Optimal Chang-Yang's inequality for axially symmetric functions on \mathbb{S}^{4} and \mathbb{S}^{6}

Juncheng Wei
University of British Columbia

Joint work with Changfeng Gui, Tuoxin Li, Zikai Ye

June 30, 2023, Granada
Summer School on Conformal Geometry and Non-local
Operators

Moser-Trudinger-Onofri inequality on \mathbb{S}^{2}

Moser-Trudinger: There exists a constant $C_{1} \geq 0$, such that

$$
\frac{1}{2} \int_{\mathbb{S}^{2}}|\nabla u|^{2}+\int_{\mathbb{S}^{2}} u \mathrm{~d} w-\frac{1}{2} \log \int_{\mathbb{S}^{2}} e^{2 u} \mathrm{~d} w \geq-C_{1}
$$

Here $\mathrm{d} w$ denotes the Lebesgue measure on the unit sphere \mathbb{S}^{2}, normalized to make $\int_{\mathbb{S}^{2}} \mathrm{~d} w=1$.

Moser-Trudinger-Onofri inequality on \mathbb{S}^{2}

Moser-Trudinger: There exists a constant $C_{1} \geq 0$, such that

$$
\frac{1}{2} \int_{\mathbb{S}^{2}}|\nabla u|^{2}+\int_{\mathbb{S}^{2}} u \mathrm{~d} w-\frac{1}{2} \log \int_{\mathbb{S}^{2}} e^{2 u} \mathrm{~d} w \geq-C_{1}
$$

Here $\mathrm{d} w$ denotes the Lebesgue measure on the unit sphere \mathbb{S}^{2}, normalized to make $\int_{\mathbb{S}^{2}} \mathrm{~d} w=1$.
Onofri: C_{1} can be taken to be 0 (which is optimal).

Moser-Trudinger-Onofri inequality on \mathbb{S}^{2}

Moser-Trudinger: There exists a constant $C_{1} \geq 0$, such that

$$
\frac{1}{2} \int_{\mathbb{S}^{2}}|\nabla u|^{2}+\int_{\mathbb{S}^{2}} u \mathrm{~d} w-\frac{1}{2} \log \int_{\mathbb{S}^{2}} e^{2 u} \mathrm{~d} w \geq-C_{1}
$$

Here $\mathrm{d} w$ denotes the Lebesgue measure on the unit sphere \mathbb{S}^{2}, normalized to make $\int_{\mathbb{S}^{2}} \mathrm{~d} w=1$.
Onofri: C_{1} can be taken to be 0 (which is optimal).
Moser-Trudinger-Onofri Inequality:

$$
\frac{1}{2} \int_{\mathbb{S}^{2}}|\nabla u|^{2}+\int_{\mathbb{S}^{2}} u \mathrm{~d} w-\frac{1}{2} \log \int_{\mathbb{S}^{2}} e^{2 u} \mathrm{~d} w \geq 0
$$

Chang-Yang's Inequality

Let $u \in H^{1}\left(\mathbb{S}^{2}\right)$. Define a functional

$$
J_{\alpha}(u)=\frac{\alpha}{2} \int_{\mathbb{S}^{2}}|\nabla u|^{2}+\int_{\mathbb{S}^{2}} u \mathrm{~d} w-\frac{1}{2} \log \int_{\mathbb{S}^{2}} e^{2 u} \mathrm{~d} w .
$$

Restrict J_{α} to the set of functions with the center of mass at the origin:

$$
\mathcal{L}=\left\{u \in H^{1}\left(\mathbb{S}^{2}\right): \int_{\mathbb{S}^{2}} e^{2 u} \vec{x} \mathrm{~d} w=0\right\}
$$

Chang-Yang Inequality

Chang and Yang (1982) conjectured that for $\alpha \geq \frac{1}{2}$,

$$
\begin{gathered}
\frac{\alpha}{2} \int_{\mathbb{S}^{2}}|\nabla u|^{2}+\int_{\mathbb{S}^{2}} u \mathrm{~d} w-\frac{1}{2} \log \int_{\mathbb{S}^{2}} e^{2 u} \mathrm{~d} w \geq 0 \\
\forall u \in H^{1}\left(\mathbb{S}^{2}\right), \quad \int_{\mathbb{S}^{2}} e^{2 u} \vec{x} \mathrm{~d} w=0
\end{gathered}
$$

Chang-Yang Inequality

- Chang-Yang (1982): true if $\alpha>1-\epsilon$;

Chang-Yang Inequality

- Chang-Yang (1982): true if $\alpha>1-\epsilon$;
- Feldman, Froese, Ghoussoub and Gui (1998): True for axially symmetric functions when $\alpha>0.64-\epsilon$.

Chang-Yang Inequality

- Chang-Yang (1982): true if $\alpha>1-\epsilon$;
- Feldman, Froese, Ghoussoub and Gui (1998): True for axially symmetric functions when $\alpha>0.64-\epsilon$.
- Gui-Wei (2000): True for axially symmetric case when $\alpha \geq \frac{1}{2}$.

Chang-Yang Inequality

- Chang-Yang (1982): true if $\alpha>1-\epsilon$;
- Feldman, Froese, Ghoussoub and Gui (1998): True for axially symmetric functions when $\alpha>0.64-\epsilon$.
- Gui-Wei (2000): True for axially symmetric case when $\alpha \geq \frac{1}{2}$.
- Ghoussoub-C.S. Lin (2008): All solutions are axially symmetric if $\alpha>\frac{2}{3}-\epsilon$.

Chang-Yang Inequality

- Chang-Yang (1982): true if $\alpha>1-\epsilon$;
- Feldman, Froese, Ghoussoub and Gui (1998): True for axially symmetric functions when $\alpha>0.64-\epsilon$.
- Gui-Wei (2000): True for axially symmetric case when $\alpha \geq \frac{1}{2}$.
- Ghoussoub-C.S. Lin (2008): All solutions are axially symmetric if $\alpha>\frac{2}{3}-\epsilon$.
- Gui-Moradifam (2018): All solutions are axially symmetric if $\alpha \geq \frac{1}{2}$ —Complete solution to Chang-Yang Inequality.

Beckner's Inequality: from \mathbb{S}^{2} to \mathbb{S}^{n}

Beckner's inequality is a high-order Moser-Trudinger-Onofri inequality. Consider the following functional J_{α} defined in $H^{\frac{n}{2}}\left(\mathbb{S}^{n}\right)$ by
$J_{\alpha}(u)=\frac{\alpha}{2} \int_{\mathbb{S}^{n}}\left(P_{n} u\right) u \mathrm{~d} w+(n-1)!\int_{\mathbb{S}^{n}} u \mathrm{~d} w-\frac{(n-1)!}{n} \log \int_{\mathbb{S}^{n}} e^{n u} \mathrm{~d} w$,
where
$P_{n}= \begin{cases}\prod_{k=0}^{\frac{n-2}{2}}(\Delta+k(n-k-1)), & \text { for } n \text { even; } \\ \left(-\Delta+\left(\frac{n-1}{2}\right)^{2}\right)^{1 / 2} \prod_{k=0}^{\frac{n-3}{2}}(\Delta+k(n-k-1)), & \text { for } n \text { odd }\end{cases}$
is the Paneitz (GJMS) operator on \mathbb{S}^{n}.

Beckner's Inequality

Beckner (1993) : for $\alpha=1$:

$$
\begin{gathered}
\frac{1}{2} \int_{\mathbb{S}^{n}}\left(P_{n} u\right) u \mathrm{~d} w+(n-1)!\int_{\mathbb{S}^{n}} u \mathrm{~d} w-\frac{(n-1)!}{n} \log \int_{\mathbb{S}^{n}} e^{n u} \mathrm{~d} w \geq 0 \\
\forall u \in H^{\frac{n}{2}}\left(\mathbb{S}^{n}\right)
\end{gathered}
$$

Higher order Moser-Trudinger-Onofri inequality

Higher Order Chang-Yang's Inequality

Restrict J_{α} to the set of functions with the center of mass at the origin:

$$
\mathcal{L}=\left\{u \in H^{\frac{n}{2}}\left(\mathbb{S}^{n}\right): \int_{\mathbb{S}^{n}} e^{n u} \vec{x} \mathrm{~d} w=0\right\}
$$

Higher Order Chang-Yang's Inequality: for $\alpha \geq \frac{1}{2}$, the Beckner's inequality on \mathbb{S}^{n} still holds, i.e.

$$
\begin{gathered}
\frac{\alpha}{2} \int_{\mathbb{S}^{n}}\left(P_{n} u\right) u \mathrm{~d} w+(n-1)!\int_{\mathbb{S}^{n}} u \mathrm{~d} w-\frac{(n-1)!}{n} \ln \int_{\mathbb{S}^{n}} e^{n u} \mathrm{~d} w \geq 0 \\
\forall u \in H^{\frac{n}{2}}\left(\mathbb{S}^{n}\right), \int_{\mathbb{S}^{n}} e^{n u} \vec{x} \mathrm{~d} w=0
\end{gathered}
$$

Euler-Lagrange equation

The Euler-Lagrange equation of J_{α} is the Q-curvature-type equation

$$
\begin{equation*}
\alpha P_{n} u+(n-1)!\left(1-\frac{e^{n u}}{\int_{\mathbb{S}^{n}} e^{n u} \mathrm{~d} w}\right)=0 \text { on } \mathbb{S}^{n} \tag{1}
\end{equation*}
$$

Euler-Lagrange equation

The Euler-Lagrange equation of J_{α} is the Q-curvature-type equation

$$
\begin{equation*}
\alpha P_{n} u+(n-1)!\left(1-\frac{e^{n u}}{\int_{\mathbb{S}^{n}} e^{n u} \mathrm{~d} w}\right)=0 \text { on } \mathbb{S}^{n} \tag{1}
\end{equation*}
$$

Higher Order Chang-Yang Conjecture: for $\alpha \geq \frac{1}{2}$ all solutions to

$$
\alpha P_{n} u+(n-1)!\left(1-\frac{e^{n u}}{\int_{\mathbb{S}^{n}} e^{n u} \mathrm{~d} w}\right)=0 \text { on } \mathbb{S}^{n}
$$

subject to

$$
\int_{\mathbb{S}^{n}} \vec{x} e^{n u}=0
$$

are constants.

Progress

- Chang-Yang (1995): For general n and any $\alpha>\frac{1}{2}$, there exists a constant $C(\alpha) \geq 0$ such that $\inf _{u \in \mathcal{L}} J_{\alpha}(u) \geq-C(\alpha)$.

Progress

- Chang-Yang (1995): For general n and any $\alpha>\frac{1}{2}$, there exists a constant $C(\alpha) \geq 0$ such that $\inf _{u \in \mathcal{L}} J_{\alpha}(u) \geq-C(\alpha)$.
- Wei-Xu (2009): True if $\alpha>1-\epsilon_{n}$.

Progress

- Chang-Yang (1995): For general n and any $\alpha>\frac{1}{2}$, there exists a constant $C(\alpha) \geq 0$ such that $\inf _{u \in \mathcal{L}} J_{\alpha}(u) \geq-C(\alpha)$.
- Wei-Xu (2009): True if $\alpha>1-\epsilon_{n}$.
- General case is very difficult. On \mathbb{S}^{2}, Gui-Moradifam (2018) first used spherical covering inequality and moving plane method to prove that all solutions are axially symmetric. Gui-Wei (2000): all axially symmetric solutions are constants.

Progress

- Chang-Yang (1995): For general n and any $\alpha>\frac{1}{2}$, there exists a constant $C(\alpha) \geq 0$ such that $\inf _{u \in \mathcal{L}} J_{\alpha}(u) \geq-C(\alpha)$.
- Wei-Xu (2009): True if $\alpha>1-\epsilon_{n}$.
- General case is very difficult. On \mathbb{S}^{2}, Gui-Moradifam (2018) first used spherical covering inequality and moving plane method to prove that all solutions are axially symmetric. Gui-Wei (2000): all axially symmetric solutions are constants.
- Question: what about axially symmetric solutions?

Axially symmetric case

If u is axially symmetric about ξ_{1}-axis and denoting ξ_{1} by x, then the Euler-Lagrange equation becomes (1) is then reduced to

$$
\begin{equation*}
\alpha(-1)^{\frac{n}{2}}\left[\left(1-x^{2}\right)^{\frac{n}{2}} u^{\prime}\right]^{(n-1)}+(n-1)!-\frac{(n-1)!\sqrt{\pi} \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right) \gamma} e^{n u}=0, \tag{2}
\end{equation*}
$$

where

$$
\gamma:=\int_{\mathbb{S}^{n}} e^{n u} d w=\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{n-2}{2}} e^{n u}
$$

In axially symmetric case, the set \mathcal{L} is replaced by

$$
\mathcal{L}_{r}=\left\{u \in H^{\frac{n}{2}}\left(\mathbb{S}^{n}\right): u=u(x) \text { and } \int_{-1}^{1} x\left(1-x^{2}\right)^{\frac{n-2}{2}} e^{n u} d x=0\right\}
$$

Axially symmetric case

- \mathbb{S}^{4} : Gui-Hu-Xie (2021): For any $\alpha \in[0.517,1)$, (2) admits only constant solutions.

Axially symmetric case

- \mathbb{S}^{4} : Gui-Hu-Xie (2021): For any $\alpha \in[0.517,1)$, (2) admits only constant solutions.
- \mathbb{S}^{6} : Gui-Hu-Xie (2022): When $n=6$, for any $\alpha \in[0.6168,1$), (2) admits only constant solutions.

Axially symmetric case

- \mathbb{S}^{4} : Gui-Hu-Xie (2021): For any $\alpha \in[0.517,1)$, (2) admits only constant solutions.
- \mathbb{S}^{6} : Gui-Hu-Xie (2022): When $n=6$, for any $\alpha \in[0.6168,1$),
(2) admits only constant solutions.
- \mathbb{S}^{8} : Gui-Hu-Xie (2022): When $n=8$, for any $\alpha \in[0.8261,1$), (2) admits only constant solutions.

Axially symmetric case

- $\mathbb{S}^{4}:$ Gui-Hu-Xie (2021): For any $\alpha \in[0.517,1)$, (2) admits only constant solutions.
- \mathbb{S}^{6} : Gui-Hu-Xie (2022): When $n=6$, for any $\alpha \in[0.6168,1$),
(2) admits only constant solutions.
- \mathbb{S}^{8} : Gui-Hu-Xie (2022): When $n=8$, for any $\alpha \in[0.8261,1$),
(2) admits only constant solutions.
- $\mathbb{S}^{n}, n \geq 2$: Gui-Hu-Xie (2022): For general n and any $\frac{1}{n+1}<\alpha<\frac{1}{2}$, there exists non-constant solution to (2).

Main Results

Theorem 1

(Li-Wei-Ye 2022) Let $n=4$. If $\alpha \geq \frac{1}{2}$, then the only critical point of the functional J_{α} restricted to \mathcal{L}_{r} are constant functions.

Main Results

Theorem 1

(Li-Wei-Ye 2022) Let $n=4$. If $\alpha \geq \frac{1}{2}$, then the only critical point of the functional J_{α} restricted to \mathcal{L}_{r} are constant functions.

Theorem 2

(Gui-Li-Wei-Ye 2023) Let $n=6$. If $\alpha \geq \frac{1}{2}$, then the only critical point of the functional J_{α} restricted to \mathcal{L}_{r} are constant functions.

Nonlocal Operator

- Chang-Yang's inequality for general odd n. Nonlocal operator

$$
P_{n}=\sqrt{-\Delta+\left(\frac{n-1}{2}\right)^{2}} \Pi_{k=0}^{\frac{n-3}{2}}(-\Delta+k(n-k-1))
$$

$n=1$: Chang-Hang 2020

- On \mathbb{S}^{1}, the Lebedev-Milin inequality yields that for any $u \in H^{1}(D)$ with $\int_{\mathbb{S}^{1}} u \mathrm{~d} \theta=0$,

$$
\log \left(\frac{1}{2 \pi} \int_{\mathbb{S}^{1}} e^{u} \mathrm{~d} \theta\right) \leq \frac{1}{4 \pi}\|\nabla u\|_{L^{2}(D)}^{2}
$$

Chang-Yang's inequality in terms of Szego Limit Theorem

 on \mathbb{S}^{1}Using Szego Limit Theorem \mathbb{S}^{1}, Chang-Hang (2020) proved: If e^{u} satisfies more orthogonality conditions, i.e. $\int_{\mathbb{S}^{1}} e^{u} e^{i k \theta} \mathrm{~d} \theta=0$, for $k=1, \cdots, m$, then we have

$$
\log \left(\frac{1}{2 \pi} \int_{\mathbb{S}^{1}} e^{u} \mathrm{~d} \theta\right) \leq \frac{1}{4 \pi(m+1)}\|\nabla u\|_{L^{2}(D)}^{2}
$$

Equivalently, for $\alpha \geq \frac{1}{m+1}$

$$
\begin{gathered}
\frac{\alpha}{2} \int_{\mathbb{S}^{1}}\left(P_{1} u\right) u \mathrm{~d} w+(n-1)!\int_{\mathbb{S}^{1}} u \mathrm{~d} w-\frac{(n-1)!}{n} \ln \int_{\mathbb{S}^{1}} e^{u} \mathrm{~d} w \geq 0 \\
\forall u \in H^{\frac{1}{2}}\left(\mathbb{S}^{1}\right), \int_{S^{1}} u e^{i k \theta} d \theta=0, k=1, \ldots, m
\end{gathered}
$$

Szego Limit Theorem on \mathbb{S}^{2}

On \mathbb{S}^{2}, Chang-Hang (2020) showed that for any $\left.u \in H^{1} \mathbb{S}^{2}\right)$ with $\int_{\mathbb{S}^{2}} u \mathrm{~d} w=0$ and $\int_{\mathbb{S}^{2}} p e^{u} \mathrm{~d} w=0$ for any p being the eigenfunction of $-\Delta_{\mathbb{S}^{2}}$ of eigenvalue $k(k+1), k=1, \cdots, m$, then

$$
\log \left(\int_{\mathbb{S}^{2}} e^{u} \mathrm{~d} w\right) \leq\left(\frac{1}{4 \pi N_{m}}+\epsilon\right)\|\nabla u\|_{L^{2}\left(\mathbb{S}^{2}\right)}^{2}+c_{\epsilon},
$$

where N_{m} is an integer and c_{ϵ} is a constant.
It is unknown that whether or not ϵ can be chosen to be 0 . Also, analogous results remain open for \mathbb{S}^{n}.

Proofs

- Proof on \mathbb{S}^{2}
- Proof on S^{6}

Proofs

- Proof on \mathbb{S}^{2}
- Proof on S^{6}
- Need to prove: for $\alpha \geq \frac{1}{2}$ all solutions
$\alpha(-1)^{\frac{n}{2}}\left[\left(1-x^{2}\right)^{\frac{n}{2}} u^{\prime}\right]^{(n-1)}+(n-1)!-\frac{(n-1)!\sqrt{\pi} \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right) \gamma} e^{n u}=0$, are constants.

Theorem in axially symmetric case on \mathbb{S}^{2}

On \mathbb{S}^{2}, the Euler-Lagrange equation (2) becomes

$$
\begin{equation*}
\alpha\left(\left(1-x^{2}\right) u^{\prime}\right)^{\prime}-1+\frac{2}{\gamma} e^{2 u}=0 \tag{3}
\end{equation*}
$$

Theorem 3 (Gui-Wei 2000)
If $\frac{1}{2} \leq \alpha<1$, then (3) admits only constant solutions.

Key Quantity G

Let $G(x)=\left(1-x^{2}\right) u^{\prime}(x)$. Then

$$
\begin{align*}
& \alpha G^{\prime}-1+\frac{2}{\gamma} e^{2 u}=0 \tag{4}\\
& \left(1-x^{2}\right) G^{\prime \prime}+\frac{2}{\alpha} G-2 G G^{\prime}=0 \tag{5}
\end{align*}
$$

Key Quantity G

$$
\begin{align*}
& \text { Let } G(x)=\left(1-x^{2}\right) u^{\prime}(x) \text {. Then } \\
& \qquad \begin{array}{l}
\alpha G^{\prime}-1+\frac{2}{\gamma} e^{2 u}=0 . \\
\left(1-x^{2}\right) G^{\prime \prime}+\frac{2}{\alpha} G-2 G G^{\prime}=0 .
\end{array} \tag{4}
\end{align*}
$$

Idea: Use Eigenfunction expansions to show that (5) (which is a nonlinear equation) has only zero solution.

Legendre polynomial expansion

Axially symmetric eigenfunctions on \mathbb{S}^{2} : Legendre polynomials $P_{n}(x)$

$$
\left(\left(1-x^{2}\right) P_{k}^{\prime}\right)^{\prime}+\lambda_{k} P_{k}=0, \lambda_{k}=k(k+1)
$$

Moreover,

$$
\left|P_{k}^{\prime}(x)\right| \leq\left|P_{k}^{\prime}(1)\right|=\frac{1}{2} \lambda_{k}, \int_{-1}^{1} P_{m} P_{n}=\frac{2 \delta_{m n}}{2 n+1}
$$

We have the orthogonal decomposition

$$
G(x)=a_{0}+\beta x+\sum_{k=2}^{\infty} a_{k} P_{k}(x)
$$

Aim: show that

$$
a_{0}=a_{1}=a_{2}=\cdots=a_{k}=\ldots=0
$$

About a_{0}

Since the center of mass equals zero,

$$
\int_{-1}^{1} x e^{2 u}=0
$$

we derive that

$$
\begin{gathered}
a_{0}=0 \\
G(x)=\beta x+\sum_{k=2}^{\infty} a_{k} P_{k}(x) .
\end{gathered}
$$

Some useful identities

Let $b_{k}^{2}=a_{k}^{2} \int_{-1}^{1} P_{k}^{2}$, then by orthogonality,

$$
\begin{gathered}
\int_{-1}^{1} G^{2}=\frac{2}{3} \beta^{2}+\sum_{k=2}^{\infty} b_{k}^{2} . \\
\int_{-1}^{1}\left(1-x^{2}\right)\left(G^{\prime}\right)^{2}=\frac{4}{3} \beta^{2}+\sum_{k=2}^{\infty} \lambda_{k} b_{k}^{2} .
\end{gathered}
$$

By the equation of P_{k} and integration by parts, we have

$$
\begin{equation*}
\int_{-1}^{1} P_{k} G=-\frac{2}{\alpha \lambda_{k}} \int_{-1}^{1}\left(1-x^{2}\right) P_{k}^{\prime} \frac{e^{2 u}}{\gamma}, k \geq 2 \tag{6}
\end{equation*}
$$

By (4), we obtain

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right) \frac{e^{2 u}}{\gamma}=\frac{2}{3}(1-\alpha \beta) . \tag{7}
\end{equation*}
$$

Some useful identities

The following two identities play key roles in the proof. Multiplying (5) by x and integrating by parts yields

$$
\begin{equation*}
\int_{-1}^{1} G^{2}=\frac{4}{3}\left(3-\frac{1}{\alpha}\right) \beta . \tag{8}
\end{equation*}
$$

Similarly, multiplying (5) by G, we get

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)\left(G^{\prime}\right)^{2}=\left(\frac{2}{\alpha}-1\right) \int_{-1}^{1} G^{2} \tag{9}
\end{equation*}
$$

We remark that in the last integral, the cubic term $\int_{-1}^{1} G^{2} G^{\prime}=0$, which makes the proof very easy. This is also the main difference between \mathbb{S}^{2} and $\mathbb{S}^{n}, n \geq 4$.

A rough estimate

We will show $\beta=0$, which implies $G=0$ by (8). The basic strategy is to show that if $\beta \neq 0$, then

$$
\beta=\frac{1}{\alpha},
$$

which contradicts to (7).

$$
\int_{-1}^{1}\left(1-x^{2}\right) \frac{e^{2 u}}{\gamma}=\frac{2}{3}(1-\alpha \beta) .
$$

Now we assume $\beta \neq 0$, then by (7), $\frac{1}{\alpha}-\beta>0$.
Rest of the idea: derive estimates of the rest coefficients in terms of

$$
\frac{1}{\alpha}-\beta
$$

and do iterations.

We first derive an estimate on b_{k}^{2}. For $k \geq 2$, by (6) and (7), we have

$$
\begin{align*}
b_{k}^{2} & =\frac{2 k+1}{2}\left(\frac{2}{\alpha \lambda_{k}} \int_{-1}^{1}\left(1-x^{2}\right)\left|P_{k}^{\prime}\right| \frac{e^{2 u}}{\gamma}\right)^{2} \\
& \leq \frac{2 k+1}{2}\left(\frac{2}{\alpha \lambda_{k}} \frac{\lambda_{k}}{2} \frac{2}{3}(1-\alpha \beta)\right)^{2} \\
& =\frac{2(2 k+1)}{9}\left(\frac{1}{\alpha}-\beta\right)^{2} . \tag{10}
\end{align*}
$$

Here we used uniform estimate

$$
\left|P_{k}^{\prime}\right| \leq\left|P_{k}^{\prime}(1)\right|=\frac{\lambda_{k}}{2}
$$

Rough estimates

Now we define the key semi-norm:

$$
D:=\sum_{k=3}^{\infty}\left(\lambda_{k}-6\right) b_{k}^{2}
$$

On the one hand, $D \geq 0$ since $\lambda_{k}=k(k+1)$. On the other hand,

$$
\begin{align*}
D & =\int_{-1}^{1}\left(1-x^{2}\right)\left(G^{\prime}\right)^{2}-6 \int_{-1}^{1} G^{2}+\frac{4}{3} \beta^{2} \\
& =\frac{2}{3} \beta\left(4 \beta+\left(7-\frac{2}{\alpha}\right)\left(\frac{2}{\alpha}-6\right)\right) \tag{11}
\end{align*}
$$

In view of the fact that $0<\beta<\frac{1}{\alpha}$, we have the following rough estimates

$$
\beta \geq 1.5, \alpha<0.537
$$

Lower bound of D

To obtain better estimates, we need to estimate the lower bound of D more carefully. We fix an integer $n \geq 3$, then

$$
\begin{align*}
D & =\sum_{k=3}^{n}\left(\lambda_{k}-6\right) b_{k}^{2}+\sum_{k=n+1}^{\infty}\left(\lambda_{k}-6\right) b_{k}^{2} \\
& \geq \sum_{k=3}^{n}\left(\lambda_{k}-6\right) b_{k}^{2}+\frac{\lambda_{n+1}-6}{\lambda_{n+1}} \sum_{k=n+1}^{\infty} \lambda_{k} b_{k}^{2} \\
& =\sum_{k=2}^{n}\left(\lambda_{k}-6-\frac{\lambda_{n+1}-6}{\lambda_{n+1}} \lambda_{k}\right) b_{k}^{2}-\frac{\lambda_{n+1}-6}{\lambda_{n+1}} \sum_{k=2}^{\infty} \lambda_{k} b_{k}^{2} \\
& =\sum_{k=2}^{n} 6 \frac{\lambda_{k}-\lambda_{n+1}}{\lambda_{n+1}} b_{k}^{2}+\frac{\lambda_{n+1}-6}{\lambda_{n+1}}\left(\int_{-1}^{1}\left(1-x^{2}\right)\left(G^{\prime}\right)^{2}-\frac{4}{3} \beta^{2}\right) \\
& =\sum_{k=2}^{n} 6 \frac{\lambda_{k}-\lambda_{n+1}}{\lambda_{n+1}} b_{k}^{2}+\frac{\lambda_{n+1}-6}{\lambda_{n+1}}\left(\frac{2}{3} \beta\left(\frac{2}{\alpha}-1\right)\left(6-\frac{2}{\alpha}\right)-\frac{4}{3} \beta^{2}\right) . \tag{12}
\end{align*}
$$

Combining (11) and (12), after some simple computation, we obtain

$$
\begin{align*}
& 12 \beta\left(\frac{1}{\alpha}-2\right)+\frac{4 \beta}{\lambda_{n+1}}\left(\left(\frac{2}{\alpha}-1\right)\left(6-\frac{2}{\alpha}\right)-\frac{2}{\alpha}\right) \tag{13}\\
& \geq 4 \beta\left(1-\frac{2}{\lambda_{n+1}}\right)\left(\frac{1}{\alpha}-\beta\right)-\sum_{k=2}^{n} 6 \frac{\lambda_{k}-\lambda_{n+1}}{\lambda_{n+1}} b_{k}^{2} .
\end{align*}
$$

Since $\frac{1}{2} \leq \alpha<1$,

$$
\begin{equation*}
12 \beta\left(\frac{1}{\alpha}-2\right)+\frac{4 \beta}{\lambda_{n+1}}\left(\left(\frac{2}{\alpha}-1\right)\left(6-\frac{2}{\alpha}\right)-\frac{2}{\alpha}\right) \leq \frac{8 \beta}{\lambda_{n+1}}, \tag{14}
\end{equation*}
$$

which, together with estimates of $b_{k}(10)$, yields the inequality

$$
\begin{equation*}
\frac{8 \beta}{\lambda_{n+1}} \geq\left(4 \beta\left(1-\frac{2}{\lambda_{n+1}}\right)-\frac{20}{3} \frac{\lambda_{n+1}-6}{\lambda_{n+1}}\left(\frac{1}{\alpha}-\beta\right)-\frac{4}{3} c_{n}\left(\frac{1}{\alpha}-\beta\right)\right)\left(\frac{1}{\alpha}-\beta\right) \tag{15}
\end{equation*}
$$

Induction procedure

where

$$
\begin{equation*}
c_{n}=\sum_{k=3}^{n} \frac{\lambda_{n+1}-\lambda_{k}}{\lambda_{n+1}}(2 k+1)=\frac{1}{2} \lambda_{n+1}-9+\frac{36}{\lambda_{n+1}} . \tag{16}
\end{equation*}
$$

We claim

$$
\begin{equation*}
\frac{1}{\alpha}-\beta \leq \frac{4}{\lambda_{n}}, \forall n \geq 4 \tag{17}
\end{equation*}
$$

This is proved by induction procedure. Two key ingredients

- semi-norm D
- decaying estimates of b_{k}

$$
b_{k}^{2} \leq \frac{2(2 k+1)}{9}\left(\frac{1}{\alpha}-\beta\right)^{2}
$$

Finally, letting $n \rightarrow+\infty$ in (17), we obtain

$$
\frac{1}{\alpha}-\beta=0
$$

which is a contradiction. From the discussion in the beginning, we know $G \equiv 0$, which implies that u is a constant. Thus we complete the proof of Theorem 3.

Statement of theorems on \mathbb{S}^{4} and \mathbb{S}^{6}

On \mathbb{S}^{4}, (2) becomes

$$
\begin{equation*}
\alpha\left(\left(1-x^{2}\right)^{2} u^{\prime}\right)^{\prime \prime \prime}+6-\frac{8}{\gamma} e^{4 u}=0 \tag{18}
\end{equation*}
$$

On \mathbb{S}^{6}, (2) becomes

$$
\begin{equation*}
-\alpha\left[\left(1-x^{2}\right)^{3} u^{\prime}\right]^{(5)}+120-128 \frac{e^{6 u}}{\gamma}=0, x \in(-1,1) \tag{19}
\end{equation*}
$$

Theorem 4 (Li-Wei-Ye 2022, Gui-Li-Wei-Ye 2023)

If $\frac{1}{2} \leq \alpha<1$, then (18) and (19) admit only constant solutions.

Key ingredients

- Obtain the optimal semi-norm estimates
- Use the decaying properties of Gegenbauer polynomials to obtain sharp estimates of the coefficents b_{k}
- Use the cancellation properties of Gegenbauer polynomials to proceed with the induction steps.

Axially symmetric eigenfunctions for the Paneitz operator P_{n} : Gegenbauer polynomials

Gegenbauer polynomials, order ν and degree k, are given by
$C_{k}^{\nu}(x)=\frac{(-1)^{k}}{2^{k} k!} \frac{\Gamma\left(\nu+\frac{1}{2}\right) \Gamma(k+2 \nu)}{\Gamma(2 \nu) \Gamma\left(\nu+k+\frac{1}{2}\right)}\left(1-x^{2}\right)^{-\nu+\frac{1}{2}} \frac{d^{k}}{d x^{k}}\left(1-x^{2}\right)^{k+\nu-\frac{1}{2}}$.
C_{k}^{ν} is an even function if k is even and it is odd if k is odd. The derivative of C_{k}^{ν} satisfies

$$
\begin{equation*}
\frac{d}{d x} C_{k}^{\nu}(x)=2 \nu C_{k-1}^{\nu+1}(x) \tag{20}
\end{equation*}
$$

Let F_{k}^{ν} be the normalization of C_{k}^{ν} such that $F_{k}^{\nu}(1)=1$, i.e.

$$
\begin{equation*}
F_{k}^{\nu}=\frac{k!\Gamma(2 \nu)}{\Gamma(k+2 \nu)} C_{k}^{\nu} \tag{21}
\end{equation*}
$$

Decaying properties of Gegenbauer polynomials

Figure: Graph of \tilde{F}_{10}^{\prime}

Figure: Graph of \tilde{F}_{50}^{\prime} near 1

Cancellation of consecutive Gegenbauer polynomials

Figure: Graph of \tilde{F}_{19}^{\prime}

Figure: Graph of \tilde{F}_{20}^{\prime}

In the rest of the talk, I will discuss the proof of \mathbb{S}^{6} :

Theorem 5 (Gui-Li-Wei-Ye 2023)

For $\alpha \geq \frac{1}{2}$, all solutions to

$$
\alpha\left[\left(1-x^{2}\right)^{3} u^{\prime}\right]^{(5)}+120-128 \frac{e^{6 u}}{\int\left(1-x^{2}\right)^{2} e^{6 u}}=0
$$

must be constants.

Gegenbauer polynomials

On \mathbb{S}^{6}, the corresponding Gegenbauer polynomial is $C_{k}^{\frac{5}{2}}$. For notational simplicity, in what follows we will write F_{k} for $F_{k}^{\frac{5}{2}}=\frac{k!4!}{(k+4)!} C_{k}^{\frac{5}{2}}$.
It turns out that F_{k} satisfies

$$
\begin{equation*}
\left(1-x^{2}\right) F_{k}^{\prime \prime}-6 x F_{k}^{\prime}+\lambda_{k} F_{k}=0 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right) F_{k} F_{l}=\frac{128}{(2 k+5)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)} \delta_{k l} \tag{23}
\end{equation*}
$$

where $\lambda_{k}=k(k+5)$.

Gegenbauer expansion

Similarly, we define $G=\left(1-x^{2}\right) u^{\prime}$. Then G satisfies the equation

$$
\begin{equation*}
\alpha\left[\left(1-x^{2}\right)^{2} G\right]^{(5)}+120-128 \frac{e^{6 u}}{\gamma}=0 \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(1-x^{2}\right)^{3}\left[\left(1-x^{2}\right)^{2} G\right]^{(6)}+\frac{720}{\alpha}\left(1-x^{2}\right)^{2} G \tag{25}\\
& -6\left(1-x^{2}\right)^{2} G\left[\left(1-x^{2}\right)^{2} G\right]^{(5)}=0
\end{align*}
$$

Expand G in terms of Gegenbauer polynomials

$$
\begin{equation*}
G=\beta x+a_{2} F_{2}(x)+\sum_{k=3}^{\infty} a_{k} F_{k}(x) \tag{26}
\end{equation*}
$$

Integral Identities

Denote

$$
\begin{equation*}
g=\left(1-x^{2}\right)^{2} \frac{e^{6 u}}{\gamma}, a:=\int_{-1}^{1}\left(1-x^{2}\right) g \tag{27}
\end{equation*}
$$

Testing the equations of G by $F_{1}, \int_{-1}^{x}\left(1-s^{2}\right)^{\frac{n-2}{2}} F_{k}(s) d s, x$ respectively and integrating by parts, we obtain the following integral identities

$$
\begin{gather*}
\int_{-1}^{1}\left(1-x^{2}\right) F_{1} G=\frac{16}{105} \beta \tag{28}\\
a=\int_{-1}^{1}\left(1-x^{2}\right) g=\frac{6}{7}(1-\alpha \beta) \tag{29}\\
\int_{-1}^{1}\left(1-x^{2}\right) F_{k} G=-\frac{128}{\alpha\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)} \int_{-1}^{1}\left(1-x^{2}\right) g F_{k}^{\prime}, \quad k \geq 2 \tag{30}\\
\int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}=\frac{256}{35}\left(7-\frac{1}{\alpha}\right) \beta . \tag{31}
\end{gather*}
$$

Semi-norm

To get a rough estimate of β and $a=\frac{6}{7}(1-\alpha \beta)$, we need an estimate of $\lfloor G\rfloor^{2}$ defined as following

$$
\begin{equation*}
\lfloor G\rfloor^{2}=-\int_{-1}^{1}\left(1-x^{2}\right)^{2}\left[\left(1-x^{2}\right)^{3} G^{\prime}\right]^{(5)} G . \tag{32}
\end{equation*}
$$

By integrating by parts and applying the equation of G, we obtain

$$
\begin{aligned}
\lfloor G\rfloor^{2}= & -15 \int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}+\frac{720}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{2} G^{2} \\
& +30 \int_{-1}^{1}\left(1-x^{2}\right)^{4} G^{\prime}\left(G^{\prime \prime}\right)^{2}+160 \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{3} .
\end{aligned}
$$

We need to estimate the last two cubic terms.

Gui-Hu-Xie's estimates of $\lfloor G\rfloor^{2}$

To estimate $\lfloor G\rfloor^{2}$, Gui-Hu-Xie applied the following lemma
Lemma 6 (Lemma 3.2 in Gui-Hu-Xie 2022)
For all $x \in(-1,1)$, we have

$$
\begin{equation*}
G_{j}:=(-1)^{j}\left[\left(1-x^{2}\right)^{j} G\right]^{(2 j+1)} \leq \frac{(2 j+1)!}{\alpha}, 0 \leq j \leq 2 . \tag{33}
\end{equation*}
$$

to obtain

$$
G^{\prime} \leq \frac{1}{\alpha}
$$

Applying it directly to the last two integrals, they obtained

$$
\begin{gather*}
30 \int_{-1}^{1}\left(1-x^{2}\right)^{4} G^{\prime}\left(G^{\prime \prime}\right)^{2}+160 \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{3} \\
\leq \frac{30}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{4}\left(G^{\prime \prime}\right)^{2}+\frac{160}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{2} \\
\lfloor G\rfloor^{2} \leq \tag{34}\\
\left(\frac{30}{\alpha}-15\right) \int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}-\frac{320}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{2} .
\end{gather*}
$$

However, this estimate is not enough to obtain a rough bound for β and we need more refined estimates.

Refined estimates of semi-norms $\lfloor G\rfloor^{2}$

We claim that in fact,

$$
\begin{gathered}
30 \int_{-1}^{1}\left(1-x^{2}\right)^{4} G^{\prime}\left(G^{\prime \prime}\right)^{2}+160 \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{3} \\
\leq \frac{160}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{2}
\end{gathered}
$$

Compared with Gui-Hu-Xie's estimate, our estimates can be viewed formally as dropping the first integral and applying $G^{\prime} \leq \frac{1}{\alpha}$ to the second integral.
As a consequence, we obtain refined estimates of $\lfloor G\rfloor^{2}$.
Proposition 1 (Gui-Li-Wei-Ye 2023)

$$
\begin{aligned}
\lfloor G\rfloor^{2} & \leq-15 \int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}+\frac{720}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{2} G^{2} \\
& +\frac{160}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{2}
\end{aligned}
$$

Proof of Proposition 1

Integrating (34) by parts, we get

$$
\begin{aligned}
\lfloor G\rfloor^{2}= & -15 \int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}+\frac{720}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{2} G^{2} \\
& +\int_{-1}^{1}\left(1-x^{2}\right)^{3} \tilde{G}\left(G^{\prime}\right)^{2}
\end{aligned}
$$

where

$$
\begin{equation*}
\tilde{G}=-15\left(1-x^{2}\right) G^{\prime \prime \prime}+120 x G^{\prime \prime}+160 G^{\prime} . \tag{35}
\end{equation*}
$$

Let

$$
\begin{equation*}
\hat{G}=-15\left(1-x^{2}\right) G^{\prime \prime \prime}+120 x G^{\prime \prime}+150 G^{\prime} \tag{36}
\end{equation*}
$$

Direct calculation yields that \hat{G} satisfies

$$
\left(1-x^{2}\right) \hat{G}^{\prime \prime}-8 x \hat{G}^{\prime}-12 \hat{G}=-15\left[\left(1-x^{2}\right)^{2} G\right]^{(5)} \geq-\frac{1800}{\alpha}
$$

By Maximum Principle

$$
\hat{G} \leq \frac{150}{\alpha}
$$

Proof of the main theorem

We claim that $\beta=0$, which yields that $\left(1-x^{2}\right)^{2} G$ is a linear function by (31). Since G is bounded on $(-1,1)$, we get $G \equiv 0$ and we are done.
So it suffices to show that $\beta=0$. We will argue by contradiction. If $\beta \neq 0$, then $0<\beta<\frac{1}{\alpha}$ since

$$
a=\int_{-1}^{1}\left(1-x^{2}\right) g=\frac{6}{7}(1-\alpha \beta)>0 .
$$

It then suffices to show $a=0$. We will achieve this by proving

$$
\begin{equation*}
a=\frac{6}{7}(1-\alpha \beta) \leq \frac{16}{\lambda_{n}}, \forall n \geq 5 \text { odd. } \tag{37}
\end{equation*}
$$

Rough estimates

We first derive rough estimates on β and a. To begin with, we define $b_{k}^{2}=a_{k}^{2} \int_{-1}^{1}\left(1-x^{2}\right) F_{k}^{2}$ and introduce the quantity

$$
\begin{aligned}
D=\sum_{k=3}^{\infty} & {\left[\lambda_{k}\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)-\left(14-\frac{74}{9 \alpha}\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)\right.} \\
& \left.-\frac{160}{\alpha} \lambda_{k}-\frac{720}{\alpha}\right] b_{k}^{2} .
\end{aligned}
$$

Recalling the estimates of $\lfloor G\rfloor^{2}$ and the integral identities, we get

$$
\begin{align*}
D= & \lfloor G]^{2}-\left(14-\frac{74}{9 \alpha}\right) \int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}-\frac{160}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{3}\left(G^{\prime}\right)^{2} \\
& -\frac{720}{\alpha} \int_{-1}^{1}\left(1-x^{2}\right)^{2} G^{2}+\frac{16}{105}\left(\frac{2080}{3 \alpha}+960\right) \beta^{2} \\
\leq & \left(\frac{74}{9 \alpha}-29\right) \int_{-1}^{1}\left|\left[\left(1-x^{2}\right)^{2} G\right]^{\prime \prime}\right|^{2}+\frac{16}{105}\left(\frac{2080}{3 \alpha}+960\right) \beta^{2} \\
= & \frac{256}{35}\left(\frac{74}{9 \alpha}-29\right)\left(7-\frac{1}{\alpha}\right) \beta+\frac{512}{7}\left(\frac{13}{9 \alpha}+2\right) \beta^{2} . \tag{38}
\end{align*}
$$

Rough estimates

Since $D \geq 0, \alpha \geq \frac{1}{2}$ and $0<\beta<\frac{1}{\alpha}$, we obtain

$$
\begin{equation*}
\beta \geq \frac{9}{440}\left(29-\frac{74}{9 \alpha}\right)\left(7-\frac{1}{\alpha}\right) \geq \frac{113}{88}, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{256}{35}\left(\frac{74}{9 \alpha}-29\right)\left(7-\frac{1}{\alpha}\right)+\frac{512}{7}\left(\frac{13}{9 \alpha}+2\right) \frac{1}{\alpha} \geq 0 \tag{40}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\alpha<0.578 \tag{41}
\end{equation*}
$$

Lower bound of D

On the other hand, fix any integer $n \geq 3$, we have

$$
\begin{aligned}
D=\sum_{k=3}^{\infty} & {\left[\lambda_{k}\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)-\left(14-\frac{74}{9 \alpha}\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)\right.} \\
& \left.\quad-\frac{160}{\alpha} \lambda_{k}-\frac{720}{\alpha}\right] b_{k}^{2} \\
\geq \sum_{k=n+1}^{\infty} & {\left[\lambda_{n+1}-14+\frac{74}{9 \alpha}-\frac{160 \lambda_{n+1}+720}{\left(\lambda_{n+1}+4\right)\left(\lambda_{n+1}+6\right) \alpha}\right] } \\
& \cdot\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2} \\
& \sum_{k=3}^{n}\left[\lambda_{k}-14+\frac{74}{9 \alpha}-\frac{160 \lambda_{k}+720}{\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) \alpha}\right]\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2} \\
\geq & \left(\lambda_{n+1}-14+\frac{275}{63 \alpha}\right) \sum_{k=n+1}^{\infty}\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2} \\
+ & \sum_{k=3}^{n}\left(\lambda_{k}-14+\frac{176}{63} \alpha\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2} .
\end{aligned}
$$

Bounds of D

The right hand side of the inequality above is equal to

$$
\begin{aligned}
& \sum_{k=3}^{n}\left(\lambda_{k}-\lambda_{n+1}-\frac{11}{7 \alpha}\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2} \\
+ & \left(\lambda_{n+1}-14+\frac{275}{63 \alpha}\right)\left[\frac{256}{35}\left(7-\frac{1}{\alpha}\right) \beta-\frac{128}{7} \beta^{2}-360 b_{2}^{2}\right] .
\end{aligned}
$$

Combining the lower bound above and the upper bound (38) of D, we get

$$
\begin{align*}
0 \leq & \frac{256}{35}\left(7-\frac{1}{\alpha}\right)\left(\frac{27}{7 \alpha}-15-\lambda_{n+1}\right) \beta+\frac{128}{7}\left(\lambda_{n+1}-6+\frac{71}{7 \alpha}\right) \beta^{2} \\
& +\frac{176}{63 \alpha}\left(\lambda_{2}+4\right)\left(\lambda_{2}+6\right) b_{2}^{2} \\
& +\sum_{k=2}^{n}\left(\lambda_{n+1}-\lambda_{k}+\frac{11}{7 \alpha}\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2} \tag{42}
\end{align*}
$$

Gegenbauer coefficients b_{k}

Then we need to estimate b_{k}. In Gui-Hu-Xie, they used (30) and the following uniform estimate

$$
\begin{equation*}
\left|F_{k}^{\prime}(x)\right| \leq\left|F_{k}^{\prime}(1)\right|=\frac{\lambda_{k}}{6} \tag{43}
\end{equation*}
$$

to estimate b_{k} as follows

$$
\begin{aligned}
b_{k}^{2} & =a_{k}^{2} \int_{-1}^{1}\left(1-x^{2}\right) F_{k}^{2}=\frac{1}{\int_{-1}^{1}\left(1-x^{2}\right) F_{k}^{2}}\left[\frac{128}{\alpha \lambda_{k}} \int_{-1}^{1}\left(1-x^{2}\right) g F_{k}^{\prime}\right]^{2} \\
& \leq \frac{(2 k+5)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)}{128}\left[\frac{128}{\alpha \lambda_{k}\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)} \frac{\lambda_{k}}{6} a\right]^{2} \\
& =\frac{32(2 k+5)}{9 \alpha^{2}\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)} a^{2} .
\end{aligned}
$$

Refined estimates on b_{k}

However, this estimate is not strong enough to deduce the induction

$$
\begin{equation*}
a=\frac{6}{7}(1-\alpha \beta) \leq \frac{d_{0}}{\lambda_{n}} . \tag{44}
\end{equation*}
$$

Likewise, we need a refined estimate on b_{k}, which follows from the following refined estimate on Gegenbauer polynomials. For simplicity, we denote

$$
\begin{equation*}
\tilde{F}_{k}^{\prime}=\frac{6}{\lambda_{k}} F_{k}^{\prime}=\frac{720}{\lambda_{k}\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right)} C_{k-1}^{\frac{7}{2}} \tag{45}
\end{equation*}
$$

so that $\tilde{F}_{k}^{\prime}(1)=1$. We split the integral in the right hand side of b_{k} into two parts. To this end, we define

$$
\begin{gathered}
a_{+}:=\int_{0}^{1}\left(1-x^{2}\right) g, \quad a_{-}:=\int_{-1}^{0}\left(1-x^{2}\right) g \\
A_{k}^{+}:=\int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g, A_{k}^{-}:=\int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g \\
\quad a=a_{+}+a_{-}, a_{+}=\lambda a
\end{gathered}
$$

Refined estimates on b_{k}

The following theorem gives a refined estimate on $A_{k}^{ \pm}$, hence on b_{k}.

Theorem 7 (Gui-Li-Wei-Ye 2023)

Let $d=8, b=0.33$. Suppose $a \leq \frac{16}{\lambda_{n}}$ for some $n \geq 3$. Then for all even k, we have

$$
\begin{aligned}
& \max \left\{\left|A_{k}^{+}\right|,\left|A_{k+1}^{+}\right|\right\} \leq \mathcal{A}_{k}^{+}:=\left\{\begin{array}{l}
a_{+}-\frac{1-b}{d} \lambda_{k} a_{+}^{2}, \text { if } \lambda_{k} \leq \frac{\lambda_{n}}{4}, \\
b a_{+}+(1-b) \frac{d}{4 \lambda_{k}}, \text { if } \frac{\lambda_{n}}{4}<\lambda_{k} \leq \lambda_{n},
\end{array}\right. \\
& \max \left\{\left|A_{k}^{-}\right|,\left|A_{k+1}^{-}\right|\right\} \leq \mathcal{A}_{k}^{-}:=\left\{\begin{array}{l}
a_{-}-\frac{1-b}{d} \lambda_{k} a_{-}^{2}, \text { if } a_{-} \leq \frac{4}{\lambda_{n}}, \\
b a_{-}+(1-b) \frac{d}{4 \lambda_{k}}, \text { if } \frac{4}{\lambda_{n}}<a_{-} \leq \frac{8}{\lambda_{n}} .
\end{array}\right.
\end{aligned}
$$

The proof relies on pointwise estimates of Gegenbauer polynomials.

Decaying properties of Gegenbauer polynomials

Lemma 8 (Gui-Li-Wei-Ye 2023)

For all $k \geq 8$, we have

$$
\widetilde{F}_{k}^{\prime} \geq-0.04, \quad 0 \leq x \leq 1
$$

Lemma 9 (Gui-Li-Wei-Ye 2023)
Let $d=8$ and $b=0.33$. Then for all $k \geq 6$,

$$
\widetilde{F}_{k}^{\prime} \leq \begin{cases}b, & 0 \leq x \leq 1-\frac{d}{\lambda_{k}} \\ 1-\frac{\lambda_{k}}{d}(1-b)(1-x), & 1-\frac{d}{\lambda_{k}} \leq x \leq 1\end{cases}
$$

Behavior of \tilde{F}_{k}^{\prime}

The above two lemmas can be illustrated in the following figures.

Figure: Graph of \tilde{F}_{10}^{\prime}
Figure: Graph of \tilde{F}_{50}^{\prime} near 1

The above two lemmas can be proved using the following point-wise estimates:

Lemma 10 (Corollary 5.3 in Nemes-Olde Daalhuis 2019)

Let $0<\zeta<\pi, \nu>0$ and $N \geq \nu-1$ be an integer. Then

$$
\begin{aligned}
C_{k-1}^{\nu}(\cos \zeta)=\frac{2}{\Gamma(\nu)(2 \sin \zeta)^{\nu}} & \left(\sum_{n=0}^{N-1} t_{n}\left(\nu-\frac{1}{2}\right) \frac{\Gamma(k-1+2 \nu)}{\Gamma(k+n+\nu)}\right. \\
& \left.* \frac{\cos \left(\delta_{\nu, k-1, n}\right)}{\sin ^{n} \zeta}+R_{N}(\nu, \zeta, k-1)\right),
\end{aligned}
$$

where $\delta_{k, n}=(k+n+\nu) \zeta-(\nu-n) \frac{\pi}{2}, t_{n}(\mu)=\frac{\left(\frac{1}{2}-\mu\right)_{n}\left(\frac{1}{2}+\mu\right)_{n}}{(-2)^{n} n!}$, and $(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}$. The remainder term R_{N} satisfies the estimate

$$
\left|R_{N}(\nu, \zeta, k)\right| \leq \frac{\left|t_{N}\left(\nu-\frac{1}{2}\right)\right| \Gamma(k-1+2 \nu)}{\Gamma(k+N+\nu) \sin ^{N} \zeta} \cdot \begin{cases}|\sec \zeta| & \text { if } 0<\zeta \leq \frac{\pi}{4} \\ & \text { or } \frac{3 \pi}{4} \leq \zeta<\pi \\ 2 \sin \zeta & \text { if } \frac{\pi}{4}<\zeta<\frac{3 \pi}{4}\end{cases}
$$

Proof of Theorem 7

With the help of above two lemmas, we are able to prove Theorem 7. In the following argument, we may assume $k \geq 6$ and omit the details for $3 \leq k \leq 5$. Define $I=\left(0,1-\frac{d}{\lambda_{k}}\right)$, $I=\left(1-\frac{d}{\lambda_{k}}, 1\right)$, and $a_{I}=\int_{I}\left(1-x^{2}\right) g, a_{I I}=\int_{I I}\left(1-x^{2}\right) g$. Then by Lemma 9, we have

$$
\begin{aligned}
\int_{0}^{1}\left(1-x^{2}\right) \widetilde{F}_{k}^{\prime} g & =\int_{I}\left(1-x^{2}\right) \widetilde{F}_{k}^{\prime} g+\int_{I I}\left(1-x^{2}\right) \widetilde{F}_{k}^{\prime} g \\
& \leq \int_{I}\left(1-x^{2}\right) b g+\int_{I I}\left(1-x^{2}\right)\left(1-\frac{\lambda_{k}}{d}(1-b)(1-x)\right) g \\
& =b a_{I}+a I I-\frac{\lambda_{k}}{d}(1-b) \int_{I I}\left(1-x^{2}\right)(1-x) g \\
& \leq b a_{I}+a_{I I}-\frac{\lambda_{k}}{d}(1-b) \frac{\left(\int_{I I}\left(1-x^{2}\right) g\right)^{2}}{\int_{I I}(1+x) g} \\
& \leq b a_{I}+a I-\frac{\lambda_{k}}{d}(1-b) a_{I I}^{2} \\
& =b a_{+}+(1-b)\left(a_{I I}-\frac{\lambda_{k}}{d} a_{I I}^{2}\right)
\end{aligned}
$$

If $\lambda_{k} \leq \frac{\lambda_{n}}{4}$, we have $a_{\|} \leq a_{+} \leq a \leq \frac{16}{\lambda_{n}} \leq \frac{d}{2 \lambda_{k}}$. Hence,
$\int_{0}^{1}\left(1-x^{2}\right) \widetilde{F}_{k}^{\prime} g \leq a_{+}+(1-b)\left(a_{+}-\frac{\lambda_{k}}{d} a_{+}^{2}\right)=a_{+}-\frac{\lambda_{k}}{d}(1-b) a_{+}^{2}$.
For the case when $\lambda_{k}>\frac{\lambda_{n}}{4}$, we get directly

$$
\int_{0}^{1}\left(1-x^{2}\right) \widetilde{F}_{k}^{\prime} g \leq b a_{+}+(1-b) \frac{d}{4 \lambda_{k}}
$$

On the other hand, Lemma 8 yields

$$
\int_{0}^{1}\left(1-x^{2}\right) \widetilde{F}_{k}^{\prime} g \geq-0.04 \int_{0}^{1}\left(1-x^{2}\right) g=-0.04 a_{+}
$$

Combining the above three estimates, we obtain the desired estimate on A_{k}^{+}. The estimate on A_{k+1}^{+}is similar.
Similarly, on estimating A_{k}^{-}and A_{k+1}^{-}, just note that $a_{-} \leq \frac{a}{2} \leq \frac{8}{\lambda_{n}}$. We can go through analogous proof. We omit the details.

Induction procedure

Now we can start the induction procedure to prove $a \leq \frac{16}{\lambda_{n}}$, for all odd $n \geq 5$. Note that from our rough estimates of β (39) and α (41), we already have $a \leq 0.221 \leq \frac{16}{\lambda_{5}}$.

By induction, now we assume $a \leq \frac{16}{\lambda_{n}}$ for some $n \geq 5$ odd. Then we will show that $a \leq \frac{16}{\lambda_{n}+2}$. We argue by contradiction and suppose $a>\frac{16}{\lambda_{n+2}}$ on the contrary.

Induction procedure

Now we estimate the summation in (42).
Let $B_{k}=\frac{9 \alpha^{2}}{32}\left(\lambda_{n+1}-\lambda_{k}+\frac{11}{7 \alpha}\right)(2 k+5)$, then for every even k, we have

$$
\begin{aligned}
& \frac{9 \alpha^{2}}{32}\left[\left(\lambda_{n+1}-\lambda_{k}+\frac{11}{7 \alpha}\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2}\right. \\
& \left.\quad+\left(\lambda_{n+1}-\lambda_{k+1}+\frac{11}{7 \alpha}\right)\left(\lambda_{k+1}+4\right)\left(\lambda_{k+1}+6\right) b_{k+1}^{2}\right] \\
& =B_{k}\left(\int_{-1}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g\right)^{2}+B_{k+1}\left(\int_{-1}^{1}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g\right)^{2} .
\end{aligned}
$$

Induction procedure

Then we split the right hand side into three parts as follows.

$$
\begin{aligned}
R_{k, 1}:= & B_{k}\left[\left(\int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g\right)^{2}+\left(\int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g\right)^{2}\right] \\
& +B_{k+1}\left[\left(\int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g\right)^{2}+\left(\int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g\right)^{2}\right] \\
R_{k, 2}: & =2 B_{k} \int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g \int_{-1}^{0}\left(1-x^{2}\right)\left(\tilde{F}_{k}^{\prime}+\tilde{F}_{k+1}^{\prime}\right) g \\
& +2 B_{k+1} \int_{0}^{1}\left(1-x^{2}\right)\left(\tilde{F}_{k+1}^{\prime}-\tilde{F}_{k}^{\prime}\right) g \int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g \\
R_{k, 3} & :=2\left(B_{k+1}-B_{k}\right) \int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g \int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g
\end{aligned}
$$

Estimates of $R_{k, 1}$ and $R_{k, 3}$

By point-wise estimates of Gegenbauer polynomials, we get

$$
\begin{align*}
R_{k, 1} & =B_{k}\left[\left(\int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g\right)^{2}+\left(\int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g\right)^{2}\right] \\
& +B_{k+1}\left[\left(\int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g\right)^{2}+\left(\int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g\right)^{2}\right] \\
& \leq B_{k}\left(\left|\mathcal{A}_{k}^{+}\right|^{2}+\left|\mathcal{A}_{k}^{-}\right|^{2}\right)+B_{k+1}\left(\left|\mathcal{A}_{k}^{+}\right|^{2}+\left|\mathcal{A}_{k}^{-}\right|^{2}\right) \tag{46}
\end{align*}
$$

and

$$
R_{k, 3} \leq \begin{cases}2\left(B_{k+1}-B_{k}\right) \lambda(1-\lambda) a^{2}, & \text { if } B_{k} \leq B_{k+1} \tag{47}\\ 2\left(B_{k}-B_{k+1}\right) m_{0}(1-\lambda) a^{2}, & \text { if } B_{k+1}<B_{k}\end{cases}
$$

Cancellation of consecutive Gegenbauer polynomials

To estimate $R_{k, 2}$, we need the cancellation property of consecutive Gegenbauer polynomials.

Figure: Graph of \tilde{F}_{19}^{\prime}

Figure: Graph of \tilde{F}_{20}^{\prime}

From the graphs of $\widetilde{F}_{19}^{\prime}$ and $\widetilde{F}_{20}^{\prime}$, we can see that they almost cancel when $x<0$, which is equivalent to say that they are almost equal when $x>0$.

Cancellation of consecutive Gegenbauer polynomials

Lemma 11 (Gui-Li-Wei-Ye 2023)

$$
\begin{aligned}
& \text { Let } c_{n}=\max _{0 \leq x \leq 1}\left|\tilde{F}_{n+1}^{\prime}-\tilde{F}_{n}^{\prime}\right|, \text { then } c_{n} \leq 0.12 \text { if } 6 \leq n \leq 17 \text { and } \\
& c_{n}<0.04 \text { if } n \geq 18 .
\end{aligned}
$$

Remark 1

Numerically, we can find that in fact that we have better estimates $c_{n} \leq \frac{0.84}{n}$, but it is hard to prove. In contrast, there exists good estimate for the difference of consecutive Legendre polynomials.

From Lemma 11, we have

$$
\begin{aligned}
& \left|\int_{-1}^{0}\left(1-x^{2}\right)\left(\tilde{F}_{k}^{\prime}+\tilde{F}_{k+1}^{\prime}\right) g\right| \leq c_{k} a_{-}=c_{k}(1-\lambda) a \\
& \left|\int_{0}^{1}\left(1-x^{2}\right)\left(\tilde{F}_{k+1}^{\prime}-\tilde{F}_{k}^{\prime}\right) g\right| \leq c_{k} a_{+}=c_{k} \lambda a
\end{aligned}
$$

Estimate of $R_{k, 2}$

Hence we obtain the estimate of $R_{k, 2}$

$$
\begin{aligned}
R_{k, 2} & =2 B_{k} \int_{0}^{1}\left(1-x^{2}\right) \tilde{F}_{k}^{\prime} g \int_{-1}^{0}\left(1-x^{2}\right)\left(\tilde{F}_{k}^{\prime}+\tilde{F}_{k+1}^{\prime}\right) g \\
& +2 B_{k+1} \int_{0}^{1}\left(1-x^{2}\right)\left(\tilde{F}_{k+1}^{\prime}-\tilde{F}_{k}^{\prime}\right) g \int_{-1}^{0}\left(1-x^{2}\right) \tilde{F}_{k+1}^{\prime} g \\
& \leq 2\left(B_{k}+B_{k+1}\right) c_{k} \lambda(1-\lambda) a^{2} .
\end{aligned}
$$

Combining the estimates of $R_{k, i}, i=1,2,3$, we obtain

$$
\begin{aligned}
& \frac{9 \alpha^{2}}{32}\left[\left(\lambda_{n+1}-\lambda_{k}+\frac{11}{7 \alpha}\right)\left(\lambda_{k}+4\right)\left(\lambda_{k}+6\right) b_{k}^{2}\right. \\
+ & \left.\left(\lambda_{n+1}-\lambda_{k+1}+\frac{11}{7 \alpha}\right)\left(\lambda_{k+1}+4\right)\left(\lambda_{k+1}+6\right) b_{k+1}^{2}\right] \\
\leq & B_{k}\left(\left|\mathcal{A}_{k}^{+}\right|^{2}+\left|\mathcal{A}_{k}^{-}\right|^{2}\right)+B_{k+1}\left(\left|\mathcal{A}_{k}^{+}\right|^{2}+\left|\mathcal{A}_{k}^{-}\right|^{2}\right) \\
+ & 2\left(B_{k}+B_{k+1}\right) c_{k} \lambda(1-\lambda) a^{2} \\
+ & \begin{cases}2\left(B_{k+1}-B_{k}\right) \lambda(1-\lambda) a^{2}, & \text { if } B_{k} \leq B_{k+1}, \\
2\left(B_{k}-B_{k+1}\right) m_{0}(1-\lambda) a^{2}, & \text { if } B_{k+1}<B_{k} .\end{cases}
\end{aligned}
$$

The right hand side above can be viewed as a function $f_{k, a}(\lambda)$ of $\lambda=\frac{a_{+}}{a}$.

The worst case

The following proposition yields that the worst case is $\lambda=1$, which is expected. In particular, in this case, we can drop the small terms $R_{k, 2}$ and $R_{k, 3}$.

Proposition 2 (Gui-Li-Wei-Ye 2023)

Suppose a satisfies $a \leq \frac{16}{\lambda_{n}}$ for some odd $n \geq 3$. Let $f_{k, a}(\lambda)$ be defined as above. Then for any k even, for $n \geq 41$, we have (1) If $\lambda_{k} \leq \frac{1}{4} \lambda_{n}$, then

$$
\begin{equation*}
f_{k, a}(\lambda) \leq f_{k, a}(1)=\left(B_{k}+B_{k+1}\right)\left(a-\frac{1-b}{d} \lambda_{k} a^{2}\right)^{2} \tag{48}
\end{equation*}
$$

(2) If $\frac{1}{4} \lambda_{n}<\lambda_{k} \leq \lambda_{n}$, then

$$
\begin{equation*}
f_{k, a}(\lambda) \leq f_{k, a}(1)=\left(B_{k}+B_{k+1}\right)\left(b a+(1-b) \frac{d}{4 \lambda_{k}}\right)^{2} . \tag{49}
\end{equation*}
$$

Final version of (42)

From the proposition above and $\alpha \geq \frac{1}{2}$, we obtain from (42) that

$$
\begin{aligned}
0 \leq & -\frac{512}{7}\left(\lambda_{n+1}+\frac{51}{7}\right)\left(1-\frac{7}{6} a\right)+\frac{512}{7}\left(\lambda_{n+1}+\frac{100}{7}\right)\left(1-\frac{7}{6} a\right)^{2} \\
& +\frac{22528}{63 \alpha} a^{2} \\
+ & \frac{128}{9} \sum_{m=1}^{\frac{n-5}{4}}\left[\left(\lambda_{n+1}-\lambda_{2 m}+\frac{22}{7}\right)(4 m+5)\right. \\
& \left.+\left(\lambda_{n+1}-\lambda_{2 m+1}+\frac{22}{7}\right)(4 m+7)\right]\left(1-\frac{1-b}{d} \lambda_{2 m} \frac{16}{\lambda_{n+2}}\right)^{2} a^{2} \\
+ & \frac{128}{9} \sum_{m=\frac{n-1}{4}}^{\frac{n-1}{2}}\left[\left(\lambda_{n+1}-\lambda_{2 m}+\frac{22}{7}\right)(4 m+5)\right. \\
& \left.+\left(\lambda_{n+1}-\lambda_{2 m+1}+\frac{22}{7}\right)(4 m+7)\right]\left(b a+(1-b) \frac{d}{4 \lambda_{2 m}}\right)^{2} .
\end{aligned}
$$

Deriving a contradiction

To get a contradiction, it suffices to show that the right hand side, denoted by $g_{n}(a)$, is negative for $\frac{16}{\lambda_{n+2}}<a \leq \frac{16}{\lambda_{n}}$.
Direct computation yields that for $n>10000, g_{n}(a)$ can be decomposed into three parts $g_{n, i}(a), i=1,2,3$ with estimates

$$
\begin{aligned}
g_{n, 1}(a): & =-\frac{512}{7}\left(\lambda_{n+1}+\frac{51}{7}\right)\left(1-\frac{7}{6} a\right)+\frac{512}{7}\left(\lambda_{n+1}+\frac{100}{7}\right)\left(1-\frac{7}{6} a\right)^{2} \\
& +\frac{22528}{63 \alpha} a^{2} \\
\leq & -853.33 \\
g_{n, 2}(a):= & \frac{128}{9} \sum_{m=1}^{\frac{n-5}{4}}\left[\left(\lambda_{n+1}-\lambda_{2 m}+\frac{22}{7}\right)(4 m+5)\right. \\
& \left.+\left(\lambda_{n+1}-\lambda_{2 m+1}+\frac{22}{7}\right)(4 m+7)\right]\left(1-\frac{1-b}{d} \lambda_{2 m} \frac{16}{\lambda_{n+2}}\right)^{2} a^{2}
\end{aligned}
$$

$$
\leq 571.1095
$$

Deriving a contradiction

$$
\begin{aligned}
g_{n, 3}(a):= & \frac{128}{9} \sum_{m=\frac{n-1}{4}}^{\frac{n-1}{2}}\left[\left(\lambda_{n+1}-\lambda_{2 m}+\frac{22}{7}\right)(4 m+5)\right. \\
& \left.+\left(\lambda_{n+1}-\lambda_{2 m+1}+\frac{22}{7}\right)(4 m+7)\right]\left(b a+(1-b) \frac{d}{4 \lambda_{2 m}}\right)^{2} \\
\leq & 280.95 .
\end{aligned}
$$

Combining three estimates above, we found

$$
0 \leq g_{n}(a) \leq-853.33+571.1095+280.95<-1.27<0,
$$

for all $n>10000$ and $\frac{16}{\lambda_{n+2}}<a \leq \frac{16}{\lambda_{n}}$, which is a contradiction. For $n<10000, g_{n}(a)<0$ is checked by Matlab. Thus, we finish the proof of the main Theorem in \mathbb{S}^{6}.

Results on $\mathbb{S}^{n} n \geq 8$

In the end, we briefly discuss some partial results on \mathbb{S}^{8}. On \mathbb{S}^{8},
(2) becomes

$$
\begin{equation*}
\alpha\left[\left(1-x^{2}\right)^{4} u^{\prime}\right]^{(7)}+7!-9 * 2^{9} \frac{e^{8 u}}{\gamma}=0 \tag{50}
\end{equation*}
$$

Theorem 12 (Theorem 1.1 in Gui-Hu-Xie 2022)

If $0.827 \leq \alpha<1$, then (50) admits only constant solutions.

Theorem 13

If $0.54 \leq \alpha<1$, then (50) admits only constant solutions.

Summary

The proof of our theorems on $\mathbb{S}^{4}, \mathbb{S}^{6}$ and \mathbb{S}^{8} mainly consist of two parts. Firstly, we derive an estimates about the seminorm

$$
\lfloor G\rfloor^{2}=(-1)^{\frac{n}{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{n-2}{2}} G\left[\left(1-x^{2}\right)^{\frac{n}{2}} G^{\prime}\right]^{(n-1)}
$$

The difficulty is in the simplification of the integral

$$
(-1)^{\frac{n}{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{n-2}{2}} G^{2}\left[\left(1-x^{2}\right)^{\frac{n-2}{2}} G\right]^{(n-1)}
$$

which seems too complicated to deal with as n increases. Secondly, the estimates of Gegenbauer coefficients of G heavily rely on the estimates of Gegenbauer polynomials C_{n}^{ν} (decaying, cancellations). However, as far as we know, there is no satisfactory formula to characterize the behavior of Gegenbauer polynomials in general.

Thanks for your attention!

