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Moser-Trudinger-Onofri inequality on S?

Moser-Trudinger: There exists a constant C; > 0, such that

1 1
2/ |V ul? +/ udw — 5 Iog/ e2dw > -G
S? S? S?

Here dw denotes the Lebesgue measure on the unit sphere S?,
normalized to make [, dw = 1.



Moser-Trudinger-Onofri inequality on S?

Moser-Trudinger: There exists a constant C; > 0, such that

1 1
2/ |V ul? +/ udw — 5 Iog/ e2dw > -G
S? S? S?

Here dw denotes the Lebesgue measure on the unit sphere S?,
normalized to make [, dw = 1.

Onofri: Gy can be taken to be 0 (which is optimal).



Moser-Trudinger-Onofri inequality on S?

Moser-Trudinger: There exists a constant C; > 0, such that

1 1
2/ |V ul? +/ udw — 5 Iog/ e2dw > -G
S? S? S?

Here dw denotes the Lebesgue measure on the unit sphere S?,
normalized to make [, dw = 1.

Onofri: Gy can be taken to be 0 (which is optimal).

Moser-Trudinger-Onofri Inequality:

1 1
/ |V ul? +/ udw — = Iog/ e?dw > 0.
2 Js2 S2 2 2



Chang-Yang's Inequality

Let u e Hl(S2 Define a functional

/Vu\2 /udw—llog/ e?dw.
2% Jo

Restrict J, to the set of functions with the center of mass at the

origin:
Ez{uEHl(S2) ; / e2”>?dw—0}.
Js2



Chang-Yang Inequality

Chang and Yang (1982) conjectured that for o > %

1
a/ \Vu|2+/ udw—Iog/ e?“dw >0
2 Js2 2 2 S2

Yu e HY(S?), / e?'Xdw = 0.
S2
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Chang-Yang Inequality

» Chang-Yang (1982): true if a > 1 —¢;

» Feldman, Froese, Ghoussoub and Gui (1998): True for axially
symmetric functions when a > 0.64 — e.

N[ =

» Gui-Wei (2000): True for axially symmetric case when o >

» Ghoussoub-C.S. Lin (2008): All solutions are axially
symmetric if a > % — €.

» Gui-Moradifam (2018): All solutions are axially symmetric if
> %—Complete solution to Chang-Yang Inequality.



Beckner's Inequality: from S? to S”

Beckner's inequality is a
inequality. Consider the following functional J, defined in Hg(S”)
by

— 1!
Jo(u) = (;/ (Pnu)udw+(n1)!/ udw(nn)log/ edw,
where
n—2
p [12o(A + k(n—k —1)), for n even:;
n — n—=3

(A + (542, 20(A + k(n — k — 1)), for n odd
is the Paneitz (GJMS) operator on S".



Beckner's Inequality

Beckner (1993) : for o = 1:

— 1)
5 | Paudw (=21 [ = =g [ emaw >0

Yu e H2(S")

Higher order Moser-Trudinger-Onofri inequality



Higher Order Chang-Yang's Inequality

Restrict J, to the set of functions with the center of mass at the
origin:
L= {u e H2(S") - / e"'Xdw = o}.

Higher Order Chang-Yang's Inequality: for a > % the Beckner's
inequality on S” still holds, i.e.

- 1!
(;/ (Pnu)udw+(n—1)!/ ydw — 7 . ) In/ e™dw >0

Vu e H2(S"), / e"Xdw =0

n




Euler-Lagrange equation

The Euler-Lagrange equation of J, is the Q-curvature-type
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Euler-Lagrange equation

The Euler-Lagrange equation of J, is the Q-curvature-type
equation

enu

P, 11 R —
aPyu+ (n—1)K fS,,e””dw

)=0o0nS". (1)

Higher Order Chang-Yang Conjecture: for a > % all solutions to
enu

B fS" eidw

/ xXe™ =0
Sn

aPpu+(n—1)1(1 )=0o0n§"

subject to

are constants.



Progress

» Chang-Yang (1995): For general n and any o > % there

exists a constant C(«) > 0 such that imz Jo(u) > —C(a).
uc



Progress

» Chang-Yang (1995): For general n and any o > % there

exists a constant C(«) > 0 such that imz Jo(u) > —C(a).
uc

> Wei-Xu (2009): True if a« > 1 — ¢p,.



Progress

» Chang-Yang (1995): For general n and any o > % there

exists a constant C(a)) > 0 such that imz Jo(u) > —C(a).
ue

> Wei-Xu (2009): True if a« > 1 — ¢p,.

» General case is very difficult. On S2, Gui-Moradifam (2018)
first used spherical covering inequality and moving plane
method to prove that all solutions are axially symmetric.
Gui-Wei (2000): all axially symmetric solutions are constants.



Progress

v

Chang-Yang (1995): For general n and any o > % there

exists a constant C(«) > 0 such that imz Jo(u) > —C(a).

ue
Wei-Xu (2009): True if @ > 1 — €,.
General case is very difficult. On S2, Gui-Moradifam (2018)
first used spherical covering inequality and moving plane
method to prove that all solutions are axially symmetric.
Gui-Wei (2000): all axially symmetric solutions are constants.

Question: what about axially symmetric solutions?



Axially symmetric case

If uis axially symmetric about £;1-axis and denoting &1 by x, then
the Euler-Lagrange equation becomes (1) is then reduced to

a(_l)g[(1_X2)gu/](n71)+(n_1)!_ (n _rgzl—g\l/;?fyr(2)enu =0, (2)

1
'y::/ e”“dW:/ (1—x2)n2;2e”“
" -1

In axially symmetric case, the set L is replaced by

1
L, ={ueH3S"): u=u(x)and / x(1— xz)"Tize””dx = 0}.
-1

where
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Axially symmetric case

» S*: Gui-Hu-Xie (2021): For any a € [0.517,1), (2) admits
only constant solutions.

» S8 Gui-Hu-Xie (2022): When n = 6, for any o € [0.6168, 1),
(2) admits only constant solutions.

» S8 Gui-Hu-Xie (2022): When n = 8, for any a € [0.8261, 1),
(2) admits only constant solutions.

» S" n > 2: Gui-Hu-Xie (2022): For general n and any

711 < @ < 3, there exists non-constant solution to (2).
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(Li-Wei-Ye 2022) Let n = 4. If o > L, then the only critical point
of the functional J,, restricted to L, are constant functions.

Theorem 2

(Gui-Li-Wei-Ye 2023) Let n = 6. If o > %, then the only critical
point of the functional J,, restricted to L, are constant functions.



Nonlocal Operator

» Chang-Yang's inequality for general odd n. Nonlocal operator

n—1 n=3

2N, 20(—A + k(n— k — 1))

P,=1/—A+(

n =1: Chang-Hang 2020

» On St the Lebedev-Milin inequality yields that for any
u € HY(D) with [, udd =0,

17, 1 )
log (h /S e d0> < o 1Vuly.



Chang-Yang's inequality in terms of Szego Limit Theorem
on St

Using Szego Limit Theorem S!, Chang-Hang (2020) proved: If e¥
satisfies more orthogonality conditions, i.e. fSl e'e’k?d9 = 0, for
k=1,---,m, then we have

1 1 )
| — Yo ) < ——— .
°8 (27r /Sl ¢ ) ~4n(m+1) VUl o)

. 1
Equivalently, for o > =

(0%

—1)!
/(Plu)udw+(n—1)!/ udw—(n)ln/ e’dw >0
2 St st n st

Vu € Hi(Sl),/ ue™®df =0,k =1,...,m
51



Szego Limit Theorem on S?

On §2, Chang-Hang (2020) showed that for any u € H*(S?) with
Jez udw =0 and [, pe“dw = 0 for any p being the eigenfunction
of —Ag of eigenvalue k(k +1), k=1,---, m, then

u 1 2
log </S2 e dW) < (477/\/,,, + e> [Vullizsey + ce

where N, is an integer and ¢, is a constant.
It is unknown that whether or not ¢ can be chosen to be 0. Also,
analogous results remain open for S”.
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Proofs

» Proof on S2
» Proof on S°

» Need to prove: for a > % all solutions
a(-1)2[(1 = x*)2u]"" D 4 (n— 1)

are constants.

(= DIVAT(

r(

n+1
2

)t



Theorem in axially symmetric case on S?

On S?, the Euler-Lagrange equation (2) becomes

o((1-x)u) —1+ ’2Ye2u =0. (3)

Theorem 3 (Gui-Wei 2000)

If 3 < a <1, then (3) admits only constant solutions.




Key Quantity G

Let G(x) = (1

— x%)u/(x). Then

aG’—1+3e2“=o.
v

(1—x2)G" + 26— 266’ 0.
(6%



Key Quantity G

Let G(x) = (1 — x?)u/(x). Then
aG’—1+3e2“:o. (4)

(16" + 26~ 266' =0, (5)

Idea: Use Eigenfunction expansions to show that (5) (which is a
nonlinear equation ) has only zero solution.



Legendre polynomial expansion

Axially symmetric eigenfunctions on S?: Legendre polynomials
Pn(x)

(1 = x®)PL) + McPi = 0, A\ = k(k +1).
Moreover,

1 1
PG < IPUDL = 3000 | PP =

We have the orthogonal decomposition

G(x) = a0+ Bx+ Y _ akPu(x).
k=2
Aim: show that

30:31:32:---:ak:...:0



About ag

Since the center of mass equals zero,

1
/ xe?! =0
1

we derive that



Some useful identities

Let b2 = a2 [, P2, then by orthogonality,

1 2 0
2 2 2
k=2
1 4 0
/ (1) (G? = 552+ 3 bk
k=2

-1
By the equation of Py and integration by parts, we have
1 ) 1 e
PG = ——— — x°)P,— k> 2. 6
[ o= [ a-m ke (6)
By (4), we obtain



Some useful identities

The following two identities play key roles in the proof. Multiplying
(5) by x and integrating by parts yields
[e=te-1y ®)
~1 N 3 a’
Similarly, multiplying (5) by G, we get
1 2 1
[ a-aer=C-nf ¢ )
-1 « -1
We remark that in the last integral, the cubic term fil G32G' =0,

which makes the proof very easy. This is also the main difference
between S? and S”, n > 4.



A rough estimate

We will show = 0, which implies G = 0 by (8). The basic
strategy is to show that if 5 # 0, then
g=-—,

«
which contradicts to (7).

1 _X2e2u_g W
| a-=Sa-as).

Now we assume [ # 0, then by (7), é —pB>0.
Rest of the idea: derive estimates of the rest coefficients in terms
of

—p

1
[0
and do iterations.



We first derive an estimate on b7. For k > 2, by (6) and (7), we

have )
7= 2 (5 L om)
2
120,
2(2k9+ 1)(i B2 (10)
Here we used uniform estimate

LARSACIE

<

Ak



Rough estimates

Now we define the key semi-norm:
oo

D :=> (A —6)b}.
k=3
On the one hand, D > 0 since Ay = k(k + 1). On the other hand,

D:/%Lm )(G')? / G2 + 37
=354+ 0-2C - 0) (1)

In view of the fact that 0 < 8 < é we have the following rough
estimates

B>15, a< 0.537.



Lower bound of D

To obtain better estimates, we need to estimate the lower bound
of D more carefully. We fix an integer n > 3, then

D= Z)\k— )b + Z (A — 6)b

k=n+1
> 37 (e — 6)B2 4 A1 =0 Ab?
N k—3( O Ant1 kz '
= n+1
" )\n - n
:Z(Ak—6—L6)\ b2 — 2t = ZAM
it Ant1 Ant1
A=A Anr1 — 1
= o6 A 4 20 [ (-6 - SA)
= A Ant1 ) 3
N M= Antl,o Ap1—6 (2 2 2. 4,
=Y"6 b HE—1)6-2)— 257,
2.5 K+ it 3ﬁ(a ) a) 3ﬁ

(12)



Combining (11) and (12), after some simple computation, we
obtain

1 4 2 2 2
1252 -2+ 2 ((a -2~ a) (13)
2 1 N M Ang
> 45(1 )\n+1)(04 B) k:26 it by

Since % <a<l,
1 48 (2 2. 2 83
128(= — 2 Sone-S)-2) < 14
6G -2+ (G-ne-2)-2) < 2
which, together with estimates of by (10), yields the inequality

83 2 20 Aps1 — 6,1 4 1 1
>\n+1 = (45(1 a >‘n+1) B ? >\n+1 (a B IB) B §C"(a B B))(& - ﬁ)’
(15)




Induction procedure

where
T A1 — Ak 1 36
Ch = ———(2k+1)= =Apt1 — 9+ . 16
> ek ) = e —9 (19
We claim
l—B<iVn>4 (17)
a D VA

n

This is proved by induction procedure. Two key ingredients

» semi-norm D

» decaying estimates of by

2(2k + 1)(3 gy

b2 <
k= 9 o



Finally, letting n — +o0 in (17), we obtain
1
- B = 07
Q@
which is a contradiction. From the discussion in the beginning, we

know G = 0, which implies that u is a constant. Thus we complete
the proof of Theorem 3.



Statement of theorems on S* and S°

On S*, (2) becomes
8
a((1—x3)2u')" 46 — ;e‘“’ =0 (18)

On S, (2) becomes

e6u

— (1 —x?)3u]®) + 120 — 128
5

=0, x€(=1,1). (19)

Theorem 4 (Li-Wei-Ye 2022, Gui-Li-Wei-Ye 2023)

If 3 < a <1, then (18) and (19) admit only constant solutions.



Key ingredients

» Obtain the optimal semi-norm estimates

> Use the decaying properties of Gegenbauer polynomials to
obtain sharp estimates of the coefficents by

» Use the cancellation properties of Gegenbauer polynomials to
proceed with the induction steps.



Axially symmetric eigenfunctions for the Paneitz operator
P,: Gegenbauer polynomials

Gegenbauer polynomials, order v and degree k, are given by
(=1)KT(v+ 3)M(k +2v) oy ya1 dk kL
Cl(x) = 1—x?)"v*2 1—x?)ktv=z,
09 = Fea Fv)r(v+ k + %)( ) g )
CY is an even function if k is even and it is odd if k is odd. The
derivative of C}/ satisfies

d v v
ack (x) = 220G (). (20)
Let F; be the normalization of C/ such that F/(1) =1, i.e.
k(2
Fy— KTV o (21)

KT T(k42v) K



Decaying properties of Gegenbauer polynomials

02

Figure: Graph of F/,

(K3

0.

T — 7

Figure: Graph of Fl, near 1

1.000



Cancellation of consecutive Gegenbauer polynomials

-05

“0s 0.5 Mo E¥]

Figure: Graph of Fig Figure: Graph of F},



In the rest of the talk, | will discuss the proof of S°:

Theorem 5 (Gui-Li-Wei-Ye 2023)

For oo > % all solutions to
e6u

e P

af(1 — x?)3u']®) + 120 — 128

must be constants.



Gegenbauer polynomials

5
On S°, the corresponding Gegenbauer polynomial is C;. For
notat|ona| S|mpI|C|ty, in what follows we will write Fj for

k141
F2 - (k-&i)'cz
It turns out that Fj satisfies
(1= x?)F/ — 6xF| + M\Fx =0 (22)
and .
128
1—x2)FF = Sk, 23
/1( = e 0T (Y

where A\ = k(k +5).



Gegenbauer expansion

Similarly, we define G = (1 — x?)u’. Then G satisfies the equation
6u

al(1 - x?)26]® + 120 — 12867 =0 (24)
and
(1Pl -2P60 + D 2pe (29)

—6(1 — x?)2G[(1 — x*)2G]®) = 0.
Expand G in terms of Gegenbauer polynomials

G = Bx + axFa(x +Zaka (26)



Integral Identities

Denote

e6u 1
g=(1-xP, 2= [ (1. (27)
v -1
Testing the equations of G by Fi, [* (1 — 52)"%2 Fi(s)ds, x
respectively and integrating by parts, we obtain the following
integral identities

1
| a=xA6 =g, (28)
1 6
2= / (1-x)g=2(1-ap) (29)
-1
! 2 o 128 !  2\oF!
/_1(1 JFiG = a(A + 2)(\x +6) /_1(1 JgFi k=2,
1 (30)
| a-eperE=2a - s (31)
1 35 «



Semi-norm

To get a rough estimate of 8 and a = g(l — af3), we need an
estimate of | G |? defined as following

1
617~ [ a=—xPla-P61%6. (@)

By integrating by parts and applying the equation of G, we obtain

! 720 [1
62 =15 [ Jla-2Perp+ "2 [ a-xpe
-1 « -1
1 1
+30/ (1-x*)*G'(G")* + 160/ (1—x%)3(G")3.
—1 -1
We need to estimate the last two cubic terms.



Gui-Hu-Xie's estimates of | G |?

To estimate | G |2, Gui-Hu-Xie applied the following lemma
Lemma 6 (Lemma 3.2 in Gui-Hu-Xie 2022)

For all x € (—1,1), we have

6= (Wi -2ye@) < W oo jco a)

to obtain

G’gl
(6%



Applying it directly to the last two integrals, they obtained
1 1
30/ (1—x2)4c/(c")2+160/ (1= X2 (G
-1 -1
1 1
1
< @ (1 o X2)4(G//)2 + 60/ (1 . X2)3(G/)2

o J_q « 1

2 Q_ ' _X22 //2_@ ' _X23 N2
612 < (5 -19) [ lla—xPalP =22 [ (1-xR(E

However, this estimate is not enough to obtain a rough bound for

B and we need more refined estimates.



Refined estimates of semi-norms | G |?

We claim that in fact,
1

1
30/ (1-x**G'(G")? + 160/ (1-x%)3G")?
-1 -1
160 [*
< -

1 — x2)3(G")2.
| a-2(@)

Compared with Gui-Hu-Xie's estimate, our estimates can be

. . . . . 1
viewed formally as dropping the first integral and applying G’ < =
to the second integral.

As a consequence, we obtain refined estimates of |G |2.

Proposition 1 (Gui-Li-Wei-Ye 2023)

LGJZ S _15/1 ’[(1 —X2)2G]N’2 + @/1 (1 —X2)2G2
—1 (07

160 [1
+ -
a J1

(1 _ X2)3(Gl)2



Proof of Proposition 1

Integrating (34) by parts, we get

2 _ ' n2 720 222
6P=-15 [ a—eperp+ ™ [ a- ey
1
+ [ a-xpee

-1

where 3

G = —15(1 — x*)G" + 120xG” + 160G’. (35)
Let

G = —15(1 — x*)G" + 120xG” + 150G’. (36)
Direct calculation yields that G satisfies

. . . 1

(1—x%)G" —8xG' — 126 = —15[(1 — x?)?G]®) > _ 1800
(6

By Maximum Principle

G‘gg.
e}



Proof of the main theorem

We claim that 8 = 0, which yields that (1 — x?)2G is a linear
function by (31). Since G is bounded on (—1,1), we get G =0
and we are done.

So it suffices to show that 5 = 0. We will argue by contradiction.
If B0, then 0 < 8 < L since

a:/ (1—x2)g:g(1—aﬁ)>0.

-1
It then suffices to show a = 0. We will achieve this by proving

6 16
a= ?(l —af) < N Vn > 5 odd. (37)



Rough estimates

We first derive rough estimates on 5 and a. To begin with, we
define b7 = a2 [* (1 — x?)F2 and introduce the quantity

Dzii{Mﬂk+ﬁﬂk+®—(M—;3x&+4x&+ﬁ)
k=3

1 2
fﬂ)\k — 70} bi-
o

Recalling the estimates of | G |? and the integral identities, we get

12 74 _ 22 n2 160 ' S 2B3(G)2
e N (R R Ul INCRy (<)

(07

16 2080
+ ——(=— +960)3?

720 1
. 70 (1 . X2)2G2 -

(6% 1 105

74 ! 16 2080
— —29 1—x2)2G1"1%2 + — (=== + 960
<ge ~29) [ 0= PEY P + (5 + 960)7
256,74 512 /13

375(@—29)( )5+7(9*+2)ﬁ (38)



Rough estimates

Since D >0, o > % and 0 < B < i,we obtain

9 74 1 113
> " (20— —)(7—-2)> ==
B> 440( 9 90)(7 a)_ 53 (39)
and 256 , 74 1 512 13 1
—_—(— — — )4+ ==(= >
35(9a 20)(7 a)+ = (9a+2)a_0, (40)

which implies that
a < 0.578. (41)



Lower bound of D

On the other hand, fix any integer n > 3, we have

=Y {Akw FAF6) — (14— )0 + )0 +6)

k=3
1 72
_@)\k_ 0] bi
o

[e.e]

74 160,41 + 720
> Angp1 — 144+ — —
N k_zn;-l [ i 9 (Anp1+4)(Anp1 + 6)O‘]

(M +4) (N +6)b2

n

74 160X\, + 720 )
A — 144+ — — A\ 2\ 6b
;{k 9a ()‘k+4)()\k+6)04](k+ )i+ 6)b

275 . —
> (App1 — 14+ — 2
> (Ant1 + 63a) ) §n+1(>\k + 4)( Ak + 6) by

176
Z e — 14 + —a)(Ak + 4)(\¢ + 6)b3.



Bounds of D

The right hand side of the inequality above is equal to

n

S 0% —Anst — 35 )0% + )0 + )83

k=3
275 | 256 1 128
A 14 + ——(71-2)-= b3
+(Ant1 — 630 —) {35 (7 )5 5 — 36005
Combining the lower bound above and the upper bound (38) of D,
we get
256 1,27 128 71
<27 - ) —15- 0, == =
0<Zx (7= )= =15 = A1)+ —=(Any1 = 6+ )5
176
+ H()\z +4)( A2 +6)b3

11
+ ;(Anﬂ = Mt 2 ) (e + 4) (M + 6)b. (42)



Gegenbauer coefficients by

Then we need to estimate bi. In Gui-Hu-Xie, they used (30) and
the following uniform estimate
Ak

)l < 1R = & (43)

to estimate by as follows

1 1 128 (1 2
b2:a2/ 1—x3)F? = [ / 1x2gF’]
k k _1( )k f_ll(].—X2)FE a>\k _1( ) k
128 A r
a

< (2k +5)(Ak +4)(Ak +6) [ Ak
= 128 O + 4 1 6) 6
O 302k+5)
T 002+ +6)7




Refined estimates on by
However, this estimate is not strong enough to deduce the
induction
a=2(1-ap) < 2. (44)

Likewise, we need a refined estimate on by, which follows from the
following refined estimate on Gegenbauer polynomials. For
simplicity, we denote

~ 6 720 7

Fl = —F — C? 45
TN MOk ) (O +6) K (45)

so that I-:,i(l) = 1. We split the integral in the right hand side of
by into two parts. To this end, we define

3%—Ahfﬁkﬂé—fk—%m

1 0
Al :/0 (1—x?)F|g, AL ::/ (1—x*)Fg.

a=a;+ta_,a;r =M\a



Refined estimates on by

The following theorem gives a refined estimate on Af, hence on by.

Theorem 7 (Gui-Li-Wei-Ye 2023)

Let d =8, b =0.33. Suppose a < i—f for some n > 3. Then for all
even k, we have

=B a2, if A < 22,

( )4)\7 f)\n<>\k<>\m
a_ — %)\ka_, ifa_ < )\in,

ba_ +(1—b)g, if £ <a_ <.

at —
max{|A}], AL [} < AL = {
max{|A, |, |A;+1|} <A = {

The proof relies on pointwise estimates of Gegenbauer polynomials.



Decaying properties of Gegenbauer polynomials

Lemma 8 (Gui-Li-Wei-Ye 2023)

For all k > 8, we have
Fi > —0.04, 0<x<1.

Lemma 9 (Gui-Li-Wei-Ye 2023)
Let d =8 and b = 0.33. Then for all k > 6,
d

" b, OSXS].—A—,
sy d ‘
— —(1-— — — — < x<1.

1 d(l b)(1 — x), 1 " <x<1




Behavior of I-:,i

The above two lemmas can be illustrated in the following figures.

T —

1.000

02 0.6 -y

Figure: Graph of Fl,

Figure: Graph of Fl, near 1



The above two lemmas can be proved using the following
point-wise estimates:

Lemma 10 (Corollary 5.3 in Nemes-Olde Daalhuis 2019)

Let0< (<m v>0and N>v —1 be an integer. Then
N—1
y B 2 1.M(k—1+2v)
Cima(cos Q) = =5 @am oy < EZ:O o = ) Tkt o)
§ c0s (0, k—1,n)

sin”C +RN(V’C7k_1)>)

1 1
where 6 = (k +n+ V)¢ — (v — n) 3, ta(s) = 2L ang

(—2)"n!
(xX)n = r(r)z;r)n)' The remainder term Ry satisfies the estimate

fo<(<Z

R, ) < [y = Ik = 1+20) RRSSS
v,Q, ~ N . = < )
N F(k+ N+ )sin¥ ¢ oy ses<m

2sin¢  ifF < (<3




Proof of Theorem 7

With the help of above two lemmas, we are able to prove Theorem
7. In the following argument, we may assume k > 6 and omit the
details for 3 < k <5. Define | = (0,1 — %), Il = (1 - L,1), and

ar= [,(1—x?)g, an = [,;(1 — x*)g. Then by Lemma 9, we have
1 ~ ~ ~
[ a-dFie= [a-DFg+ [(1-x)Fie
0 I 11
< =g+ [ (1)1 H - B
I 11

= ba; + ay — %(1 —b) /”(1 —x)(1 - x)g

< ba; + aj — %(1 - b)(f”(:[_)<2;g)2

A
< ba; + ay — Uk(l — b)aj;

A
= ba, + (1 —b)(an — Fka%/)-



If A\ < /\" , we have ayy < ay <a< 16 > < 21 Hence,

1
~ /\ A
| 0—0Fe < ot (1= D)a — ) = a1 D)

For the case when A\, > 22, we get directly

1 o~
/ (1- x2)F,ig < ba, +(1-b)-L.
0 ANk

On the other hand, Lemma 8 yields

1 _ 1
/ (1-x*)F.g> —0.04/ (1—x%)g = —0.04a,.
0 0

Combining the above three estimates, we obtain the desired
estimate on AZF. The estimate on AZ_H is similar.

Similarly, on estimating A, and A, ,, just note that a_ < 2 < /\%
We can go through analogous proof. We omit the details. Ol



Induction procedure

Now we can start the induction procedure to prove a < /1\—2, for all
odd n > 5. Note that from our rough estimates of 5 (39) and «
(41), we already have a < 0.221 < %'

By induction, now we assume a < 1—6 for some n > 5 odd. Then
we will show that a< 16 . We argue by contradiction and

suppose a > - on the contrary



Induction procedure

Now we estimate the summation in (42).
Let By = 93%2()\,,+1 — M + 22)(2k + 5), then for every even k, we
have

902 11

o [ =2+ T+ 0+ 00

11
+ (Ang1 — M1 + %)(Akﬂ +4)( A1+ 6)biyq

1

1
— By( / (=)L) + B / (=P8



Induction procedure

Then we split the right hand side into three parts as follows.

Ri1 =Bk [(/01(1 —x*)Fig)* + (/0 (1- X2)ﬁég)2}

-1

+Bk11 [(/01(1 —x*)Fi18) + (/

-1

0
(1- xz)FLHg)?] ,

1 0
Ry IZQBk/ (1- X2)Fﬂg/ (1 =) (Fj, + Fli1)g
0 —1
1 N . 0 .
12Byis /0 (1— X)Ly — F)g / (=g
0

1
Ri3 = 2(Bks1 — Bk)/ (1-— XZ)F;g/ (1 -x*)Fi 18
0 -1



Estimates of Ry 1 and Ry 3

By point-wise estimates of Gegenbauer polynomials, we get

Ri1 = Bk [(/01(1 — x*)Fig)* + (/0(1 —Xz)":/ig)2]

T Beo [( / (1) 8) . () a- x2>ff‘4+1g)2]

< Be (JAL P+ [ACP) + Bin (AL P+ AP, (46)

0

and
{2(Bk+1 — Bk))\(]. — /\)32, if Bk < Bk+1,
Ri3 <

47
Q(Bk — Bk+1)m0(1 — )\)22, if Bk+1 < Bg. ( )



Cancellation of consecutive Gegenbauer polynomials

To estimate Ry >, we need the cancellation property of consecutive
Gegenbauer polynomials.

1.0 10

02 0.5

Figure: Graph of Fly Figure: Graph of Fj,
From the graphs of F{Q and i:véo, we can see that they almost

cancel when x < 0, which is equivalent to say that they are almost
equal when x > 0.



Cancellation of consecutive Gegenbauer polynomials

Lemma 11 (Gui-Li-Wei-Ye 2023)

, then ¢, < 0.12 if6 < n < 17 and

Let ¢, = . |Fro1— Fh
cn, < 0.04 ifn>18.

Remark 1

Numerically, we can find that in fact that we have better estimates
cn < 0'—54, but it is hard to prove. In contrast, there exists good
estimate for the difference of consecutive Legendre polynomials.

From Lemma 11, we have

0
| / (1= x?)(FL + FL1)g] < cxa- = c(l— N)a,
-1

1
| / (1—x?)(Flor — Flgl < ckay = cea.
0



Estimate of Ry

Hence we obtain the estimate of Ry >

1 0
Rk72:28k/ (1—x2)F,ig/ (1—x*)(Fp + Fii1)g
0 -1
0

1
- 2Bk+1/0 (1= x*)(Fiy1 — F;:)g/l(l —x*)Fi18

< 2(Bk 4 Byy1)ck (1 — N)a.



Combining the estimates of Ry ;, i = 1,2,3, we obtain

902 11
S5 [t = Mt 2) (O + 4) O + 6) b
11

+(Ang1 — Mg + %)(/\k+1 + 4)(Aks1 + 6)bg 4]
<Bi (IAF P + A ) + Bigr (A1 + AL P)
+2(Bi + Brg1)ck A1 — N)a?
2(Bry1 — BN — V)@, if By < Biy1,
Q(Bk — Bk+1)m0(1 — )\)32, if Bk+1 < Bg.

The right hand side above can be viewed as a function f; 5()) of
A=



The worst case

The following proposition yields that the worst case is A = 1,
which is expected. In particular, in this case, we can drop the small
terms Rk,2 and Rk73.

Proposition 2 (Gui-Li-Wei-Ye 2023)

Suppose a satisfies a < 12 for some odd n > 3. Let f; ,()\) be
defined as above. Then for any k even, for n > 41, we have
(1) If A < N5, then

—b
d

1
fr,a(A) < fra(1) = (Bk + Bry1)(a —
(2) If 1Xn < Ak < A, then

a2 (48)

fioa(A) < fia(1) = (Bi + Bis1)(ba+ (1 — b)4;’k)2. (49)



Final version of (42)

From the proposition above and a > 3, we obtain from (42) that

512 51 7 512 100 7
< - — - — P - -
0 = (a1 + )1 = ga) + —(Ans1 + —=)(1 = ¢a)
22528 ,
63a
nZS
128 22
+5 mz::l[(ml ~dom + 2)(4m +5)

22 1-b 16
+ (Ant1 — Xomg1 + =) (@m+7)](1 - A2m )?a®
7 d )\n+2

128
(s = dam+ )(4m+5)

+QM4—A%Hy+%SMm+ﬂKm+%l—@ 2.

4om



Deriving a contradiction

To get a contradiction, it suffices to show that the right hand side,
denoted by g,(a), is negative for y=>- ~<a< i\f
Direct computation yields that for n > 10000, gn(a) can be

decomposed into three parts g, i(a), i = 1,2, 3 with estimates

. 512 51 7 512 100 7 o

811(2) =~ Ot + )1 = £a) 4 o (er + 001~ La)

22528 ,

63«
< —853.33,

128 22

8hn, 2( Z [(Ang1 — Aom + )(4’” +5)
1—0b 16
+ (Ant1 — Aomg1 + *)(4m + (L = ——dom—)?a°
7 d )\n+2

<571.1095.



Deriving a contradiction

£0) =120 3 [Ohnss — Yo+ ) +5)

d 2
4)\2,,,)

22
+ (Ang1 — Xomyr + 7)(4’77 +7)](ba + (1 — b)
<280.95.

Combining three estimates above, we found
0<gn(a) < 85333+571 1095 +280.95 < —1.27 < 0,

for all n > 10000 and <a< 1‘:, which is a contradiction. For

n < 10000, g,(a) < 0 is checked by Matlab. Thus, we finish the
proof of the main Theorem in S°.



Results on S"n > 8

In the end, we briefly discuss some partial results on S®. On S8,
(2) becomes

8u
af(1 — 2D+ 71— 95208 — 0,
v

(50)

Theorem 12 (Theorem 1.1 in Gui-Hu-Xie 2022)

1f0.827 < o < 1, then (50) admits only constant solutions.

Theorem 13
If0.54 < o < 1, then (50) admits only constant solutions.



Summary

The proof of our theorems on S*, S°® and S8 mainly consist of two
parts. Firstly, we derive an estimates about the seminorm
1
612 = (-1F [ (1) F 6l - )i6) .
-1
The difficulty is in the simplification of the integral
1
(02 [ - F e ) F e,
-1
which seems too complicated to deal with as n increases. Secondly,
the estimates of Gegenbauer coefficients of G heavily rely on the
estimates of Gegenbauer polynomials C/ (decaying, cancellations).
However, as far as we know, there is no satisfactory formula to
characterize the behavior of Gegenbauer polynomials in general.



Thanks for your attention!



