SEMINARIO GOYA
 10 DECEMBER

Seminario 1. IMAG. Universidad de Granada

Link: https://meet.google.com/exr-weec-xoy
First talk: Seminario 1. 18:00h
Author: Ana Foulquié.
Título: Random walks through multiple orthogonal polynomias
Summary: In this talk we will establish the connection between non-negative Jacobi matrices, multiple orthogonal polynomials and random walks. We will give a general strategy for constructing a pair of stochastic matrices, dual to each other. The corresponding Markov chain will allow, in one transition, to reach the N-th previous states, to remain in the state or reach for the immediate next state. The dual Markov chains allow, in one transition, to reach for the N-th next states, to remain in the state or reach for the immediately previous state.

We will extend the Karlin-MacGregor representation formula to both dual random walks, and applied to the corresponding generating functions and first passage distributions.

We will take the Jacobi-Piñeiro multiple polynomials as a case study, and we will present the explicit formula for the type I Jacobi-Piñeiro polynomials and we will show the region of the parameters where the corresponding Jacobi matrix is non-negative. Examples of Recurrent and transient Jacobi-Piñeiro random walks will be shown.

This is a joint work with Amílcar Branquinho, Coimbra University, Juan E. Fernández-Díaz, Aveiro University and Manuel Mañas, Complutense University of Madrid.

Second talk: Seminario 1. 19:00h
Author: Miguel A Piñar (with Cleonice F. Bracciali).
Título: On Symmetric Orthogonal Polynomials.
Summary: We study families of multivariate orthogonal polynomials with respect to the symmetric weight function in d variables

$$
B_{\gamma}(\mathrm{x})=\prod_{i=1}^{d} w\left(x_{i}\right) \prod_{i<j}\left|x_{i}-x_{j}\right|^{2 \gamma+1}, \quad \mathrm{x} \in(a, b)^{d}
$$

for $\gamma>-1$, where $w(t)$ is an univariate weight function in $t \in(a, b)$ and $\mathrm{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ with $x_{i} \in(a, b)$. Using the change of variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mapsto$ $\mathrm{u}=\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ where, u_{r} are the r-th elementary symmetric functions we study multivariate orthogonal polynomials in the variable u associated with the weight function $W_{\gamma}(\mathrm{u})$ defined by means of $W_{\gamma}(\mathrm{u})=B_{\gamma}(\mathrm{x})$. For the new weight function, the domain is described in terms of the discriminant of the polynomial
having $x_{i}, i=1,2, \ldots, d$, as its zeros and in terms of the associated Sturm sequence. Obviously, generalized classical orthogonal polynomials as defined by Lassalle $[2,3,4]$ and Macdonald [5] are included in our study. Choosing the univariate weight function as the Hermite, Laguerre and Jacobi weight functions, we obtain the representation in terms of the variables u_{r} for the partial differential operators having the respective Hermite, Laguerre and Jacobi generalized multivariate orthogonal polynomials as the corresponding eigenfunctions. The case $d=2$ coincides with the polynomials studied by Koornwinder in [1]. Finally, we present explicitly the partial differential operators for Hermite, Laguerre and Jacobi generalized polynomials in the cases $d=2$ and $d=3$.

References

[1] T. H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I, Indag. Math., 36 (1974), 48-58.
[2] M. Lassalle, Polynômes de Jacobi généralisés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 425-428.
[3] M. Lassalle, Polynômes de Laguerre généralisés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 725-728.
[4] M. Lassalle, Polynômes de Hermite généralisés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 579-582.
[5] I. G. Macdonald, Hypergeometric Functions I, arXiv:1309.4568 [math.CA]

