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Atmospheric Inputs and Biogeochemical
Consequences in High-Mountain Lakes

Isabel Reche, Natalie Mladenov, Elvira Pulido-Villena,
and Rafael Morales-Baquero

Abstract

The idiosyncrasy of the lakes of Sierra Nevada lies in the
fact that glacial retreat during their formation only
occurred very close to the mountaintops and their
proximity to North Africa. Quaternary glaciers’ retreat
left a group of small lakes close to the ridgelines with
small catchment areas. These lakes are close to the Sahara
Desert, where atmospheric mainstream transport toward
the Iberian Peninsula goes between 1500 and 4000 m
above sea level. Therefore, the Sierra Nevada Moun-
tains constitutes the main physical barrier for this atmo-
spheric dust, and Sierra Nevada’s lakes act as natural
atmospheric collectors. Saharan dust intrusions and
Atlantic fronts that reach the Sierra Nevada have clear
seasonal, synoptic, and climatic patterns that affect the
quantity and quality of atmospheric deposition. The
atmospheric deposition of Saharan dust has unique
chemical and biological footprints. This chapter exposes
the differences in the atmospheric deposition depending
on the origin (marine vs. Saharan) of air masses that reach
the Sierra Nevada and their consequences for the lakes’
biogeochemistry. Atmospheric deposition with Saharan
dust introduces macronutrients such as phosphorus
(P) and micronutrients such as calcium (Ca) and iron to
the lakes. Atmospheric P inputs affect lake primary and
bacterial productivity. The Ca content in the lakes and
their acid-neutralizing capacity is determined mainly by
atmospheric deposition. Saharan dust also introduces

organic matter with a humic-like signature and bacteria
into the lakes. In contrast, atmospheric deposition from
marine sources introduces organic matter with an amino
acid-like signature and a comparatively higher abundance
of viruses. The atmospheric deposition of microorganisms
has consequences for their distribution ranges and the
formation of a microbial seed-bank to face future
scenarios of environmental changes.

Keywords

Atmospheric inputs ! Saharan dust ! Phosphorus !
Calcium ! Iron ! Organic matter ! Airborne
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1 Introduction

1.1 Idiosyncrasy of Sierra Nevada Lakes

Sierra Nevada’s lakes, like most high-mountain lakes, are of
glacial origin. However, due to their low latitude (37° N), the
glacier formation only happened in the mountaintops com-
pared to other alpine lakes in Europe. Quaternary glaciers’
retreat left a group of small lakes very close to the ridgelines
at altitudes between 2800 and 3100 m. This scenario differs
from lakes located at lower latitudes such as the Atlas, where
lake glacier formation did not happen, despite having higher
altitudes. It also differs from lakes located at higher latitudes,
such as the Pyrenees or the Alps, where glacial action was
more potent, generating lakes of greater size and distributed
over a broader range of altitudes. Usually, the altitudes at
which these lakes are found, for instance in the Alps, are
lower than in the Sierra Nevada due to permanent ice.
However, the rapid retreat of glaciers is currently generating
new alpine lakes at higher altitudes, with consequences for
planktonic life (Sommaruga 2015; Peter and Sommaruga
2016).
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Sierra Nevada’s lakes form a very confined group (the
maximum distance between lakes is ca. 20 km), located
above treeline near to 3000 m altitude, with small sizes (only
three of them can exceed 1 ha) and headwater catchments on
predominantly siliceous rocks. All lakes are subjected to a
similar climatology, are limited by nutrients, and have sim-
ple food chains with a scarcity of planktonic predators and
an absence of vertebrate predators. This local similarity
allows us to study more precisely how regional and climatic
forcing can affect the structure and function of these aquatic
systems. Sierra Nevada’s lakes are very responsive to
atmospheric inputs due to their pristine nature, altitude, and
small catchment areas. Because Sierra Nevada’s lakes are
located above the planetary boundary layer (1700 ± 500 m
a.s.l. mean annual height, Granados-Muñoz et al. 2012), they
are exposed to the deposition of materials transported by the
atmospheric circulation in the free troposphere. The atmo-
spheric microbiota collected at this altitude is similar to that
collected in the free troposphere (Triadó-Margarit et al.
2019). This particular geographical location and their alti-
tudes expose Sierra Nevada’s lakes to Saharan dust intru-
sions whose maximum loads circulate between 1500 and
4000 m a.s.l. in the free troposphere (Talbot et al. 1986)
(Fig. 1). On the other hand, in lakes larger in size than Sierra
Nevada’s lakes, atmospheric inputs are diluted, and there-
fore, dust signatures are difficult to detect. In addition, the
siliceous nature of their catchments limits chemical weath-
ering that could mask the signal of atmospheric inputs dur-
ing runoff, as it occurs in lakes with more extensive and

calcareous catchments. Therefore, Sierra Nevada’s lakes act
as “atmospheric collectors” and are very responsive to
changes in long-range atmospheric inputs.

1.2 Seasonal, Interannual, and Recent Trends
in Atmospheric Inputs on Sierra Nevada

The largest global sources of dust are located in the Northern
Hemisphere, mainly in a broad “dust belt” that extends from the
west coast of North Africa, over the Middle East, Central, and
SouthAsia, to China (Prospero et al. 2002). There are significant
differences in the content of dust aerosols amongworld localities
depending on latitudinal localization inside this dust belt
(Mladenov et al. 2011a). This dust belt strongly influences
Sierra Nevada due to its proximity to North Africa with frequent
atmospheric inputs of Saharan dust. Sierra Nevada is also under
the influence ofWesterlies, with fronts coming from theAtlantic
Ocean that determine the rainfall patterns (Hidalgo-Muñoz et al.
2015). Therefore, the season and origin of air masses arriving at
Sierra Nevada can influence atmospheric deposition and its
chemical and biological footprints.

Saharan dust exports experience seasonal, interannual,
and large-scale patterns in the Mediterranean region (Moulin
et al. 1997; Evan et al. 2016; Sabatier et al. 2020; Cruz et al.
2021). Seasonality in dust exports is linked to changes in the
Intertropical Convergence Zone (ITCZ) position. The max-
imum dust exports occur during late spring and summer.
In the Northern Hemisphere, during the summer solstice, the

Fig. 1 Illustration of the altitude
of the planetary boundary layer
(continuous red line) and its
seasonal changes (dotted red
lines) in relation to Sierra Nevada
and the altitude of the Saharan
dust intrusions
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ITCZ position is located around 23° N, just over the Saharan
Desert (Fig. 2a). The ascending warm air with massive dust
injections rises in this zone, and high quantities of dust are
exported toward the Atlantic Ocean by the predominant
Easterlies winds or the Mediterranean region under partic-
ular synoptic conditions with low pressures over Portugal
and high pressure over Northern Africa, channeling this dust
toward the Iberian Peninsula. In contrast, during the summer
solstice in the Southern Hemisphere, the ITCZ position is
about 23° S far from the Sahara Desert influence, resulting in
lower dust injections in the Mediterranean region (Fig. 2b).

Superimposed on this seasonal pattern are the interannual
changes associated with climatic oscillations. For instance,
precipitation and dust events are correlated to the North
Atlantic Oscillation (NAO) index (López-Moreno et al.
2011; Hidalgo-Muñoz et al. 2015, see chapter “Climate
Variability and Trends”). During the NAO negative phase,
the weakness of subtropical Atlantic High promotes Atlantic

fronts over the Iberian Peninsula, increasing precipitation
(Fig. 2b). In contrast, the high pressure over the Iberian
Peninsula blocks the Atlantic fronts during the NAO positive
phase and, consequently, precipitation events are lower than
during the NAO negative phase. However, dust exports from
Northern Africa are more prone in this phase (Fig. 2a). More
details about the influence of climatic oscillations on the
rainfall patterns in the Sierra Nevada can be found in chapter
“Climate Variability and Trends”. At larger time scales
(decades and centuries), Sahara dust exports have been
related to intense droughts in the Soudano-Sahel region
caused by changes in the global distribution of sea surface
temperature (Prospero and Lamb 2003; Giannini et al. 2003)
and the advent of commercial agriculture in the Sahel region
(Mulitza et al. 2010). This last finding suggests a clear dust
footprint starting with the Anthropocene.

Atmospheric deposition occurs by washing the atmo-
sphere by the rain (termed wet deposition) or by direct

Fig. 2 a Summer scenario from July 9th to 12th of 2021 with the
intertropical convergence zone (ITCZ) located over the Sahara Desert
(dotted black line) leading to an intense Saharan intrusion with high
values of the time-averaged dust-column mass density (kg m−2) using
the second Modern-Era Retrospective analysis for Research and
Applications (MERRA-2) model. Synoptic Low pressures (L) over
Portugal and High pressures (H) over the North of Africa channelize the

Saharan dust to the Mediterranean region in general and the Sierra
Nevada in particular. b Winter scenario from January 9th to 12th of
2021with Atlantic fronts over the Iberian Peninsula and lower values of
the time-averaged dust-column mass density (kg m−2) using the
MERRA-2 model. MERRA model is an open, online resource provided
by the National Aeronautics and Space Administration (NASA)
(https://giovanni.gsfc.nasa.gov/giovanni/)
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sedimentation during periods without rain (termed dry
deposition). The wet deposition has a chemical signature: the
sum of the elements dissolved in the rain plus the aerosols it
captures during the washout, some of which may be solu-
bilized. Similarly, the chemical signature of dry deposition is
composed of the fraction of water-soluble elements in at-
mospheric aerosols. The relative contribution of dry and wet
deposition to the supply of elements from the atmosphere to
Sierra Nevada depends on the rainfall regime. In the Sierra
Nevada, we can find prolonged periods, longer than a month,
without precipitation, during which only dry deposition is
present. Saharan dust intrusions can cover thousands of
square kilometers in the free troposphere, producing the
deposition of particulate material that can be recorded syn-
chronously at monitoring stations over the Peninsula
(Rodríguez et al. 2001). Synchronous variables among
neighbor lakes are considered a sign of climatic control at a
regional scale (Baines et al. 2000; Reche et al. 2009;
Morales-Baquero and Pérez-Martínez 2016). In Sierra
Nevada, the deposition of particulate matter from Saharan
dust intrusions occurs mainly during spring and summer
associated with the south or southwest winds and the pres-
ence of cyclones in the Iberian Peninsula (Fig. 2). Every
year, massive airborne plumes of Saharan dust are exported
to Sierra Nevada, particularly at high altitudes
(Morales-Baquero et al. 2006a). Dust is a significant source
of mineral nutrients (phosphorus, calcium, and iron), organic
carbon to both terrestrial (Okin et al. 2004) and aquatic
ecosystems (Jickells et al. 2005; Morales-Baquero et al.
2006a; Mladenov et al. 2008), and microorganisms (Reche
et al. 2009; 2018; Hervás et al. 2009; Peter et al. 2014) with
chemical and biological consequences.

2 Chemical Footprints of the Atmospheric
Inputs in Sierra Nevada’s Lakes

Atmospheric deposition includes the input of gaseous (e.g.,
nitrogen) and lithosphere-derived (e.g., phosphorus)
macronutrients as well as micronutrients (e.g., calcium, iron)
to aquatic and terrestrial ecosystems (Chadwick et al. 1999;
Jickells et al. 2005; Ballantyne et al. 2011; Brahney et al.
2013, 2015). In particular, Saharan dust is rich in elements of
biogeochemical interest such as P, Ca, and Fe, among others,
and their inputs to Sierra Nevada have been extensively
studied (Morales-Baquero et al. 2006a, 2013; Pulido-Villena
et al. 2006; Bhattachan et al. 2016). In Sierra Nevada, dry
deposition (on average 23.6 mg m−2 d−1) dominates the
delivery of particulate matter (PM, which is the material
retained by filters of 0.7 µm pore size), being ca. three times
larger than wet deposition in an annual base
(Morales-Baquero et al. 2013). Likewise, dry deposition
dominates the inputs of total phosphorus (TP), soluble

reactive phosphorus (SRP), Ca2+, Mg2+, and K+. In contrast,
wet deposition dominates the inputs of Na+, total nitrogen
(TN), NO3

−, and SO4
=. Saharan intrusions significantly

modify the chemical signature of both types of deposition. In
weeks with rainfall and Saharan intrusions, dry deposition
shows higher PM, TP, and Ca2+. In contrast, in the absence
of Saharan intrusions, wet deposition shows higher Cl− and
Na+ (Morales-Baquero et al. 2013). This chemical signature
is valuable to determine, along with air mass
back-trajectories and remote sensing data, the (marine vs.
Saharan) origin of atmospheric deposition in Sierra Nevada.

Calcium is an element tightly linked to the carbon cycle via
the carbonate-bicarbonate equilibrium affecting lake
acid-neutralizing capacity (Psenner 1999) and long-term
phytoplankton and zooplankton community composition
(Jiménez et al. 2018; Pérez-Martínez et al. 2020). The high
CaCO3 content in Saharan dust significantly increases the pH
of rainwater (Löye-Pilot et al. 1986). It partially counteracted
acidic deposition in some alpine lakes in Europe (Psenner
1999) during the 1970s and 1980s (Rogora et al. 2004).
The reported data for calcium total atmospheric deposi-
tion ranged from 13.9 to 559.8 lmol m−2 d−1 (on average
48 µmol m−2 yr−1) and showed a seasonal pattern similar to
that reported for Saharan dust export to the Mediter-
ranean region, with maxima during spring and summer
(Pulido-Villena et al. 2006; Morales-Baquero et al. 2013).
Calcium atmospheric inputs determine Ca concentration in
Sierra Nevada’s lakes (Pulido-Villena et al. 2006).
The variability of this influence depends on other lake prop-
erties, such as susceptibility to evaporation and the
presence/absence of outlets. For instance, the Ca concentra-
tion in the lake La Caldera (110 lmol l−1) is about three times
the Ca concentration in the lake Rio Seco (37 lmol l−1)
(Fig. 3). A larger catchment area in La Caldera than in Rio
Seco and the absence of outlets can explain this lake-specific
difference (Fig. 3).

Atmospheric dust also contains significant amounts of
iron (Jickells et al. 2005). In Sierra Nevada, Mladenov et al.
(2010) reported values of atmospheric deposition of dis-
solved Fe that ranged from 0.03 to 5.23 mg m−2d−1 with
higher values under the influence of Saharan dust intrusions.
These last authors found a robust relationship between total
dissolved Fe and particulate matter in atmospheric deposi-
tion. On the other hand, during the atmospheric transit from
Saharan soils to Sierra Nevada, usually around 3000 m. asl,
there is enrichment in Fe solubility. Bhattachan et al. (2016)
found that the dust is greatly enriched (on average 15 times)
in Fe (II) in the atmospheric deposition at Sierra Nevada in
comparison to the fine fraction of the parent soil collected
from North African dust sources. These results are very
relevant for the biological availability of this micronutrient.

Atmospheric inputs of N and P are especially relevant for
Sierra Nevada lakes, as the geological characteristics of the
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rocks in the catchments allow limited inputs of these
macronutrients for biota development. Morales-Baquero
et al. (2006a, 2013) determined the atmospheric inputs of
total phosphorus (TP) and total nitrogen (TN) to Sierra
Nevada. They reported values of TP from 0.1 to
10.8 lmol m−2 d−1 and TN from 17.2 to 533.8 lmol m−2

d−1. The relative contribution of dry to the total deposition of
PM was approximately 80%. The TP atmospheric deposition
showed consistent seasonal dynamics coupled to particulate
matter (PM) deposition with maximum values during late
spring and summer (Fig. 4) when the ITCZ is located over
the Sahara Desert (Fig. 2). This seasonal pattern was syn-
chronous in sites located at different altitudes from 1000 m
(Lanjarón and Quéntar) to almost 3000 m above sea level
(Observatory) and over the years (Fig. 4).

The lake catchment sizes generate that, despite N and P
atmospheric inputs are similar for the whole area, the
availability of both elements differs in each lake. Rainfall in
the Sierra Nevada has a low TN: TP ratio and reaches 5.5 by
weight (Morales-Baquero et al. 2006a). However, due to
higher mobility of the N inorganic forms and higher P
retention in unfertilized soils, the runoff has TN: TP ratios
greater than 200 by weight. Consequently, N: P ratios tend
to increase in lakes with larger catchments. In Sierra Nevada
lakes, the N and P availability for autotrophs, measured as
the ratio between dissolved inorganic nitrogen (DIN) and
soluble reactive phosphorus (SRP), is lower than 5 by
weight in lakes with small catchments. In contrast, this ratio
increases progressively with the size of the catchments,
reaching DIN: SRP ratios greater than 20 (by weight)
(Morales Baquero et al. 1999). This change in the N and P

availability is essential because the organisms need to
incorporate both elements in a similar proportion to that
which exists in their tissues. In the case of planktonic
organisms, they need to assimilate about 16 atoms of N for
each atom of P to grow appropriately (Redfield 1934).
Therefore, in Sierra Nevada’s lakes with small catchments
and greater relative availability of P, plankton growth tends
to be limited by N. In contrast, in lakes with larger catch-
ment areas, P limitation is accentuated.

3 Footprints of Organic Matter Atmospheric
Inputs in High-Mountain Lakes

Allochthonous organic matter (OM) has been introduced to
high mountain environments worldwide by atmospheric
deposition, and this phenomenon has significant conse-
quences for alpine lakes. For one, chromophoric DOM
(CDOM) is an essential component of atmospherically de-
posited organic matter. It is a key driver of lake optical
properties during ice-free periods in Sierra Nevada’s lakes
(Reche et al. 2001; Mladenov et al. 2008, 2009), which
influence light attenuation, particularly the ultraviolet radi-
ation and associated lake biological processes.

The quantity and quality of OM atmospheric deposition
have been measured using passive collectors of wet and dry
deposition—including rain, snow, and dryfall (Santos et al.
2013; Oldani et al. 2017; Niu et al. 2019)—and active col-
lectors for total suspended particulates (TSP), and coarse
(PM10) and fine (PM2.5) particulate matter (Xie et al. 2016).
The sources of organic matter in the atmosphere include

Fig. 3 Comparison between total
atmospheric and catchment inputs
of calcium and lake calcium
content in two contrasting lakes
like Rio Seco with a small
catchment area and an outlet and
La Caldera with a larger
catchment area and without
outlets
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primary sources, such as soils (Koulouri et al. 2008), erodible
lake sediments (Washington et al. 2006), and primary bio-
logical aerosols, viruses, bacteria, fungi, and pollen (Jaenicke
2005; Bowers et al. 2009; Burrows et al. 2009; Reche et al.
2018), as well as secondary sources, such as vehicular emis-
sions and secondary organic aerosols (Legrand et al. 2007;Xie
et al. 2017). The deposition of both dissolved and particulate
forms of OM (DOM and POM) are important for alpine
ecosystems, and a substantial fraction of dry deposition (15%
of dry deposition in Mladenov et al. 2009) is water-soluble
organic carbon (WSOC) and further available for biological
processing. Mladenov et al. (2009) estimated that WSOC in
wet and dry deposition to a clear, alpine lake and its catchment
over a one-month period represented over 70%of the total lake
dissolved organic carbon (DOC) mass. Therefore, atmo-
spheric deposition exerts a dominant influence over the dis-
tribution of organic compounds in alpine lakes.

Indeed, due to their remote position at high altitudes and
the lack of surrounding vegetation, the clearest alpine lakes
were shown to behave similarly to atmospheric deposition
collectors and exhibit similar patterns in DOC concentration
and light absorption coefficients (Mladenov et al. 2008). In
Sierra Nevada, both Saharan dust-derived and marine aero-
sols were important sources of WSOC (Fig. 5a). Differences
in the optical spectroscopic properties (UV–visible

absorbance and fluorescence) between the two organic
aerosol sources supported the notion that marine aerosols
provide little color and comparatively more amino acid-like
substances. In contrast, Saharan dust represented the primary
source of CDOM with a dominance of soil fulvic and humic
substances to alpine lakes (Fig. 5b). These fluorescence
signatures derived from excitation-emission matrices
(EEMs) of dissolved organic matter in Sierra Nevada’s lakes
differ substantially from the EEMs observed in boreal lakes
with a more significant influence of humic and fulvic com-
pounds from inputs of the surrounding landscape (Fig. 5c).

The influence of dust deposition on alpine lake optical
properties has also been demonstrated on a global scale. For
a global dataset of 86 alpine and polar lakes from the Atlas
Mountains, Sierra Nevada, Pyrenees, Tyrolean Alps,
Patagonian Mountains, Antarctica, and the Arctic, significant
latitudinal trends were observed in lake DOC concentration,
spectral slope, and spectral slope curve values (Mladenov
et al. 2011a). Those geographic patterns were influenced, in
part, by a site’s proximity to the Saharan dust belt and other
dust source regions, as demonstrated by relationships with
NASA’s Ozone Monitoring Instrument (OMI) aerosol index
(Mladenov et al. 2011a). Similarly, kinematic trajectory
analyzes implicated northern Africa as a source region for
atmospheric dust carrying water-soluble organic nitrogen to

Fig. 4 Seasonal dynamics of atmospheric deposition of particulate
matter (PM) and total phosphorus (TP) at 1000 m (Lanjarón site), at
1054 m (Quéntar site), and 2900 m (Observatory of the Instituto

Andaluz de Astrofísica). The maximum concentrations of PM and TP
are consistently found during late spring and summer (pale brown
shaded area)

298 I. Reche et al.



Mediterranean coastal regions (Mace et al. 2003). Backward
trajectory analyzes also identified air masses passing through
the arid west and Four Corners, USA, as dominant source
areas for dry deposition of organic constituents and nutrients
to Rocky Mountain lakes (Colorado, USA), especially in
spring months (Mladenov et al. 2012; Oldani et al. 2017).

Multiseason and multiyear studies of DOC or WSOC in
atmospheric deposition are few, potentially due to the
inherent challenges of measuring wet deposition during
colder months when freezing conditions and deep snowpack
inhibit access to instrumentation. In the United States, the
National Atmospheric Deposition Program (NADP) operates
dozens of atmospheric deposition monitoring stations, pri-
marily for tracking nutrient and base cation deposition,
including one in the Colorado Rocky Mountains above
treeline. Although the organic fraction is not typically ana-
lyzed in NADP collectors, there are NADP wet
deposition-monitoring stations at four locations in the Col-
orado Rocky Mountains (one above treeline and three below
treeline). These data show distinct seasonality, with peak
DOC concentrations occurring during the summer months.
Summer DOC deposition rates (20.4 kg C ha−1 yr−1) were
shown to be much higher than annual averages (2.32 kg C
ha−1 yr−1) at the Colorado Rocky Mountain site (Oldani
et al. 2017). DOC in summer precipitation measured at Mt.
Yulong in the Tibetan Plateau was also very high, at 19.9 kg
C ha−1 yr−1 (Niu et al. 2019). Slightly lower DOC deposi-
tion rates were measured in summer precipitation in the
Sierra Nevada Mountains, Spain, at 13.1 kg C ha−1 yr−1

(Mladenov et al. 2009). However, more seasonal data over
the whole year are needed for more accurate comparisons.

The chemical quality of atmospheric deposition also has
been shown to undergo seasonal changes that are important
for biogeochemical processes in high mountain lakes.
Light-absorbing organic aerosols have been categorized into
black carbon (BC), from incomplete combustion of fuels,
and brown carbon, from primary or secondary sources (Ram
et al. 2010; Zhang et al. 2017; Laskin et al. 2018; Beres et al.

2020), and both BC and brown carbon may comprise high
molecular weight humic-like substances (HULIS). Sites with
WSOC derived from biomass burning in the Tibetan Plateau
and Saharan dust in the Sierra Nevada (Mladenov et al.
2011b) and coast areas in Italy (Santos et al. 2013) were
found to have more light-absorbing and lignaceous
UV-visible absorbance and fluorescence spectral properties
in the summer, which are characteristics also representative
of brown carbon aerosols. By contrast, chemical and spec-
troscopic analyzes conducted on wet and dry deposition
samples collected in the Colorado Rocky Mountains
revealed that the DOM in many late spring and summer
samples was lower in aromaticity, color, and polydispersity
and of lower molecular weight than that of winter and fall
samples (Mladenov et al. 2012). Therefore, the high DOC
inputs occurring at this time were hypothesized to be labile
for microorganisms and potentially able to support hetero-
trophic processes in water and soils, such as denitrification
(Mladenov et al. 2012). The less aromatic nature of some
organic aerosol deposition samples, particularly in the
summer, appears to be due to enhanced solar ultraviolet
(UV) radiation that has a photobleaching effect on the
light-absorbing properties of organic aerosols, as suggested
by Han and Kim (2017). Despite their sources and season-
ality, fluorescence spectroscopic properties indicate that
intense UV radiation during high altitude transport may have
an important influence on most atmospherically-deposited
organic matter. For example, EEMs of WSOC extracted
from TSP filter samples from the Colorado Rocky Moun-
tains were found to lack fluorescence at higher excitation
wavelengths (>350 nm), most likely due to preferential
photodegradation of light-absorbing WSOC at higher
wavelengths (Xie et al. 2016).

The high depositional flux of organic matter to alpine lake
ecosystems devoid of other carbon and nutrient sources begs
the question, “how bioavailable is atmospherically deposited
organic matter to alpine microorganisms?” The few studies
that address this question have found alpine bacteria to be

Fig. 5 Comparison among the fluorescence spectra (Excitation-
Emission Matrices, EEMs) of water-soluble organic carbon from dry
deposition with Saharan dust origin on August 7th, 2008 (a), and

dissolved organic matter from an alpine lake La Caldera (b) and a boreal
lake Bylot 40 (c). The areas of amino acid-like, humic acid-like, and
fulvic-acid-like peaks are shown in panel A
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well-adapted to degrading organic matter in otherwise barren
alpine environments. Using microplate bioassays on a range
of snow, wet deposition, and dust deposition samples from
the Colorado Rocky Mountain sites, Bigelow et al. (2020)
found that all atmospheric deposition samples were able to
activate metabolism by native Colorado alpine bacteria.
Also, in most cases, the addition of phosphate to the
bioassays did not further stimulate microbial metabolism,
indicating that the atmospheric deposition samples already
contained sufficient nutrients (N and P) to support
biodegradation. Additional incubation experiments further
demonstrated the presence of two pools (one rapid and one
slowly decaying) of DOM in the atmospheric deposition and
snow samples. Light-absorbing DOC in the snowpack of
glacierized regions of the Tibetan Plateau, which had been
primarily deposited along with mineral dust from adjacent
arid regions, was studied by Yan et al. (2016). Similar to the
findings for DOC in the Colorado snowpacks, much of the
light-absorbing DOC (46.2%) in the Tibetan Plateau snow-
pack was bioavailable and could be mineralized to CO2

within one month of its release. Cryoconite holes on glacier
surfaces were hotspots of biodiversity on glacier surfaces
that hosted metabolically active bacterial communities,
including taxa that were able to degrade organic pollutants
deposited by long-range transport (Pittino et al. 2018). In
particular, bacteria played a significant role in degradation of
chlorpyrifos and polychlorinated-biphenyls (PCBs) in these
habitats. Therefore, the atmospheric deposition of organic
matter in Sierra Nevada’s lakes can stimulate local bacterial
metabolism throughout the degradation of dissolved organic
matter.

4 Biological Footprints of the Atmospheric
Inputs in High-Mountain Lakes

Atmospheric deposition delivers macronutrients as phos-
phorus, micronutrients as iron and water-soluble organic
matter that can boost phytoplankton and bacterioplankton
growth in aquatic ecosystems (Bonnet et al. 2005; Marañón
et al. 2010; Pulido-Villena et al. 2008a). In addition, atmo-
spheric deposition can directly introduce non-native
microorganisms into the recipient terrestrial and aquatic
ecosystems (Hervás et al. 2009; Yamaguchi et al. 2012; Woo
and Yamamoto 2020).

4.1 Plankton Responses to Atmospheric
Deposition in Sierra Nevada’s Lakes

Morales-Baquero et al. (2006a) established a seasonal link
between the atmospheric deposition of total phosphorus and
the chlorophyll-a concentration in two contrasting lakes as

La Caldera and Rio Seco lakes. However, not all phyto-
planktonic species responded uniformly to dust deposition.
Pulido-Villena et al. (2008b) showed a significant growth of
the chrysophyte Chromulina nevadensis, but phosphorus
deposition did not affect other species such as the diatom
Cyclotella sp. or green algae Chlorella sp. These
species-specific effects also have consequences for species
richness and diversity. Similarly, at a larger scale of approx.
150 years, Jiménez et al. (2018) found in dated sediment
cores an increase in the concentration of inferred
chlorophyll-a coupled with the intensification of atmospheric
deposition in six lakes. Differences in the magnitude of the
response and timing of these changes can be likely related to
catchment and lake-specific differences. Pérez-Martínez
et al. (2020) also found an influence of atmospheric depo-
sition on diatom assemblages in these sediment cores (see
chapter “Paleolimnological Indicators of Global Change”).

Bacterioplankton is also stimulated by atmospheric depo-
sition. Pulido-Villena et al. (2008b) found a significant cor-
relation between the atmospheric deposition of soluble
reactive phosphorus and the bacterial abundance in La Cal-
dera Lake. In a more detailed study, Reche et al. (2009)
showed that total phosphorus and water-soluble organic car-
bon delivered by atmospheric deposition increased bacterial
abundance in oligotrophic systems of Sierra Nevada such as
La Caldera Lake and Quéntar reservoir. These last authors
demonstrated experimentally that Saharan dust addition had a
significant and positive effect on the bacterial production and
abundance but not on the species richness, diversity, or
composition of the native bacterial assemblages. Both phy-
toplankton and bacterioplankton are food substrates for zoo-
plankton in these alpine lakes (Cruz-Pizarro et al. 1994;
Carrillo et al. 1995; Reche et al. 1997; see chapter “Snow
Dynamics, Hydrology, and Erosion”). Therefore, dust inputs
also have bottom-up consequences for this trophic level.

Because the pelagic trophic structure of Sierra Nevada
lakes is very simple, with no vertebrate predators, zoo-
plankton is the last trophic step where inorganic nutrients
captured by autotrophs and bacteria accumulate during the
growing season. The average abundance of zooplankton
organisms during the thaw period can be highly variable
among Sierra Nevada lakes. It can change from 101.2 ind.
L−1, in the lake with the highest density, to 0.8 ind.L−1 in the
one with the least zooplankton, and the average abundance
decreases progressively as catchment size increases
(Morales-Baquero and Conde-Porcuna 2000). This result
suggests a progressive limitation by P as the catchment area
increases. Numerous individuals of zooplankton species,
such as rotifers and larval forms of copepods, are very
susceptible to be P-limited (Rothhaupt 1995; Elser et al.
1996). Therefore, the atmospheric P inputs can also deter-
mine the zooplanktonic densities in the lakes.
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The transfer of N and P from inorganic forms up to
zooplankton requires that the development of both trophic
levels be coupled. In years with particularly low tempera-
tures, Sierra Nevada’s lakes contain low zooplankton den-
sities, high phytoplankton abundances, and high
concentration of the limiting nutrient, either N or P, in each
lake. These facts are interpreted as a consequence of a
decoupling between the phytoplankton (with shorter gener-
ation times) and the zooplankton (with longer generation
times), which hinders the transfer of inorganic nutrients up
to zooplankton (Morales-Baquero et al. 2006b). This
food-web climatic sensitivity shown by these small lakes
confirms their value as fine sensors of climate change. It
allows us to detect a progressive increase in the eutrophi-
cation of the lakes, compatible with an increase in the lim-
itation by the scarcest nutrient in each system as global
temperatures and the inputs of Saharan dust increase.

The influence of atmospheric deposition in the planktonic
food webs of Sierra Nevada’s lakes has been confirmed
using carbon stable isotopes (Pulido-Villena et al. 2005;
Morales-Baquero et al. 2006c). Irrespectively of the nature
of catchment area, particulate organic matter (POM) showed
more enriched d13C values in La Caldera (d13C = −24.5‰)
and Rio Seco (d13C = −26.6‰) lakes than the phytoplank-
ton signatures (d13C = −33.9‰ and −33.7‰, respectively)
suggesting a terrestrial vegetation influence in both lakes.
This terrestrial influence, in the case of La Caldera Lake, is
mostly coming from atmospheric deposition. This POM
mainly was exploited by the cladoceran Daphnia pulicaria
that showed similar d13C isotopic signatures in La Caldera
(−23.6‰) and Rio Seco lakes (−31.1‰) that the corre-
sponding POM d13C signatures. However, the copepod
Mixodiaptomus laciniatus was d13C depleted relative to
POM d13C signatures both in La Caldera (−30.8 ‰) and Rio
Seco (−32.1 ‰) lakes, indicating a selective feeding on an
isotopically lighter source, likely phytoplankton at least in
La Caldera Lake. The results obtained show that, despite
contrasting catchments, the food webs of both lakes might be
partially supported by terrestrial organic carbon from
atmospheric inputs and runoff.

4.2 Atmospheric Deposition of Microorganisms:
Long-Range Transport and Seed-Bank
for Future Environmental Changes

Most people are familiar with Darwin’s legacy about species
evolution and natural selection. However, his contribution to
geology is less known, but he was an exponent of his close
friend Charles Lyell’s ideas about an Earth System changing
slowly, gradually. That is, an evolving Earth. During his
expedition in the Beagle, Darwin went through Canary and
Cape Verde Islands, an area of the Atlantic Ocean that

receives enormous quantities of Saharan dust. He was one of
the first naturalists to report the phenomenon of dust storms
over the Atlantic Ocean (Darwin 1845). He collected dust
samples for sending them to his colleague Professor
Ehrenberg in Berlin. Professor Ehrenberg was the first to
examine the occurrence of microorganisms in the Saharan
dust and is considered the founder of the science of aero-
biology (Krumbein 1995). He described several protists,
formerly named “Infusoria” (e.g., Ciliophora sp.), mostly of
freshwater origin in dust samples collected over Barbados by
R.H. Schomburgk and the Eastern Atlantic Ocean by C.
Lyell and C. R. Darwin (Ehrenberg 1845). At the beginning
of this century, Dr. Anna Gorbushina had the opportunity to
explore dust subsamples of Professor Ehrenberg’s collection.
She found that microbes adhered to Saharan dust can live for
centuries surviving the transport across the Atlantic (Gor-
bushina et al. 2007). This discovery opened new perspec-
tives for the long-range transport of microorganisms and
microbial storage over a long time. Microbial dormancy
generates “seed” banks that allow microorganisms to dorm
until environmental conditions are adequate to survive
(Lennon and Jones 2011).

Aerosols in the troposphere can mobilize about 1018 cells
per year (Griffin et al. 2002). These air-transported
microorganisms can survive long distances suspended in
dust particles following the atmospheric circulation patterns
(Kellogg and Griffin 2006). In Europe, this long-range dis-
persal of bacteria with a Saharan origin has been reported for
the Sierra Nevada, Pyrenees, and Alps mountains (Reche
et al. 2009; Hervás et al. 2009; Peter et al. 2014). Above the
boundary layer, high-elevation mountains are optimal sites
to collect bacterial aerosols traveling through the tropo-
sphere (Triadó-Margarit et al. 2019). Airborne microorgan-
isms can be removed from the atmosphere by rain washout
(wet deposition) or by direct sedimentation during clear days
(dry deposition), affecting microbial abundance, composi-
tion, and distribution in recipient ecosystems. The magnitude
of microbial deposition, viability, and colonization avail-
ability of these “invaders” can affect the native microbiota,
particularly in alpine lakes with high ecological value.

In Sierra Nevada, Reche et al. (2018) reported the wet and
dry deposition rates of viruses and bacteria at two sites
located above the atmospheric boundary layer (Fig. 1). In
addition, they evaluated how the origin of air masses (marine
vs. Saharan), meteorological conditions, and aerosol size can
affect the deposition rates of viruses and bacteria. They
quantified the total deposition rates of viruses and bacteria
(Fig. 6). Virus deposition rates ranged from 0.26 " 109

to >7 " 109 m−2 per day (Fig. 6a). These deposition rates
were not significantly different when air masses came from
the Atlantic (marine source) or the Saharan Desert or under
rainy or clear meteorological conditions (Fig. 6a). The
deposition rates of bacteria ranged from 3 " 106 to >80
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106 m−2 per day (Fig. 6b). These rates were generally
higher when air masses came from the Saharan Desert and
during rainy (wet + dry deposition) than clear (only dry
deposition) periods (Fig. 6b). The presence of a high abun-
dance of dust-attached bacteria during rainy periods suggests
that they might act as cloud condensation nuclei and pro-
mote precipitation (Creamean et al. 2013), or are washed out

more easily from the atmosphere by rain. Bacteria from the
Sahara Desert are deposited at high mountain lakes in Eur-
ope, particularly during rain events (Peter et al. 2014). The
Gammaproteobacteria appear to dominate the airborne bac-
terial community under the influence of Saharan dust
intrusions (Reche et al. 2009; Peter et al. 2014). However,
the interactions among dust, bacterial identity, cloud

Fig. 6 Synchronous dynamics of deposition rates of a viruses,
b bacteria, and c virus-to-bacteria ratios at the Observatory of the
Instituto Andaluz de Astrofísica (OSN) (solid circles) and Veleta Peak
(VSN) (empty circles) in Sierra Nevada. Black arrows on the top
indicate rain events. Samples that are predominantly of marine origin

are shown in blue and samples that are predominantly Saharan are
shown in orange. The median value (white dot, left panels), the 25–
75% percentiles (boxes), and the non-outlier range (whiskers) in the
total deposition are sorted by air-mass origin (marine vs. Saharan) and
by meteorological conditions (rainy vs. clear)
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formation, and precipitation remain poorly understood.
These deposition rates of viruses were 9–461 times greater
than the rates for bacteria (Fig. 6c). The median value of the
viruses’ deposition was 52-fold greater than for bacteria
when air masses were predominantly of marine origin. By
contrast, when the origin of air masses was predominantly
Saharan, the median ratio was 28. The deposition rates of
both viruses and bacteria were synchronous at the two dis-
tant sites explored (Observatory of Sierra Nevada and the
Veleta peak) (Fig. 6). Synchrony among distant sites in
atmospheric deposition variables is a signature of external,
meteorological forcing, and long-range microbial dispersal
(Reche et al. 2009; Morales-Baquero and Pérez-Martínez
2016).

Bacteria and viruses are mostly attached to particles.
Therefore, it is necessary to detach these microorganisms
from the dust or organic particles by washing them in a
solution with a chelating agent and mechanical forces to
disperse the cells and viral particles before counting their
abundances by flow cytometry (Araya et al. 2019). Bioaer-
osols with smaller aerodynamic sizes have longer residence
times in the atmosphere and are less susceptible to be
removed by rain (Bowers et al. 2009; Després et al. 2012).
Reche et al. (2018) obtained that *69% of viruses
and *97% of bacteria deposited from the atmosphere were
attached to particles, and proportionally more viruses were
attached to the smallest airborne organic particles (<0.7 lm)
than bacteria (>0.7 lm). Consequently, the atmospheric
residence time of viruses appears to be longer than that of
bacteria, which were associated with larger aerosols. The
residence time of the microorganisms in the atmosphere
depends primarily on their aerodynamic diameters and
emission sources and, for example, for 3 lm
bacteria-attached particles, the estimations range from

8.3 days (when the source is the desert) to 2.2 days (when
the source is the sea) (Burrows et al. 2009). Many airborne
bacteria from Saharan soils are dispersed in resistance forms
as endospores (Fig. 7a), which can persist over time. The
“ambiguous” nature of viruses about longevity (Legendre
et al. 2014) makes it challenging to evaluate their viability.
Viruses are deposited from the free atmosphere in billions
per square meter and day (Fig. 7b), but their viability and
persistence over time are still uncertain and a very exciting
research challenge.

The long persistence and dispersal in the atmosphere of
viruses explain observations that identical viral sequences
occur at geographically distant locations and in very differ-
ent environments (Short and Suttle 2005; Breibart and
Rohwer 2005). This process provides a mechanism for
maintaining the very high diversity of viruses and bacteria
observed locally but constrained globally, consistent with a
seed bank model. Long-range dispersal of viruses and bac-
teria can increase their distribution ranges in dormant or
inactive states shaping their corresponding seed banks (Jones
and Lennon 2010). The impact of the atmospheric deposi-
tion of microorganisms on the recipient ecosystems will
depend on the viability of these microbes, and in the case of
viruses, the occurrence of suitable hosts for replication.
There is evidence that bacteria (Reche et al. 2009; Hervás
et al. 2009; Peter et al. 2014) and viruses (Sharoni et al.
2015) can remain viable after atmospheric transport, which
is consistent with the wide dispersal of microbes across very
distant ecosystems. Hence, significant atmospheric deposi-
tion of bacteria and viruses may affect the structure and
function of recipient ecosystems. Rather than being a neg-
ative consequence, this deposition provides a seed bank that
should allow ecosystems to adapt to future and unpredictable
environmental changes rapidly.

Fig. 7 a Scanning electron microscopy (SEM) image of an airborne bacterium of Saharan origin. Note the spindle-shape typical for endospore
formation. b Transmission electron microscopy (TEM) image of viruses negatively stained with uranyl acetate from aerosols of Saharan origin
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5 Conclusions

Atmospheric deposition in the Sierra Nevada Mountains has
a seasonal component with maximum dust exports during
late spring and summer coinciding with the position of the
intertropical convergence zone over the Saharan Desert. At
larger time scales, dust exports are coupled with climatic
oscillations such as North Atlantic Oscillation (NAO) with
maxima during the positive NAO phase. Dust exports also
have increased during the Anthropocene due to the onset of
commercial agriculture in the Sahel region.

Saharan dust contains phosphorus and micronutrients like
iron and bioavailable organic matter that stimulate phyto-
plankton and bacterial growth. Phytoplankton species
respond differentially to dust deposition with consistent
observations at seasonal and long-term scales. Billions of
viruses and millions of bacteria per square meter and day,
attached to Saharan dust particles and marine organic aggre-
gates, are deposited above the atmospheric boundary layer in
the terrestrial and aquatic ecosystems of the Sierra Nevada
Mountains. This microbial atmospheric deposition expands
biogeographic ranges and generates a global seed bank of
microorganisms to face future environmental changes.
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