.Malchiodi, F.Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. 10, 983-997
- T.Isobe, A perturbation method for spinorial Yamabe type equations on S^m and its application, Math. Ann. 355 (2013), no. 4, 1255-1299

Let us consider the following (CD)

$$ES) \quad \begin{cases} L_{g_s} u = K |\varphi|^2 u & \\ & \text{on } \mathbb{S}^3 \\ D_{g_s} \varphi = K u^2 \varphi & \end{cases}$$

Theorem (C. Guidi, A. Maalaoui, V. M.)

Let $k \in C^2(\mathbb{S}^3)$ be Morse. Let us set $h = k \circ \pi_{ste}^{-1}$ and assume the following Bahri-Coron type conditions:

(i)
$$\Delta h(\xi) \neq 0, \ \forall \ \xi \in \operatorname{crit}[h],$$
 (ii) $\sum_{\substack{\xi \in \operatorname{crit}[h] \\ \Delta h(\xi) < 0}} (-1)^{m(h,\xi)} \neq -1,$

- A.Ambrosetti, J.Garcia Azorero, I.Peral, Perturbation of −Δu + u^(N+2)/(N-2) = 0, the scalar curvature problem in ℝ^N and related topics, J. Funct. Anal. 165 (1999) 117-149.
- A.Malchiodi, F.Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. 10, 983-997
- T.Isobe, A perturbation method for spinorial Yamabe type equations on S^m and its application, Math. Ann. 355 (2013), no. 4, 1255-1299

Let us consider the following (CD)

$$ES) \quad \begin{cases} L_{g_s} u = K |\varphi|^2 u & \\ & \text{on } \mathbb{S}^5 \\ D_{g_s} \varphi = K u^2 \varphi & \end{cases}$$

Theorem (C. Guidi, A. Maalaoui, V. M.)

Let $k \in C^2(\mathbb{S}^3)$ be Morse. Let us set $h = k \circ \pi_{ste}^{-1}$ and assume the following Bahri-Coron type conditions:

$$(i) \ \Delta h(\xi) \neq 0, \ \forall \ \xi \in \operatorname{crit}[h], \qquad (ii) \ \sum_{\substack{\xi \in \operatorname{crit}[h] \\ \Delta h(\xi) < 0}} (-1)^{m(h,\xi)} \neq -1,$$

- A.Ambrosetti, J.Garcia Azorero, I.Peral, Perturbation of −Δu + u(N+2)/(N-2) = 0, the scalar curvature problem in ℝ^N and related topics, J. Funct. Anal. 165 (1999) 117-149.
- A.Malchiodi, F.Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. 10, 983-997
- T.Isobe, A perturbation method for spinorial Yamabe type equations on S^m and its application, Math. Ann. 355 (2013), no. 4, 1255-1299

Let us consider the following (CD)

$$(ES) \quad \begin{cases} L_{g_s} u = K |\varphi|^2 u & \\ & \text{on } \mathbb{S}^5 \\ D_{g_s} \varphi = K u^2 \varphi & \end{cases}$$

Theorem (C. Guidi, A. Maalaoui, V. M.)

Let $k \in C^2(\mathbb{S}^3)$ be Morse. Let us set $h = k \circ \pi_{ste}^{-1}$ and assume the following Bahri-Coron type conditions:

(i)
$$\Delta h(\xi) \neq 0, \ \forall \ \xi \in \operatorname{crit}[h],$$
 (ii) $\sum_{\substack{\xi \in \operatorname{crit}[h]\\\Delta h(\xi) < 0}} (-1)^{m(h,\xi)} \neq -1,$

- A.Ambrosetti, J.Garcia Azorero, I.Peral, Perturbation of $-\Delta u + u(N+2)/(N-2) = 0$, the scalar curvature problem in \mathbb{R}^N and related topics, J. Funct. Anal. 165 (1999) 117-149.
- A.Malchiodi, F.Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9) 81 (2002), no. 10, 983-997
- T.Isobe, A perturbation method for spinorial Yamabe type equations on $S^{\it m}$ and its application, Math. Ann. 355 (2013), no. 4, 1255-1299

Classification and existence results, $\partial M \neq \emptyset$

 $(M^n, \partial M)$ compact with boundary, $n \ge 3, g \in \mathcal{G}(M), \psi \in \Sigma_g M$

We consider the Dirac-Einstein functional

$$\mathcal{E}_{\mathcal{B}}(g,\psi) = \int_{M} R_{g} + \langle D_{g}\psi,\psi\rangle - \lambda |\psi|^{2} \, dv_{g} + \frac{1}{2} \int_{\partial M} h_{g} \, d\sigma_{g}$$

where h_g is the mean curvature of ∂M induced by g.

We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of $\mathcal{E}_{\mathcal{B}}$, with n = 3.

- W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023

Classification and existence results, $\partial M \neq \emptyset$ $(M^n, \partial M)$ compact with boundary, $n \ge 3$, $g \in \mathcal{G}(M)$, $\psi \in \Sigma_g M$

We consider the Dirac-Einstein functional

$$\mathcal{E}_{\mathcal{B}}(g,\psi) = \int_{M} R_{g} + \langle D_{g}\psi,\psi\rangle - \lambda |\psi|^{2} \, dv_{g} + \frac{1}{2} \int_{\partial M} h_{g} \, d\sigma_{g}$$

where h_g is the mean curvature of ∂M induced by g.

We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of $\mathcal{E}_{\mathcal{B}}$, with n = 3.

- W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023

Classification and existence results, $\partial M \neq \emptyset$

 $(M^n,\partial M)$ compact with boundary, $n\geq 3,\,g\in \mathcal{G}(M),\psi\in \Sigma_g M$

We consider the Dirac-Einstein functional

$$\mathcal{E}_{\mathcal{B}}(g,\psi) = \int_{M} R_{g} + \langle D_{g}\psi,\psi\rangle - \lambda |\psi|^{2} \ dv_{g} + \frac{1}{2} \int_{\partial M} h_{g} \ d\sigma_{g}$$

where h_g is the mean curvature of ∂M induced by g.

We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of $\mathcal{E}_{\mathcal{B}}$, with n = 3.

- W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023 Classification and existence results, $\partial M \neq \emptyset$

 $(M^n,\partial M)$ compact with boundary, $n\geq 3,\,g\in \mathcal{G}(M),\psi\in \Sigma_g M$

We consider the Dirac-Einstein functional

$$\mathcal{E}_{\mathcal{B}}(g,\psi) = \int_{M} R_{g} + \langle D_{g}\psi,\psi\rangle - \lambda |\psi|^{2} \ dv_{g} + \frac{1}{2} \int_{\partial M} h_{g} \ d\sigma_{g}$$

where h_q is the mean curvature of ∂M induced by g.

We proved the classification of Palais-smale sequences and the Aubin type existence result for the conformal restriction of $\mathcal{E}_{\mathcal{B}}$, with n = 3.

⁻ W.Borrelli, A.Maalaoui, V.M., Conformal Dirac-Einstein equations on manifolds with boundary, Calculus of Variations and Partial Differential Equations, 1, 62:18, 2023

Thanks for the attention

Let $(M,g) = (\mathbb{R}^n, g_E)$ equipped with the standard Euclidean metric. The spinor bundle is given by

$$\Sigma_{q_E} \mathbb{R}^n = \Sigma \mathbb{R}^n = \mathbb{R}^n \times \mathbb{C}^N, \quad N = 2^{\left[\frac{n}{2}\right]}$$

A spinor is a function $\psi : \mathbb{R}^n \to \mathbb{C}^N$

There exist n complex constant matrices σ_k , $N \times N$, satisfying

$$\sigma_k \sigma_j + \sigma_j \sigma_k = -2\delta_{kj}I$$

$$D_{g_E}\psi = D\psi = \sum_{k=1}^n \sigma_k \partial_{x_k}\psi$$

Let $(M,g) = (\mathbb{R}^n, g_E)$ equipped with the standard Euclidean metric. The spinor bundle is given by

$$\Sigma_{q_E} \mathbb{R}^n = \Sigma \mathbb{R}^n = \mathbb{R}^n \times \mathbb{C}^N, \quad N = 2^{\left[\frac{n}{2}\right]}$$

A spinor is a function $\psi : \mathbb{R}^n \to \mathbb{C}^N$

There exist n complex constant matrices σ_k , $N \times N$, satisfying

$$\sigma_k \sigma_j + \sigma_j \sigma_k = -2\delta_{kj}I$$

$$D_{g_E}\psi = D\psi = \sum_{k=1}^n \sigma_k \partial_{x_k}\psi$$

Let $(M, g) = (\mathbb{R}^n, g_E)$ equipped with the standard Euclidean metric. The spinor bundle is given by

$$\Sigma_{q_E} \mathbb{R}^n = \Sigma \mathbb{R}^n = \mathbb{R}^n \times \mathbb{C}^N, \quad N = 2^{\left[\frac{n}{2}\right]}$$

A spinor is a function $\psi : \mathbb{R}^n \to \mathbb{C}^N$

There exist n complex constant matrices σ_k , $N \times N$, satisfying

$$\sigma_k \sigma_j + \sigma_j \sigma_k = -2\delta_{kj}I$$

$$D_{g_E}\psi = D\psi = \sum_{k=1}^n \sigma_k \partial_{x_k}\psi$$

Let $(M, g) = (\mathbb{R}^n, g_E)$ equipped with the standard Euclidean metric. The spinor bundle is given by

$$\Sigma_{q_E} \mathbb{R}^n = \Sigma \mathbb{R}^n = \mathbb{R}^n \times \mathbb{C}^N, \quad N = 2^{\left[\frac{n}{2}\right]}$$

A spinor is a function $\psi : \mathbb{R}^n \to \mathbb{C}^N$

There exist n complex constant matrices σ_k , $N \times N$, satisfying

$$\sigma_k \sigma_j + \sigma_j \sigma_k = -2\delta_{kj}I$$

$$D_{g_E}\psi = D\psi = \sum_{k=1}^n \sigma_k \partial_{x_k}\psi$$

Let $(M,g) = (\mathbb{R}^n, g_E)$ equipped with the standard Euclidean metric. The spinor bundle is given by

$$\Sigma_{q_E} \mathbb{R}^n = \Sigma \mathbb{R}^n = \mathbb{R}^n \times \mathbb{C}^N, \quad N = 2^{\left[\frac{n}{2}\right]}$$

A spinor is a function $\psi : \mathbb{R}^n \to \mathbb{C}^N$

There exist n complex constant matrices σ_k , $N \times N$, satisfying

$$\sigma_k \sigma_j + \sigma_j \sigma_k = -2\delta_{kj}I$$

$$D_{g_E}\psi = D\psi = \sum_{k=1}^n \sigma_k \partial_{x_k}\psi$$

Let $(M,g) = (\mathbb{R}^n, g_E)$ equipped with the standard Euclidean metric. The spinor bundle is given by

$$\Sigma_{q_E} \mathbb{R}^n = \Sigma \mathbb{R}^n = \mathbb{R}^n \times \mathbb{C}^N, \quad N = 2^{\left[\frac{n}{2}\right]}$$

A spinor is a function $\psi : \mathbb{R}^n \to \mathbb{C}^N$

There exist n complex constant matrices σ_k , $N \times N$, satisfying

$$\sigma_k \sigma_j + \sigma_j \sigma_k = -2\delta_{kj}I$$

$$D_{g_E}\psi = D\psi = \sum_{k=1}^n \sigma_k \partial_{x_k}\psi \quad \left(D^2\psi = -\Delta\psi\right)$$

Some examples.

n = 1. For $x \in \mathbb{R}$, a spinor is $\psi(x) = u(x) + iv(x) \in \mathbb{C}$, $\sigma_1 = i$, so

 $D\psi = i\partial_x\psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$

$$n = 2$$
. For $(x, y) \in \mathbb{R}^2$, a spinor is $\psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$
 $\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta\psi_1\\ -\Delta\psi_2 \end{array}\right)$$

$$D\psi = i\partial_x\psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$$

$$n = 2. \text{ For } (x, y) \in \mathbb{R}^2, \text{ a spinor is } \psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$$
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta\psi_1\\ -\Delta\psi_2 \end{array}\right)$$

$$D\psi = i\partial_x\psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$$

$$n = 2. \text{ For } (x, y) \in \mathbb{R}^2, \text{ a spinor is } \psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$$
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta\psi_1\\ -\Delta\psi_2 \end{array}\right)$$

$$D\psi = i\partial_x \psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$$

$$n = 2.$$
 For $(x, y) \in \mathbb{R}^2$, a spinor is $\psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$
 $\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta\psi_1\\ -\Delta\psi_2 \end{array}\right)$$

$$D\psi = i\partial_x \psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$$

$$n = 2. \text{ For } (x, y) \in \mathbb{R}^2, \text{ a spinor is } \psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$$
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta\psi_1\\ -\Delta\psi_2 \end{array}\right)$$

$$D\psi = i\partial_x\psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$$

$$n = 2. \text{ For } (x, y) \in \mathbb{R}^2, \text{ a spinor is } \psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$$
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \begin{pmatrix} -\Delta\psi_1 \\ -\Delta\psi_2 \end{pmatrix}$$

$$D\psi = i\partial_x\psi = -v' + iu', \quad D^2\psi = -\Delta\psi = -u'' - iv''$$

$$n = 2. \text{ For } (x, y) \in \mathbb{R}^2, \text{ a spinor is } \psi(x, y) = \begin{pmatrix} \psi_1(x, y) \\ \psi_2(x, y) \end{pmatrix} \in \mathbb{C}^2$$
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$D\psi = \sigma_1 \left(\begin{array}{c} \partial_x \psi_1 \\ \partial_x \psi_2 \end{array}\right) + \sigma_2 \left(\begin{array}{c} \partial_y \psi_1 \\ \partial_y \psi_2 \end{array}\right) = \left(\begin{array}{c} \partial_x \psi_2 + i \partial_y \psi_2 \\ -\partial_x \psi_1 + i \partial_y \psi_1 \end{array}\right)$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta\psi_1\\ -\Delta\psi_2 \end{array}\right)$$

$$n=3. \ \text{For} \ (x,y,z)\in \mathbb{R}^3, \text{a spinor is} \ \psi(x,y,z)= \left(\begin{array}{c} \psi_1(x,y,z) \\ \psi_2(x,y,z) \end{array} \right)\in \mathbb{C}^2$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$D\psi = \sigma_1 \partial_x \psi + \sigma_2 \partial_y \psi + \sigma_3 \partial_z \psi = D_{xy} \psi + \begin{pmatrix} -D_z \psi_1 \\ D_z \psi_2 \end{pmatrix}$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta_{xyz}\psi_1\\ -\Delta_{xyz}\psi_2\end{array}\right)$$

$$n=3. \ \text{For} \ (x,y,z)\in \mathbb{R}^3, \text{a spinor is} \ \psi(x,y,z)= \left(\begin{array}{c} \psi_1(x,y,z) \\ \psi_2(x,y,z) \end{array} \right)\in \mathbb{C}^2$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$D\psi = \sigma_1 \partial_x \psi + \sigma_2 \partial_y \psi + \sigma_3 \partial_z \psi = D_{xy} \psi + \begin{pmatrix} -D_z \psi_1 \\ D_z \psi_2 \end{pmatrix}$$

$$D^2\psi = -\Delta\psi = \begin{pmatrix} -\Delta_{xyz}\psi_1\\ -\Delta_{xyz}\psi_2 \end{pmatrix}$$

$$n = 3$$
. For $(x, y, z) \in \mathbb{R}^3$, a spinor is $\psi(x, y, z) = \begin{pmatrix} \psi_1(x, y, z) \\ \psi_2(x, y, z) \end{pmatrix} \in \mathbb{C}^2$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$D\psi = \sigma_1 \partial_x \psi + \sigma_2 \partial_y \psi + \sigma_3 \partial_z \psi = D_{xy} \psi + \begin{pmatrix} -D_z \psi_1 \\ D_z \psi_2 \end{pmatrix}$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta_{xyz}\psi_1\\ -\Delta_{xyz}\psi_2\end{array}\right)$$

$$n=3.$$
 For $(x,y,z)\in\mathbb{R}^3$, a spinor is $\psi(x,y,z)=\left(egin{array}{c} \psi_1(x,y,z)\\ \psi_2(x,y,z) \end{array}
ight)\in\mathbb{C}^2$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$D\psi = \sigma_1 \partial_x \psi + \sigma_2 \partial_y \psi + \sigma_3 \partial_z \psi = D_{xy} \psi + \begin{pmatrix} -D_z \psi_1 \\ D_z \psi_2 \end{pmatrix}$$

$$D^2\psi = -\Delta\psi = \left(\begin{array}{c} -\Delta_{xyz}\psi_1\\ -\Delta_{xyz}\psi_2\end{array}\right)$$

Dirac-Einstein equations on \mathbb{R}^3

Consider \mathbb{R}^3 equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is

 $E_{\mathbb{R}^3}: H^1(\mathbb{R}^3) \times H^{\frac{1}{2}}(\Sigma \mathbb{R}^3) \to \mathbb{R}$

$$E_{\mathbb{R}^3}(U,\Psi) = \int_{\mathbb{R}^3} a_3 |\nabla U|^2 + \langle D\Psi, \Psi \rangle - U^2 |\Psi|^2 \, dx, \quad x \in \mathbb{R}^3, \ a_3 = 8$$

$$\begin{aligned} -a_3 \Delta U &= |\Psi|^2 U \\ D\Psi &= U^2 \Psi \end{aligned} (CDE_{\mathbb{R}^3})$$

Dirac-Einstein equations on \mathbb{R}^3

Consider \mathbb{R}^3 equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is

 $E_{\mathbb{R}^3}: H^1(\mathbb{R}^3) \times H^{\frac{1}{2}}(\Sigma \mathbb{R}^3) \to \mathbb{R}$

$$E_{\mathbb{R}^3}(U,\Psi) = \int_{\mathbb{R}^3} a_3 |\nabla U|^2 + \langle D\Psi, \Psi \rangle - U^2 |\Psi|^2 \, dx, \quad x \in \mathbb{R}^3, \ a_3 = 8$$

$$\begin{aligned} -a_3 \Delta U &= |\Psi|^2 U \\ D\Psi &= U^2 \Psi \end{aligned} (CDE_{\mathbb{R}^3})$$

Dirac-Einstein equations on \mathbb{R}^3

Consider \mathbb{R}^3 equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is

 $E_{\mathbb{R}^3}: H^1(\mathbb{R}^3) \times H^{\frac{1}{2}}(\Sigma \mathbb{R}^3) \to \mathbb{R}$

$$E_{\mathbb{R}^3}(U,\Psi) = \int_{\mathbb{R}^3} a_3 |\nabla U|^2 + \langle D\Psi, \Psi \rangle - U^2 |\Psi|^2 \, dx, \quad x \in \mathbb{R}^3, \ a_3 = 8$$

$$\begin{aligned} -a_3 \Delta U &= |\Psi|^2 U \\ D\Psi &= U^2 \Psi \end{aligned} (CDE_{\mathbb{R}^3})$$

Dirac-Einstein equations on \mathbb{R}^3

Consider \mathbb{R}^3 equipped with the standard Euclidean metric.

The conformal Dirac-Einstein functional is

 $E_{\mathbb{R}^3}: H^1(\mathbb{R}^3) \times H^{\frac{1}{2}}(\Sigma \mathbb{R}^3) \to \mathbb{R}$

$$E_{\mathbb{R}^3}(U,\Psi) = \int_{\mathbb{R}^3} a_3 |\nabla U|^2 + \langle D\Psi, \Psi \rangle - U^2 |\Psi|^2 \, dx, \quad x \in \mathbb{R}^3, \ a_3 = 8$$

$$\begin{cases} -a_3 \Delta U = |\Psi|^2 U \\ D\Psi = U^2 \Psi \end{cases} (CDE_{\mathbb{R}^3})$$

Bubbles on \mathbb{R}^3

Let (U, Ψ) be a ground state solution of $(CDE_{\mathbb{R}^3})$, with $U \ge 0$.

Then there exist $\lambda > 0$, $x_0 \in \mathbb{R}^3$ and $\Psi_0 \in \mathbb{C}^2$, $|\Psi_0| = \frac{1}{\sqrt{2}}$ such that:

$$U(x) = U_{\lambda, x_0}(x) = \left(\frac{2\lambda}{\lambda^2 + |x - x_0|^2}\right)^{1/2}$$

$$\Psi(x) = \Psi_{\lambda, x_0, \Psi_0}(x) = \left(\frac{2\lambda}{\lambda^2 + |x - x_0|^2}\right)^{3/2} \left(I_3 - \left(\frac{x - x_0}{\lambda}\right)\right) \cdot \Psi_0$$

Bubbles on \mathbb{R}^3

Let (U, Ψ) be a ground state solution of $(CDE_{\mathbb{R}^3})$, with $U \ge 0$.

Then there exist $\lambda > 0$, $x_0 \in \mathbb{R}^3$ and $\Psi_0 \in \mathbb{C}^2$, $|\Psi_0| = \frac{1}{\sqrt{2}}$ such that:

$$U(x) = U_{\lambda, x_0}(x) = \left(\frac{2\lambda}{\lambda^2 + |x - x_0|^2}\right)^{1/2}$$

$$\Psi(x) = \Psi_{\lambda, x_0, \Psi_0}(x) = \left(\frac{2\lambda}{\lambda^2 + |x - x_0|^2}\right)^{3/2} \left(I_3 - \left(\frac{x - x_0}{\lambda}\right)\right) \cdot \Psi_0$$

Bubbles on \mathbb{R}^3

Let (U, Ψ) be a ground state solution of $(CDE_{\mathbb{R}^3})$, with $U \ge 0$.

Then there exist $\lambda > 0$, $x_0 \in \mathbb{R}^3$ and $\Psi_0 \in \mathbb{C}^2$, $|\Psi_0| = \frac{1}{\sqrt{2}}$ such that:

$$U(x) = U_{\lambda, x_0}(x) = \left(\frac{2\lambda}{\lambda^2 + |x - x_0|^2}\right)^{1/2}$$

$$\Psi(x) = \Psi_{\lambda, x_0, \Psi_0}(x) = \left(\frac{2\lambda}{\lambda^2 + |x - x_0|^2}\right)^{3/2} \left(I_3 - \left(\frac{x - x_0}{\lambda}\right)\right) \cdot \Psi_0$$