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Moser-Trudinger-Onofri inequality on S2

Moser-Trudinger: There exists a constant C1 ≥ 0, such that
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2
log

∫
S2

e2udw ≥ −C1

Here dw denotes the Lebesgue measure on the unit sphere S2,
normalized to make

∫
S2 dw = 1.

Onofri: C1 can be taken to be 0 (which is optimal).
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Chang-Yang’s Inequality

Let u ∈ H1(S2). Define a functional

Jα(u) =
α

2

∫
S2

|∇u|2 +

∫
S2

udw − 1

2
log

∫
S2

e2udw .

Restrict Jα to the set of functions with the center of mass at the
origin:

L =

{
u ∈ H1(S2) :

∫
S2

e2u~xdw = 0

}
.



Chang-Yang Inequality

Chang and Yang (1982) conjectured that for α ≥ 1
2 ,

α

2

∫
S2

|∇u|2 +

∫
S2

udw − 1

2
log

∫
S2

e2udw ≥ 0

∀u ∈ H1(S2),

∫
S2

e2u~xdw = 0.



Chang-Yang Inequality

I Chang-Yang (1982): true if α > 1− ε;

I Feldman, Froese, Ghoussoub and Gui (1998): True for axially
symmetric functions when α > 0.64− ε.

I Gui-Wei (2000): True for axially symmetric case when α ≥ 1
2 .

I Ghoussoub-C.S. Lin (2008): All solutions are axially
symmetric if α > 2

3 − ε.
I Gui-Moradifam (2018): All solutions are axially symmetric if
α ≥ 1

2 —Complete solution to Chang-Yang Inequality.
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Beckner’s Inequality: from S2 to Sn

Beckner’s inequality is a high-order Moser-Trudinger-Onofri
inequality. Consider the following functional Jα defined in H

n
2 (Sn)

by

Jα(u) =
α

2

∫
Sn

(Pnu)udw+(n−1)!

∫
Sn
udw−(n − 1)!

n
log

∫
Sn
enudw ,

where

Pn =


∏ n−2

2
k=0(∆ + k(n − k − 1)), for n even;

(−∆ + (n−1
2 )2)1/2

∏ n−3
2

k=0(∆ + k(n − k − 1)), for n odd

is the Paneitz (GJMS) operator on Sn.



Beckner’s Inequality

Beckner (1993) : for α = 1:

1

2

∫
Sn

(Pnu)udw + (n − 1)!

∫
Sn
udw − (n − 1)!

n
log

∫
Sn
enudw ≥ 0

∀u ∈ H
n
2 (Sn)

Higher order Moser-Trudinger-Onofri inequality



Higher Order Chang-Yang’s Inequality

Restrict Jα to the set of functions with the center of mass at the
origin:

L =

{
u ∈ H

n
2 (Sn) :

∫
Sn
enu~xdw = 0

}
.

Higher Order Chang-Yang’s Inequality: for α ≥ 1
2 , the Beckner’s

inequality on Sn still holds, i.e.

α

2

∫
Sn

(Pnu)udw + (n − 1)!

∫
Sn
udw − (n − 1)!

n
ln

∫
Sn
enudw ≥ 0

∀u ∈ H
n
2 (Sn),

∫
Sn
enu~xdw = 0



Euler-Lagrange equation

The Euler-Lagrange equation of Jα is the Q-curvature-type
equation

αPnu + (n − 1)!(1− enu∫
Sn e

nudw
) = 0 on Sn. (1)

Higher Order Chang-Yang Conjecture: for α ≥ 1
2 all solutions to

αPnu + (n − 1)!(1− enu∫
Sn e

nudw
) = 0 on Sn

subject to ∫
Sn
~xenu = 0

are constants.
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Progress

I Chang-Yang (1995): For general n and any α > 1
2 , there

exists a constant C (α) ≥ 0 such that inf
u∈L

Jα(u) ≥ −C (α).

I Wei-Xu (2009): True if α > 1− εn.

I General case is very difficult. On S2, Gui-Moradifam (2018)
first used spherical covering inequality and moving plane
method to prove that all solutions are axially symmetric.
Gui-Wei (2000): all axially symmetric solutions are constants.

I Question: what about axially symmetric solutions?
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Axially symmetric case

If u is axially symmetric about ξ1-axis and denoting ξ1 by x , then
the Euler-Lagrange equation becomes (1) is then reduced to

α(−1)
n
2 [(1−x2)

n
2 u′](n−1) +(n−1)!−

(n − 1)!
√
πΓ(n2 )

Γ(n+1
2 )γ

enu = 0, (2)

where

γ :=

∫
Sn
enudw =

∫ 1

−1
(1− x2)

n−2
2 enu

In axially symmetric case, the set L is replaced by

Lr = {u ∈ H
n
2 (Sn) : u = u(x) and

∫ 1

−1
x(1− x2)

n−2
2 enudx = 0}.



Axially symmetric case

I S4: Gui-Hu-Xie (2021): For any α ∈ [0.517, 1), (2) admits
only constant solutions.

I S6: Gui-Hu-Xie (2022): When n = 6, for any α ∈ [0.6168, 1),
(2) admits only constant solutions.

I S8: Gui-Hu-Xie (2022): When n = 8, for any α ∈ [0.8261, 1),
(2) admits only constant solutions.

I Sn, n ≥ 2: Gui-Hu-Xie (2022): For general n and any
1

n+1 < α < 1
2 , there exists non-constant solution to (2).
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Main Results

Theorem 1

(Li-Wei-Ye 2022) Let n = 4. If α ≥ 1
2 , then the only critical point

of the functional Jα restricted to Lr are constant functions.

Theorem 2

(Gui-Li-Wei-Ye 2023) Let n = 6. If α ≥ 1
2 , then the only critical

point of the functional Jα restricted to Lr are constant functions.
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Nonlocal Operator

I Chang-Yang’s inequality for general odd n. Nonlocal operator

Pn =

√
−∆ + (

n − 1

2
)2Π

n−3
2

k=0(−∆ + k(n − k − 1))

n = 1: Chang-Hang 2020

I On S1, the Lebedev-Milin inequality yields that for any
u ∈ H1(D) with

∫
S1 udθ = 0,

log

(
1

2π

∫
S1

eudθ

)
≤ 1

4π
‖∇u‖2

L2(D) .



Chang-Yang’s inequality in terms of Szego Limit Theorem
on S1

Using Szego Limit Theorem S1, Chang-Hang (2020) proved: If eu

satisfies more orthogonality conditions, i.e.
∫
S1 e

ue ikθdθ = 0, for
k = 1, · · · ,m, then we have

log

(
1

2π

∫
S1

eudθ

)
≤ 1

4π(m + 1)
‖∇u‖2

L2(D) .

Equivalently, for α ≥ 1
m+1

α

2

∫
S1

(P1u)udw + (n − 1)!

∫
S1

udw − (n − 1)!

n
ln

∫
S1

eudw ≥ 0

∀u ∈ H
1
2 (S1),

∫
S1

ue ikθdθ = 0, k = 1, ...,m



Szego Limit Theorem on S2

On S2, Chang-Hang (2020) showed that for any u ∈ H1(S2) with∫
S2 udw = 0 and

∫
S2 pe

udw = 0 for any p being the eigenfunction
of −∆S2 of eigenvalue k(k + 1), k = 1, · · · , m, then

log

(∫
S2

eudw

)
≤
(

1

4πNm
+ ε

)
‖∇u‖2

L2(S2) + cε,

where Nm is an integer and cε is a constant.
It is unknown that whether or not ε can be chosen to be 0. Also,
analogous results remain open for Sn.



Proofs

I Proof on S2

I Proof on S6

I Need to prove: for α ≥ 1
2 all solutions

α(−1)
n
2 [(1− x2)

n
2 u′](n−1) + (n − 1)!−

(n − 1)!
√
πΓ(n2 )

Γ(n+1
2 )γ

enu = 0,

are constants.
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I Need to prove: for α ≥ 1
2 all solutions

α(−1)
n
2 [(1− x2)

n
2 u′](n−1) + (n − 1)!−

(n − 1)!
√
πΓ(n2 )

Γ(n+1
2 )γ

enu = 0,

are constants.



Theorem in axially symmetric case on S2

On S2, the Euler-Lagrange equation (2) becomes

α((1− x2)u′)′ − 1 +
2

γ
e2u = 0. (3)

Theorem 3 (Gui-Wei 2000)

If 1
2 ≤ α < 1, then (3) admits only constant solutions.



Key Quantity G

Let G (x) = (1− x2)u′(x). Then

αG ′ − 1 +
2

γ
e2u = 0. (4)

(1− x2)G ′′ +
2

α
G − 2GG ′ = 0. (5)

Idea: Use Eigenfunction expansions to show that (5) (which is a
nonlinear equation ) has only zero solution.
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Legendre polynomial expansion

Axially symmetric eigenfunctions on S2: Legendre polynomials
Pn(x)

((1− x2)P ′k)′ + λkPk = 0, λk = k(k + 1).

Moreover,

|P ′k(x)| ≤ |P ′k(1)| =
1

2
λk ,

∫ 1

−1
PmPn =

2δmn

2n + 1
.

We have the orthogonal decomposition

G (x) = a0 + βx +
∞∑
k=2

akPk(x).

Aim: show that

a0 = a1 = a2 = · · · = ak = ... = 0



About a0

Since the center of mass equals zero,∫ 1

−1
xe2u = 0

we derive that
a0 = 0

G (x) = βx +
∞∑
k=2

akPk(x).



Some useful identities

Let b2
k = a2

k

∫ 1
−1 P

2
k , then by orthogonality,∫ 1

−1
G 2 =

2

3
β2 +

∞∑
k=2

b2
k .

∫ 1

−1
(1− x2)(G ′)2 =

4

3
β2 +

∞∑
k=2

λkb
2
k .

By the equation of Pk and integration by parts, we have∫ 1

−1
PkG = − 2

αλk

∫ 1

−1
(1− x2)P ′k

e2u

γ
, k ≥ 2. (6)

By (4), we obtain ∫ 1

−1
(1− x2)

e2u

γ
=

2

3
(1− αβ). (7)



Some useful identities

The following two identities play key roles in the proof. Multiplying
(5) by x and integrating by parts yields∫ 1

−1
G 2 =

4

3
(3− 1

α
)β. (8)

Similarly, multiplying (5) by G , we get∫ 1

−1
(1− x2)(G ′)2 = (

2

α
− 1)

∫ 1

−1
G 2. (9)

We remark that in the last integral, the cubic term
∫ 1
−1 G

2G ′ = 0,
which makes the proof very easy. This is also the main difference
between S2 and Sn, n ≥ 4.



A rough estimate

We will show β = 0, which implies G = 0 by (8). The basic
strategy is to show that if β 6= 0, then

β =
1

α
,

which contradicts to (7).∫ 1

−1
(1− x2)

e2u

γ
=

2

3
(1− αβ).

Now we assume β 6= 0, then by (7), 1
α − β > 0.

Rest of the idea: derive estimates of the rest coefficients in terms
of

1

α
− β

and do iterations.



We first derive an estimate on b2
k . For k ≥ 2, by (6) and (7), we

have

b2
k =

2k + 1

2

(
2

αλk

∫ 1

−1
(1− x2)|P ′k |

e2u

γ

)2

≤ 2k + 1

2

(
2

αλk

λk
2

2

3
(1− αβ)

)2

=
2(2k + 1)

9
(

1

α
− β)2. (10)

Here we used uniform estimate

|P ′k | ≤ |P
′
k(1)| =

λk
2



Rough estimates

Now we define the key semi-norm:

D :=
∞∑
k=3

(λk − 6)b2
k .

On the one hand, D ≥ 0 since λk = k(k + 1). On the other hand,

D =

∫ 1

−1
(1− x2)(G ′)2 − 6

∫ 1

−1
G 2 +

4

3
β2

=
2

3
β

(
4β + (7− 2

α
)(

2

α
− 6)

)
(11)

In view of the fact that 0 < β < 1
α , we have the following rough

estimates

β ≥ 1.5, α < 0.537.



Lower bound of D

To obtain better estimates, we need to estimate the lower bound
of D more carefully. We fix an integer n ≥ 3, then

D =
n∑

k=3

(λk − 6)b2
k +

∞∑
k=n+1

(λk − 6)b2
k

≥
n∑

k=3

(λk − 6)b2
k +

λn+1 − 6

λn+1

∞∑
k=n+1

λkb
2
k

=
n∑

k=2

(λk − 6− λn+1 − 6

λn+1
λk)b2

k −
λn+1 − 6

λn+1

∞∑
k=2

λkb
2
k

=
n∑

k=2

6
λk − λn+1

λn+1
b2
k +

λn+1 − 6

λn+1
(

∫ 1

−1
(1− x2)(G ′)2 − 4

3
β2)

=
n∑

k=2

6
λk − λn+1

λn+1
b2
k +

λn+1 − 6

λn+1

(
2

3
β(

2

α
− 1)(6− 2

α
)− 4

3
β2

)
.

(12)



Combining (11) and (12), after some simple computation, we
obtain

12β(
1

α
− 2) +

4β

λn+1

(
(

2

α
− 1)(6− 2

α
)− 2

α

)
(13)

≥ 4β(1− 2

λn+1
)(

1

α
− β)−

n∑
k=2

6
λk − λn+1

λn+1
b2
k .

Since 1
2 ≤ α < 1,

12β(
1

α
− 2) +

4β

λn+1

(
(

2

α
− 1)(6− 2

α
)− 2

α

)
≤ 8β

λn+1
, (14)

which, together with estimates of bk (10), yields the inequality

8β

λn+1
≥ (4β(1− 2

λn+1
)− 20

3

λn+1 − 6

λn+1
(

1

α
− β)− 4

3
cn(

1

α
− β))(

1

α
− β),

(15)



Induction procedure

where

cn =
n∑

k=3

λn+1 − λk
λn+1

(2k + 1) =
1

2
λn+1 − 9 +

36

λn+1
. (16)

We claim
1

α
− β ≤ 4

λn
,∀n ≥ 4. (17)

This is proved by induction procedure. Two key ingredients

I semi-norm D

I decaying estimates of bk

b2
k ≤

2(2k + 1)

9
(

1

α
− β)2.



Finally, letting n→ +∞ in (17), we obtain

1

α
− β = 0,

which is a contradiction. From the discussion in the beginning, we
know G ≡ 0, which implies that u is a constant. Thus we complete
the proof of Theorem 3.



Statement of theorems on S4 and S6

On S4, (2) becomes

α((1− x2)2u′)′′′ + 6− 8

γ
e4u = 0 (18)

On S6, (2) becomes

− α[(1− x2)3u′](5) + 120− 128
e6u

γ
= 0, x ∈ (−1, 1). (19)

Theorem 4 (Li-Wei-Ye 2022, Gui-Li-Wei-Ye 2023)

If 1
2 ≤ α < 1, then (18) and (19) admit only constant solutions.



Key ingredients

I Obtain the optimal semi-norm estimates

I Use the decaying properties of Gegenbauer polynomials to
obtain sharp estimates of the coefficents bk

I Use the cancellation properties of Gegenbauer polynomials to
proceed with the induction steps.



Axially symmetric eigenfunctions for the Paneitz operator
Pn: Gegenbauer polynomials

Gegenbauer polynomials, order ν and degree k , are given by

C νk (x) =
(−1)k

2kk!

Γ(ν + 1
2 )Γ(k + 2ν)

Γ(2ν)Γ(ν + k + 1
2 )

(1−x2)−ν+ 1
2
dk

dxk
(1−x2)k+ν− 1

2 .

C νk is an even function if k is even and it is odd if k is odd. The
derivative of C νk satisfies

d

dx
C νk (x) = 2νC ν+1

k−1 (x). (20)

Let F νk be the normalization of C νk such that F νk (1) = 1, i.e.

F νk =
k!Γ(2ν)

Γ(k + 2ν)
C νk . (21)



Decaying properties of Gegenbauer polynomials

Figure: Graph of F̃ ′
10 Figure: Graph of F̃ ′
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Cancellation of consecutive Gegenbauer polynomials

Figure: Graph of F̃ ′
19 Figure: Graph of F̃ ′

20



In the rest of the talk, I will discuss the proof of S6:

Theorem 5 (Gui-Li-Wei-Ye 2023)

For α ≥ 1
2 , all solutions to

α[(1− x2)3u
′
](5) + 120− 128

e6u∫
(1− x2)2e6u

= 0

must be constants.



Gegenbauer polynomials

On S6, the corresponding Gegenbauer polynomial is C
5
2
k . For

notational simplicity, in what follows we will write Fk for

F
5
2
k = k!4!

(k+4)!C
5
2
k .

It turns out that Fk satisfies

(1− x2)F ′′k − 6xF ′k + λkFk = 0 (22)

and ∫ 1

−1
(1− x2)FkFl =

128

(2k + 5)(λk + 4)(λk + 6)
δkl , (23)

where λk = k(k + 5).



Gegenbauer expansion

Similarly, we define G = (1− x2)u′. Then G satisfies the equation

α[(1− x2)2G ](5) + 120− 128
e6u

γ
= 0 (24)

and

(1− x2)3[(1− x2)2G ](6) +
720

α
(1− x2)2G (25)

−6(1− x2)2G [(1− x2)2G ](5) = 0.

Expand G in terms of Gegenbauer polynomials

G = βx + a2F2(x) +
∞∑
k=3

akFk(x). (26)



Integral Identities

Denote

g = (1− x2)2 e
6u

γ
, a :=

∫ 1

−1
(1− x2)g . (27)

Testing the equations of G by F1,
∫ x
−1(1− s2)

n−2
2 Fk(s)ds, x

respectively and integrating by parts, we obtain the following
integral identities ∫ 1

−1
(1− x2)F1G =

16

105
β, (28)

a =

∫ 1

−1
(1− x2)g =

6

7
(1− αβ), (29)∫ 1

−1
(1− x2)FkG = − 128

α(λk + 4)(λk + 6)

∫ 1

−1
(1− x2)gF ′k , k ≥ 2,

(30)∫ 1

−1
|[(1− x2)2G ]′′|2 =

256

35
(7− 1

α
)β. (31)



Semi-norm

To get a rough estimate of β and a = 6
7 (1− αβ), we need an

estimate of bGc2 defined as following

bGc2 = −
∫ 1

−1
(1− x2)2[(1− x2)3G ′](5)G . (32)

By integrating by parts and applying the equation of G , we obtain

bGc2 =− 15

∫ 1

−1
|[(1− x2)2G ]′′|2 +

720

α

∫ 1

−1
(1− x2)2G 2

+30

∫ 1

−1
(1− x2)4G ′(G ′′)2 + 160

∫ 1

−1
(1− x2)3(G ′)3.

We need to estimate the last two cubic terms.



Gui-Hu-Xie’s estimates of bGc2

To estimate bGc2, Gui-Hu-Xie applied the following lemma

Lemma 6 (Lemma 3.2 in Gui-Hu-Xie 2022)

For all x ∈ (−1, 1), we have

Gj := (−1)j [(1− x2)jG ](2j+1) ≤ (2j + 1)!

α
, 0 ≤ j ≤ 2. (33)

to obtain

G ′ ≤ 1

α



Applying it directly to the last two integrals, they obtained

30

∫ 1

−1
(1− x2)4G ′(G ′′)2 + 160

∫ 1

−1
(1− x2)3(G ′)3

≤ 30

α

∫ 1

−1
(1− x2)4(G ′′)2 +

160

α

∫ 1

−1
(1− x2)3(G ′)2

bGc2 ≤ (
30

α
− 15)

∫ 1

−1
|[(1− x2)2G ]′′|2 − 320

α

∫ 1

−1
(1− x2)3(G ′)2.

(34)
However, this estimate is not enough to obtain a rough bound for
β and we need more refined estimates.



Refined estimates of semi-norms bGc2
We claim that in fact,

30

∫ 1

−1
(1− x2)4G ′(G ′′)2 + 160

∫ 1

−1
(1− x2)3(G ′)3

≤ 160

α

∫ 1

−1
(1− x2)3(G ′)2.

Compared with Gui-Hu-Xie’s estimate, our estimates can be
viewed formally as dropping the first integral and applying G ′ ≤ 1

α
to the second integral.
As a consequence, we obtain refined estimates of bGc2.

Proposition 1 (Gui-Li-Wei-Ye 2023)

bGc2 ≤ −15

∫ 1

−1
|[(1− x2)2G ]′′|2 +

720

α

∫ 1

−1
(1− x2)2G 2

+
160

α

∫ 1

−1
(1− x2)3(G ′)2



Proof of Proposition 1

Integrating (34) by parts, we get

bGc2 =− 15

∫ 1

−1
|[(1− x2)2G ]′′|2 +

720

α

∫ 1

−1
(1− x2)2G 2

+

∫ 1

−1
(1− x2)3G̃ (G ′)2,

where
G̃ = −15(1− x2)G ′′′ + 120xG ′′ + 160G ′. (35)

Let
Ĝ = −15(1− x2)G ′′′ + 120xG ′′ + 150G ′. (36)

Direct calculation yields that Ĝ satisfies

(1− x2)Ĝ ′′ − 8xĜ ′ − 12Ĝ = −15[(1− x2)2G ](5) ≥ −1800

α
.

By Maximum Principle

Ĝ ≤ 150

α
.



Proof of the main theorem

We claim that β = 0, which yields that (1− x2)2G is a linear
function by (31). Since G is bounded on (−1, 1), we get G ≡ 0
and we are done.
So it suffices to show that β = 0. We will argue by contradiction.
If β 6= 0, then 0 < β < 1

α since

a =

∫ 1

−1
(1− x2)g =

6

7
(1− αβ) > 0.

It then suffices to show a = 0. We will achieve this by proving

a =
6

7
(1− αβ) ≤ 16

λn
, ∀n ≥ 5 odd. (37)



Rough estimates
We first derive rough estimates on β and a. To begin with, we
define b2

k = a2
k

∫ 1
−1(1− x2)F 2

k and introduce the quantity

D =
∞∑
k=3

[
λk(λk + 4)(λk + 6)− (14− 74

9α
)(λk + 4)(λk + 6)

−160

α
λk −

720

α

]
b2
k .

Recalling the estimates of bGc2 and the integral identities, we get

D =bGc2 − (14− 74

9α
)

∫ 1

−1
|[(1− x2)2G ]′′|2 − 160

α

∫ 1

−1
(1− x2)3(G ′)2

− 720

α

∫ 1

−1
(1− x2)2G 2 +

16

105
(

2080

3α
+ 960)β2

≤(
74

9α
− 29)

∫ 1

−1
|[(1− x2)2G ]′′|2 +

16

105
(

2080

3α
+ 960)β2

=
256

35
(

74

9α
− 29)(7− 1

α
)β +

512

7
(

13

9α
+ 2)β2. (38)



Rough estimates

Since D ≥ 0, α ≥ 1
2 and 0 < β < 1

α , we obtain

β ≥ 9

440
(29− 74

9α
)(7− 1

α
) ≥ 113

88
, (39)

and
256

35
(

74

9α
− 29)(7− 1

α
) +

512

7
(

13

9α
+ 2)

1

α
≥ 0, (40)

which implies that
α < 0.578. (41)



Lower bound of D
On the other hand, fix any integer n ≥ 3, we have

D =
∞∑
k=3

[
λk(λk + 4)(λk + 6)− (14− 74

9α
)(λk + 4)(λk + 6)

−160

α
λk −

720

α

]
b2
k

≥
∞∑

k=n+1

[
λn+1 − 14 +

74

9α
− 160λn+1 + 720

(λn+1 + 4)(λn+1 + 6)α

]
· (λk + 4)(λk + 6)b2

k
n∑

k=3

[
λk − 14 +

74

9α
− 160λk + 720

(λk + 4)(λk + 6)α

]
(λk + 4)(λk + 6)b2

k

≥ (λn+1 − 14 +
275

63α
)
∞∑

k=n+1

(λk + 4)(λk + 6)b2
k

+
n∑

k=3

(λk − 14 +
176

63
α)(λk + 4)(λk + 6)b2

k .



Bounds of D

The right hand side of the inequality above is equal to
n∑

k=3

(λk − λn+1 −
11

7α
)(λk + 4)(λk + 6)b2

k

+(λn+1 − 14 +
275

63α
)

[
256

35
(7− 1

α
)β − 128

7
β2 − 360b2

2

]
.

Combining the lower bound above and the upper bound (38) of D,
we get

0 ≤256

35
(7− 1

α
)(

27

7α
− 15− λn+1)β +

128

7
(λn+1 − 6 +

71

7α
)β2

+
176

63α
(λ2 + 4)(λ2 + 6)b2

2

+
n∑

k=2

(λn+1 − λk +
11

7α
)(λk + 4)(λk + 6)b2

k . (42)



Gegenbauer coefficients bk

Then we need to estimate bk . In Gui-Hu-Xie, they used (30) and
the following uniform estimate

|F ′k(x)| ≤ |F ′k(1)| =
λk
6

(43)

to estimate bk as follows

b2
k = a2

k

∫ 1

−1
(1− x2)F 2

k =
1∫ 1

−1(1− x2)F 2
k

[
128

αλk

∫ 1

−1
(1− x2)gF ′k

]2

≤ (2k + 5)(λk + 4)(λk + 6)

128

[
128

αλk(λk + 4)(λk + 6)

λk
6
a

]2

=
32(2k + 5)

9α2(λk + 4)(λk + 6)
a2.



Refined estimates on bk
However, this estimate is not strong enough to deduce the
induction

a =
6

7
(1− αβ) ≤ d0

λn
. (44)

Likewise, we need a refined estimate on bk , which follows from the
following refined estimate on Gegenbauer polynomials. For
simplicity, we denote

F̃ ′k =
6

λk
F ′k =

720

λk(λk + 4)(λk + 6)
C

7
2
k−1 (45)

so that F̃ ′k(1) = 1. We split the integral in the right hand side of
bk into two parts. To this end, we define

a+ : =

∫ 1

0
(1− x2)g , a− :=

∫ 0

−1
(1− x2)g ,

A+
k : =

∫ 1

0
(1− x2)F̃ ′kg , A

−
k :=

∫ 0

−1
(1− x2)F̃ ′kg .

a = a+ + a−, a+ = λa



Refined estimates on bk

The following theorem gives a refined estimate on A±k , hence on bk .

Theorem 7 (Gui-Li-Wei-Ye 2023)

Let d = 8, b = 0.33. Suppose a ≤ 16
λn

for some n ≥ 3. Then for all
even k, we have

max{|A+
k |, |A

+
k+1|} ≤ A

+
k :=

{
a+ − 1−b

d λka
2
+, if λk ≤ λn

4 ,

ba+ + (1− b) d
4λk

, if λn
4 < λk ≤ λn,

max{|A−k |, |A
−
k+1|} ≤ A

−
k :=

{
a− − 1−b

d λka
2
−, if a− ≤ 4

λn
,

ba− + (1− b) d
4λk

, if 4
λn
< a− ≤ 8

λn
.

The proof relies on pointwise estimates of Gegenbauer polynomials.



Decaying properties of Gegenbauer polynomials

Lemma 8 (Gui-Li-Wei-Ye 2023)

For all k ≥ 8, we have

F̃ ′k ≥ −0.04, 0 ≤ x ≤ 1.

Lemma 9 (Gui-Li-Wei-Ye 2023)

Let d = 8 and b = 0.33. Then for all k ≥ 6,

F̃ ′k ≤


b, 0 ≤ x ≤ 1− d

λk
,

1− λk
d

(1− b)(1− x), 1− d

λk
≤ x ≤ 1.



Behavior of F̃ ′k

The above two lemmas can be illustrated in the following figures.

Figure: Graph of F̃ ′
10 Figure: Graph of F̃ ′
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The above two lemmas can be proved using the following
point-wise estimates:

Lemma 10 (Corollary 5.3 in Nemes-Olde Daalhuis 2019)

Let 0 < ζ < π, ν > 0 and N ≥ ν − 1 be an integer. Then

C νk−1(cos ζ) =
2

Γ(ν)(2 sin ζ)ν

( N−1∑
n=0

tn(ν − 1

2
)

Γ(k − 1 + 2ν)

Γ(k + n + ν)

∗
cos (δν,k−1,n)

sinn ζ
+ RN(ν, ζ, k − 1)

)
,

where δk,n = (k + n + ν)ζ − (ν − n)π2 , tn(µ) =
( 1

2
−µ)n( 1

2
+µ)n

(−2)nn! , and

(x)n = Γ(x+n)
Γ(x) . The remainder term RN satisfies the estimate

|RN(ν, ζ, k)| ≤
|tN(ν − 1

2 )|Γ(k − 1 + 2ν)

Γ(k + N + ν) sinN ζ
·


| sec ζ| if 0 < ζ ≤ π

4

or 3π
4 ≤ ζ < π,

2 sin ζ if π
4 < ζ < 3π

4 .



Proof of Theorem 7

With the help of above two lemmas, we are able to prove Theorem
7. In the following argument, we may assume k ≥ 6 and omit the
details for 3 ≤ k ≤ 5. Define I = (0, 1− d

λk
), II = (1− d

λk
, 1), and

aI =
∫
I (1− x2)g , aII =

∫
II (1− x2)g . Then by Lemma 9, we have∫ 1

0
(1− x2)F̃ ′kg =

∫
I
(1− x2)F̃ ′kg +

∫
II

(1− x2)F̃ ′kg

≤
∫
I
(1− x2)bg +

∫
II

(1− x2)(1− λk
d

(1− b)(1− x))g

= baI + aII −
λk
d

(1− b)

∫
II

(1− x2)(1− x)g

≤ baI + aII −
λk
d

(1− b)
(
∫
II (1− x2)g)2∫
II (1 + x)g

≤ baI + aII −
λk
d

(1− b)a2
II

= ba+ + (1− b)(aII −
λk
d
a2
II ).



If λk ≤ λn
4 , we have aII ≤ a+ ≤ a ≤ 16

λn
≤ d

2λk
. Hence,∫ 1

0
(1− x2)F̃ ′kg ≤ a+ + (1− b)(a+ −

λk
d
a2

+) = a+ −
λk
d

(1− b)a2
+.

For the case when λk >
λn
4 , we get directly∫ 1

0
(1− x2)F̃ ′kg ≤ ba+ + (1− b)

d

4λk
.

On the other hand, Lemma 8 yields∫ 1

0
(1− x2)F̃ ′kg ≥ −0.04

∫ 1

0
(1− x2)g = −0.04a+.

Combining the above three estimates, we obtain the desired
estimate on A+

k . The estimate on A+
k+1 is similar.

Similarly, on estimating A−k and A−k+1, just note that a− ≤ a
2 ≤

8
λn

.
We can go through analogous proof. We omit the details.



Induction procedure

Now we can start the induction procedure to prove a ≤ 16
λn

, for all
odd n ≥ 5. Note that from our rough estimates of β (39) and α
(41), we already have a ≤ 0.221 ≤ 16

λ5
.

By induction, now we assume a ≤ 16
λn

for some n ≥ 5 odd. Then

we will show that a ≤ 16
λn+2

. We argue by contradiction and

suppose a > 16
λn+2

on the contrary.



Induction procedure

Now we estimate the summation in (42).

Let Bk = 9α2

32 (λn+1 − λk + 11
7α)(2k + 5), then for every even k, we

have
9α2

32

[
(λn+1 − λk +

11

7α
)(λk + 4)(λk + 6)b2

k

+ (λn+1 − λk+1 +
11

7α
)(λk+1 + 4)(λk+1 + 6)b2

k+1

]
= Bk(

∫ 1

−1
(1− x2)F̃ ′kg)2 + Bk+1(

∫ 1

−1
(1− x2)F̃ ′k+1g)2.



Induction procedure

Then we split the right hand side into three parts as follows.

Rk,1 :=Bk

[
(

∫ 1

0
(1− x2)F̃ ′kg)2 + (

∫ 0

−1
(1− x2)F̃ ′kg)2

]
+Bk+1

[
(

∫ 1

0
(1− x2)F̃ ′k+1g)2 + (

∫ 0

−1
(1− x2)F̃ ′k+1g)2

]
,

Rk,2 :=2Bk

∫ 1

0
(1− x2)F̃ ′kg

∫ 0

−1
(1− x2)(F̃ ′k + F̃ ′k+1)g

+2Bk+1

∫ 1

0
(1− x2)(F̃ ′k+1 − F̃ ′k)g

∫ 0

−1
(1− x2)F̃ ′k+1g ,

Rk,3 := 2(Bk+1 − Bk)

∫ 1

0
(1− x2)F̃ ′kg

∫ 0

−1
(1− x2)F̃ ′k+1g .



Estimates of Rk,1 and Rk ,3

By point-wise estimates of Gegenbauer polynomials, we get

Rk,1 = Bk

[
(

∫ 1

0
(1− x2)F̃ ′kg)2 + (

∫ 0

−1
(1− x2)F̃ ′kg)2

]
+ Bk+1

[
(

∫ 1

0
(1− x2)F̃ ′k+1g)2 + (

∫ 0

−1
(1− x2)F̃ ′k+1g)2

]
≤ Bk

(
|A+

k |
2 + |A−k |

2
)

+ Bk+1

(
|A+

k |
2 + |A−k |

2
)
, (46)

and

Rk,3 ≤

{
2(Bk+1 − Bk)λ(1− λ)a2, if Bk ≤ Bk+1,

2(Bk − Bk+1)m0(1− λ)a2, if Bk+1 < Bk .
(47)



Cancellation of consecutive Gegenbauer polynomials

To estimate Rk,2, we need the cancellation property of consecutive
Gegenbauer polynomials.

Figure: Graph of F̃ ′
19 Figure: Graph of F̃ ′

20

From the graphs of F̃ ′19 and F̃ ′20, we can see that they almost
cancel when x < 0, which is equivalent to say that they are almost
equal when x > 0.



Cancellation of consecutive Gegenbauer polynomials

Lemma 11 (Gui-Li-Wei-Ye 2023)

Let cn = max
0≤x≤1

|F̃ ′n+1 − F̃ ′n|, then cn ≤ 0.12 if 6 ≤ n ≤ 17 and

cn < 0.04 if n ≥ 18.

Remark 1

Numerically, we can find that in fact that we have better estimates
cn ≤ 0.84

n , but it is hard to prove. In contrast, there exists good
estimate for the difference of consecutive Legendre polynomials.

From Lemma 11, we have

|
∫ 0

−1
(1− x2)(F̃ ′k + F̃ ′k+1)g | ≤ cka− = ck(1− λ)a,

|
∫ 1

0
(1− x2)(F̃ ′k+1 − F̃ ′k)g | ≤ cka+ = ckλa.



Estimate of Rk ,2

Hence we obtain the estimate of Rk,2

Rk,2 = 2Bk

∫ 1

0
(1− x2)F̃ ′kg

∫ 0

−1
(1− x2)(F̃ ′k + F̃ ′k+1)g

+ 2Bk+1

∫ 1

0
(1− x2)(F̃ ′k+1 − F̃ ′k)g

∫ 0

−1
(1− x2)F̃ ′k+1g

≤ 2(Bk + Bk+1)ckλ(1− λ)a2.



Combining the estimates of Rk,i , i = 1, 2, 3, we obtain

9α2

32
[(λn+1 − λk +

11

7α
)(λk + 4)(λk + 6)b2

k

+(λn+1 − λk+1 +
11

7α
)(λk+1 + 4)(λk+1 + 6)b2

k+1]

≤Bk

(
|A+

k |
2 + |A−k |

2
)

+ Bk+1

(
|A+

k |
2 + |A−k |

2
)

+2(Bk + Bk+1)ckλ(1− λ)a2

+

{
2(Bk+1 − Bk)λ(1− λ)a2, if Bk ≤ Bk+1,

2(Bk − Bk+1)m0(1− λ)a2, if Bk+1 < Bk .

The right hand side above can be viewed as a function fk,a(λ) of
λ = a+

a .



The worst case

The following proposition yields that the worst case is λ = 1,
which is expected. In particular, in this case, we can drop the small
terms Rk,2 and Rk,3.

Proposition 2 (Gui-Li-Wei-Ye 2023)

Suppose a satisfies a ≤ 16
λn

for some odd n ≥ 3. Let fk,a(λ) be
defined as above. Then for any k even, for n ≥ 41, we have
(1) If λk ≤ 1

4λn, then

fk,a(λ) ≤ fk,a(1) = (Bk + Bk+1)(a− 1− b

d
λka

2)2. (48)

(2) If 1
4λn < λk ≤ λn, then

fk,a(λ) ≤ fk,a(1) = (Bk + Bk+1)(ba + (1− b)
d

4λk
)2. (49)



Final version of (42)

From the proposition above and α ≥ 1
2 , we obtain from (42) that

0 ≤− 512

7
(λn+1 +

51

7
)(1− 7

6
a) +

512

7
(λn+1 +

100

7
)(1− 7

6
a)2

+
22528

63α
a2

+
128

9

n−5
4∑

m=1

[(λn+1 − λ2m +
22

7
)(4m + 5)

+ (λn+1 − λ2m+1 +
22

7
)(4m + 7)](1− 1− b

d
λ2m

16

λn+2
)2a2

+
128

9

n−1
2∑

m= n−1
4

[(λn+1 − λ2m +
22

7
)(4m + 5)

+ (λn+1 − λ2m+1 +
22

7
)(4m + 7)](ba + (1− b)

d

4λ2m
)2.



Deriving a contradiction

To get a contradiction, it suffices to show that the right hand side,
denoted by gn(a), is negative for 16

λn+2
< a ≤ 16

λn
.

Direct computation yields that for n > 10000, gn(a) can be
decomposed into three parts gn,i (a), i = 1, 2, 3 with estimates

gn,1(a) : = −512

7
(λn+1 +

51

7
)(1− 7

6
a) +

512

7
(λn+1 +

100

7
)(1− 7

6
a)2

+
22528

63α
a2

≤− 853.33,

gn,2(a) :=
128

9

n−5
4∑

m=1

[(λn+1 − λ2m +
22

7
)(4m + 5)

+ (λn+1 − λ2m+1 +
22

7
)(4m + 7)](1− 1− b

d
λ2m

16

λn+2
)2a2

≤571.1095.



Deriving a contradiction

gn,3(a) :=
128

9

n−1
2∑

m= n−1
4

[(λn+1 − λ2m +
22

7
)(4m + 5)

+ (λn+1 − λ2m+1 +
22

7
)(4m + 7)](ba + (1− b)

d

4λ2m
)2

≤280.95.

Combining three estimates above, we found

0 ≤ gn(a) ≤ −853.33 + 571.1095 + 280.95 < −1.27 < 0,

for all n > 10000 and 16
λn+2

< a ≤ 16
λn

, which is a contradiction. For

n < 10000, gn(a) < 0 is checked by Matlab. Thus, we finish the
proof of the main Theorem in S6.



Results on Snn ≥ 8

In the end, we briefly discuss some partial results on S8. On S8,
(2) becomes

α[(1− x2)4u′](7) + 7!− 9 ∗ 29 e
8u

γ
= 0. (50)

Theorem 12 (Theorem 1.1 in Gui-Hu-Xie 2022)

If 0.827 ≤ α < 1, then (50) admits only constant solutions.

Theorem 13

If 0.54 ≤ α < 1, then (50) admits only constant solutions.



Summary

The proof of our theorems on S4, S6 and S8 mainly consist of two
parts. Firstly, we derive an estimates about the seminorm

bGc2 = (−1)
n
2

∫ 1

−1
(1− x2)

n−2
2 G [(1− x2)

n
2 G ′](n−1).

The difficulty is in the simplification of the integral

(−1)
n
2

∫ 1

−1
(1− x2)

n−2
2 G 2[(1− x2)

n−2
2 G ](n−1),

which seems too complicated to deal with as n increases. Secondly,
the estimates of Gegenbauer coefficients of G heavily rely on the
estimates of Gegenbauer polynomials C νn (decaying, cancellations).
However, as far as we know, there is no satisfactory formula to
characterize the behavior of Gegenbauer polynomials in general.



Thanks for your attention!


