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Scientific Significance Statement

Reservoirs are important sources of greenhouse gases (GHGs) impacting the global carbon cycle. Global change is increasing
surface water temperatures, prolonging stratification, and enhancing eutrophication with uncertain consequences for
future GHG emissions. Reducing the uncertainty of current predictive models requires incorporating the phenological
variability in GHG emissions across latitude. This need is particularly pertinent in the Mediterranean zone, where extreme
seasonal fluctuations characterize the hydrological and thermal regimes. In the Mediterranean reservoir studied, the GHG
emissions were more variable than in reservoirs of other latitudes and mainly driven by water temperature, mean depth,
and biological productivity. However, the relationship between CO, emissions and temperature was more complex. Our
results suggest that future scenarios with higher temperatures, drought, and biological productivity will likely increase
CH,4 emissions.

Abstract

Extreme hydrological and thermal regimes characterize the Mediterranean zone and can influence the phenology
of greenhouse gas (GHG) emissions in reservoirs. Our study examined the seasonal changes in GHG emissions of
a shallow, eutrophic, hardwater reservoir in Spain. We observed distinctive seasonal patterns for each gas. CHy
emissions substantially increased during stratification, influenced predominantly by the increase in water temper-
ature, net ecosystem production, and the decline in reservoir mean depth. N,O emissions mirrored CH,'s seasonal
trend, significantly correlating to water temperature, wind speed, and gross primary production. Conversely, CO,
emissions decreased during stratification and displayed a quadratic, rather than a linear relationship with water
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Phenology of greenhouse gas emissions

temperature—an unexpected deviation from CH4 and N,O emission patterns—likely associated with photosyn-
thetic uptake of bicarbonate and formation of intracellular calcite that might be exported to sediments. This
investigation highlights the imperative of integrating these idiosyncratic patterns into GHG emissions models,

enhancing their predictive power.

Inland waters, including reservoirs, are important sources
of greenhouse gases (GHGs) such as CO,;, CH4 and N,O
(Tranvik et al. 2009; Bastviken et al. 2011; Raymond
et al. 2013; Soued et al. 2016; Ledn-Palmero et al. 2020a). The
global estimations of GHG emissions from reservoirs range
from 1.25 to 2.3 Pg CO, equivalents per year (Lauerwald
et al. 2023). However, these global estimations are still sub-
stantially uncertain because of the idiosyncrasy of each gas—
with specific external forcing and internal drivers—and the
limited availability of temporal data across latitudes. Although
there have been some recent attempts to describe the tempo-
ral variability of CO, emissions using eddy covariance tech-
niques (Golub et al. 2023) and to model CH, temporal
variability (Johnson et al. 2021; Zhuang et al. 2023), most
available data were obtained under fair weather conditions
and thus do not include the full range of variability of natural
systems (Liu et al. 2016; Ran et al. 2021). Phenology
(i.e., seasonal changes) differs from tropical (high and uni-
form temperature) to boreal (low temperature) latitudes.
Therefore, input data in models should incorporate the
specific, phenological drivers of GHG emissions across
latitudes to reduce uncertainty. This need is especially per-
tinent in the warm temperate dry climatic zone (including
Mediterranean zone), where extreme seasonal fluctuations
characterize the hydrological and thermal regimes, and
reservoirs are more prevalent than lakes (Lehner and
Doll 2004; Lehner et al. 2011).

Previous studies of CO, emissions have not shown consis-
tent phenological patterns yet. These emissions can be higher
(Yang et al. 2013; Zhao et al. 2013; Podgrajsek et al. 2016) or
lower (Shao et al. 2015; Pu et al. 2020; Amanatidou et al.
2023) during the summer than the fall-winter regardless of
the reservoir latitude. These incongruent patterns are likely
related to local drivers of CO, emissions. For instance, Yang
et al. (2013) and Golub et al. (2023) found a positive relation-
ship between temperature and CO, fluxes in subtropical
and temperate reservoirs. It is well known that high water
temperatures reduce gas solubility, promoting CO, release
from surface waters. Moreover, seasonal changes in primary
production can also modify the CO, exchange with the atmo-
sphere. CO, assimilation by photosynthetic microorganisms
decreases the dissolved CO; in the water and, likely, reduces
emissions Pacheco et al. (2014). Zhao et al. (2013) and Pu
et al. (2020) also found significant negative correlations
between CO, fluxes and chlorophyll a (Chl a). However, this
influence appears to be evident only in low-carbonate reser-
voirs (Ledn-Palmero et al. 2020a). Temperature also affects
the balance between primary production and microbial

respiration. All these studies suggest that external forcing
(climate) and internal drivers (carbonate-bicarbonate availability,
biological productivity) interact to control CO, emissions, making
scaling relationships challenging.

In the case of CHy, the maximum emissions are consistently
reported during the warm or shoulder seasons (Samiotis
et al. 2018; Linkhorst et al. 2020; Ledén-Palmero et al. 2020q;
Johnson et al. 2021). The release of CH,4 by direct ebullition from
the sediments generally shows this regular seasonal pattern that
is related to higher hypolimnetic temperature and lower water
level that facilitates ebullition (DelSontro et al. 2010; Linkhorst
et al. 2020; Ledén-Palmero et al. 2020a; Waldo et al. 2021b).
Other studies correlate Chl a concentration with CH4 emissions
(Zhao et al. 2013; Harrison et al. 2017; Beaulieu et al. 2019;
Deemer and Holgerson 2021). Particulate organic matter derived
from phytoplankton appears to be an essential substrate for
methanogenesis (West et al. 2015; Martinez-Garcia et al. 2024).
Therefore, climatic forcing, water level and Chl a affect CHy
emissions under a more predictable pattern across latitudes
(Johnson et al. 2021).

N;O emissions also show a consistent temporal pattern
with the highest emissions during summer, at least in sub-
tropical reservoirs (Zhu et al. 2013; Musenze et al. 2014; Yang
et al. 2023). However, this pattern can be modified by other
factors such as dissolved oxygen concentrations, since high
dissolved oxygen concentrations can inhibit denitrification
and stimulate nitrification (Zhao et al. 2013; Yang et al. 2023).
Furthermore, N,O emissions may also be influenced by the
availability of nutrients and organic matter. For instance,
Leon-Palmero et al. (2020a, 2023) found that nitrogen and
phosphorus inputs in the reservoirs increase N,O concentra-
tion and emission because they can affect denitrifying bacteria
activity (Zhu et al. 2013).

In general, water temperature is a common driver for all
GHG emissions. However, the intensity of this factor and
the concurrence of other drivers can modulate the net
GHG emissions, making such emissions very idiosyncratic.
Disentangling these drivers is relevant since recent studies
point towards more extended stratification periods (Woolway
and Merchant 2019) with widespread deoxygenation in the
hypolimnion (Jane et al. 2021), more frequent heatwaves
(Woolway et al. 2021), and an increase of eutrophication
(Beaulieu et al. 2019).

Here, we determined the seasonal changes of CO,, CHy,
and N,O emissions in a Mediterranean reservoir. We hypothe-
size that the GHG emissions would be higher in summer than
in winter due to increasing temperatures. CH,4 ebullition and
N,O emissions will be accentuated in the summertime due
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also to reduction of water level and development of anoxic
conditions in the hypolimnion.

Materials and methods

Cubillas is a shallow, hardwater, eutrophic reservoir located
in the southeast of Spain (37°16'34"N, 3°40'24"W) with a sur-
face of 194.4 ha and a capacity of 13.53 hm®. The reservoir
has uniform bathymetry (Supporting Information Fig. S1).
The annual water level fluctuated approximately 3 m, with
the lowest values during fall. The main reservoir uses are irri-
gation and recreation.

To describe the GHGs phenology in this reservoir, we mon-
itored the fluxes of CO,, CH, (diffusive and ebullitive), and
N,O weekly from March 2021 to July 2022. We determined
CO,, CHy4, and N,O fluxes using a Cavity Ring-Down Spec-
trometer PICARRO G2508 connected to a floating chamber
placed on the water surface. On each sampling day, we took
4-6 measurements throughout the daytime at the same loca-
tion (Supporting Information Fig. S1). We calculated fluxes as
in Zhao et al. (2015) (Supporting Information). For the CHy4
fluxes, we also discriminate between diffusion and ebullition
using an adaptation of the algorithm proposed by Hoffmann
et al. (2017) (Supporting Information). The CO, equivalent
emissions were calculated by multiplying the mass-based flux
(in units of mg CO,, CHy, or N,O m~2 d~') by the 100-yr
global warming potential of each gas (1 for CO;, 27 for CHy,
and 273 for N,O; IPCC 2022).

We recorded the water temperature, oxygen concentra-
tion, and water depth using a SeaBird 19 plus profiler. We
determined the strength of the thermal stratification (see
Supporting Information Fig. S2 and the related text). To
obtain the wind speed data, we used a Davis® Wind Speed
and Direction Smart Sensor and a Campbell Scientific
WindSonic2. We determined the nitrate concentrations
using ion chromatography. We calculated gross primary
production (GPP), respiration (Res), and net ecosystem
production (NEP) using the diel oxygen method proposed
by Staehr et al. (2010) and data recorded using a PME min-
iDOT probe (10 min resolution) and a TriOS Dissolved
Oxygen Sensor (1 min resolution) located at 1 m depth
(Supporting Information).

We explored the potential drivers for each gas using linear
mixed-effects models (LMM) including sampling date as a ran-
dom factor. We selected several variables as potential fixed
predictors, including water temperature, wind speed, water
level, GPP, NEP, and nitrate concentration. The two-level
factor “period” (stratification vs. mixing) was excluded in all
models. This factor was strongly correlated with temperature
(Supporting Information).

Results and discussion

The study reservoir always acted as a source of CO,, CHy,
and N,O (i.e., all fluxes were positive). The CO, emissions

Phenology of greenhouse gas emissions

ranged from 12.5 to 567.02mg C m >d~! (Fig. 1a). We did
not find significant differences in the CO, fluxes between the
stratification and mixing periods (t=0.6, df=62,
p-value = 0.55) (Fig. 1b). These values are similar to other
temperate reservoirs (Barros et al. 2011; Morales-Pineda
et al. 2014; Deemer et al. 2016; Le6én-Palmero et al. 2020a).
The highest emissions were observed during spring and fall
and immediately after the disruption of Saharan dust deposi-
tion (see black arrows in Fig. la). This reservoir experiences
recurrent Saharan dust intrusions that transport phosphorus
and organic matter boosting bacterial and primary productiv-
ity (Morales-Baquero et al. 2006; Reche et al. 2009; De Vicente
et al. 2012). Therefore, these peaks in CO, emissions associ-
ated with Saharan dust deposition could be related to an
enhancement of bacterial metabolism with respect to primary
production. The lowest emissions were observed during the
summer. This seasonal pattern has been also observed in other
Mediterranean reservoirs which even found negative fluxes
(i.e., CO, uptake) during summertime (Samiotis et al. 2018;
Montes-Pérez et al. 2022) and in other subtropical (Yang et al.
2013; Pu et al. 2020) and boreal (Demarty and Tremblay 2019)
reservoirs. However, this pattern is less consistent in other
Northern-temperate (> S0°N) reservoirs with higher emissions
during summertime (Golub et al. 2023).

The total CH4 emissions ranged from 0.23 to 1204.82 mg
C m2d! (Fig. 1c, green dots), being significantly higher
(t=7.9, df =61, p-value <0.001) during the stratification
than during the mixing period (Fig. 1d). These values are
higher than those found in most tropical and Northern-
temperate reservoirs (Barros et al. 2011; Deemer et al. 2016)
and represent an upper limit in the emissions reported
for the Mediterranean reservoirs (Samiotis et al. 2018;
Leén-Palmero et al. 2020a; Montes-Pérez et al. 2022). The
diffusive fluxes ranged from 0.23 to 472.09 mg C m >d!
(Fig. 1c, yellow dots), whereas the ebullitive fluxes ranged
from 0 to 1200.89 mg C m 2 d~'. The ebullition contribu-
tion to the total CH4 emissions was lower than 20% during
the mixing period, whereas it was usually higher than 70%
during the stratification period accounting for up to 99.8%
of the total fluxes for some of the summer sampling dates.
These results are similar to those obtained in shallow reser-
voirs in Northern-temperate, Mediterranean, and tropical
latitudes (Keller and Stallard 1994; DelSontro et al. 2010,
2011; Miller et al. 2017; Montes-Pérez et al. 2022) but
higher than the emissions measured in deep reservoirs
(DelSontro et al. 2011).

The N,O fluxes ranged from 0 to 670.92 ugNm 2d!
(Fig. 1e). We observed higher emissions during August, but
without significant differences between the stratification and
the mixing period (t= 0.7, df = 64, p-value = 0.49) (Fig. 1f).
These values are similar to those found in boreal, Northern-
temperate, Mediterranean, and subtropical reservoirs (Liu et al.
2011; Musenze et al. 2014; Soued et al. 2016; Descloux et al.
2017; Liang et al. 2019; Le6n-Palmero et al. 2020a).
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Fig. 1. Seasonal changes in the CO, emissions (a) and the violin plots for the distribution of values during the mixing and stratification periods (b), seasonal
changes in the CH, total (green dots) and diffusive (yellow dots) emissions (c) and the violin plots for the distribution of values during the mixing and stratification
periods of total CH,4 emissions (d), seasonal changes in N,O emissions (e) and the violin plots for the distribution of values during the mixing and stratification periods
(F), and the seasonal changes in the climatic forcing due to CO,, CH4 and N,O emissions expressed in CO, equivalents in the Cubillas reservoir (g) and the violin plots
for the distribution of values during the mixing and stratification periods (h). In the time series, dots are the mean daily values from four to six measurements and the
whiskers are the minimum and maximum values. In the violin plots, black dots are the median, bars are the quartile 25-75%, and ***p < 0.001. Note the logarithmic
scale for the CH,4 emissions and the climatic forcing to improve visualization and the units of climatic forcing in g CO, equivalent. Dotted vertical lines represent the
change from year 2021 to 2022. [Correction added on June 4, 2024, after initial online publication: In Figure 1, the part figure 1d has been replaced in this version.]

The climatic forcing due to emissions of the three
GHGs was maximum during summer, reaching more than
10,000 mg CO, eq m >d~' (Fig. 1g) with significantly

more climatic forcing during stratified conditions than

when the

reservoir was

mixed (t=7.8, df=61, p-

value < 0.001) (Fig. 1h). Overall, we found the maximum
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climatic forcing during the summer due to the CHy and
N,O emissions.

In the case of CO, emissions, the main fixed drivers
included surface water temperature and wind speed (details of
the LMM in Supporting Information Table S1). The surface
water temperature ranged from 8.92°C to 28.52°C (Fig. 2a).
The wind speed ranged from 0 to 6.38 m s~ ! (Fig. 2b). Unex-
pectedly, the relationship between CO, emissions and water
temperature was quadratic (Fig. 2c). The CO. emissions
increased with the temperature up to approximately 20°C and
then decreased at higher temperatures. This result differs from
the previous ones reported in the literature, where the rela-
tionship between CO, emissions and temperature appears
linear and positive (Yang et al. 2013; Zhao et al. 2013; Golub
et al. 2023). This phenomenon could be related to the fact
that in hardwater systems, as the study reservoir, dissolved
inorganic carbon available for photosynthesis is mainly in the
form of HCOj. Some species of microalgae and cyanobacteria
have developed a mechanism that increases the bicarbonate
inside the cells at the carboxysome, where some enzymes
(e.g., carbonic anhydrase) convert this HCO; into CO, to
photosynthesis (Moroney and Ynalvez 2007). Therefore, pho-
tosynthesis coupled to calcite formation removes two bicar-
bonates: one HCOj3 for calcite formation (CaCO3;-+H™) and
the other one for photosynthesis that converts HCO; into
CO; and then in organic matter. Intracellular calcite forma-
tion during photosynthesis induces a substantial decrease in
bicarbonate and does not release CO, into the water column.
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In hardwater reservoirs, seasons or locations with high photo-
synthesis have been linked to calcite formation further
suggesting that the coupling of the two processes may be an
overlooked C sink with a substantial reduction in alkalinity
(Deemer et al. 2020; Escoffier et al. 2023; Perolo et al. 2023).
High temperatures promote cyanobacteria blooms (Paerl and
Paul 2012) and, consequently, during summertime, this pro-
cess could be accentuated, and CO, emissions reduced. Lépez
et al. (2011) showed that carbonate precipitation in summer-
time affects the metabolism-CO, emission relationship, and
Waldo et al. (2021a) found that the best predictors of CO,
emissions were surface pH and bicarbonate concentrations.
The CO, emissions also showed a positive linear correlation
with the wind speed (Fig. 2d). The higher wind speeds will
increase CO, emissions since wind intensity promotes gas
transfer from the water surface to the atmosphere. This obser-
vation is consistent with previous studies on the circadian
scale (Liu et al. 2016).

The main fixed predictors of the diffusive CH, emissions
were water temperature (Fig. 3a,d), water level (Fig. 3b,e), and
NEP (Fig. 3¢,f) (Supporting Information Table S1). Water level
ranged from 636.16 to 639.46 m above sea level (i.e., from
3.01 to 6.26 m depth), and NEP ranged from 0.06 to 1.04 mg
C L' d~’ In the case of the ebullitive fluxes, the main predic-
tors were only water temperature (Fig. 3a,g) and water level
(Fig. 3b,h). These robust correlations between water tempera-
ture and diffusive and ebullitive CH4 emissions agree with
previous studies (Yang et al. 2013; Yvon-Durocher et al. 2014;
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Fig. 2. LMMs for the main drivers of the CO; fluxes. Time series of water temperature (a) and wind speed (b). CO, emission as a function of water tem-
perature (c) and wind speed (d). The red dots are the observations (n = 268), the black lines are the fit lines, and the gray areas are the 95% confidence

intervals. Conditional R* = 0.72; marginal R? = 0.36.
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Mosher et al. 2015; Linkhorst et al. 2020). High temperatures
can intensify CH4 emissions due to changes in solubility and
an increase in sediment methanogenesis (Duc et al. 2010;
Yvon-Durocher et al. 2014). In the study reservoir, this relation-
ship is even steeper for the ebullitive flux (slope = 0.17) than
for the diffusive flux (slope = 0.06) (Supporting Information
Table S1; Fig. 3d,g). The effect of temperature on CH,4 emissions
is maybe more noticeable in shallow systems, as the heat is
transferred more efficiently throughout the water column to
the sediments (Natchimuthu et al. 2016). The water level
(i.e., hydrostatic pressure) was negatively correlated with both
fluxes (Fig. 3e,h). This predictor, like the temperature, was more
influential in the ebullition fluxes with a higher slope (—0.46)

than in the diffusion fluxes with a lower slope (—0.18)
(Supporting Information Table S1). Previous studies have also
reported similar results (DelSontro et al. 2011; Xiao et al. 2013;
Harrison et al. 2017; Linkhorst et al. 2020; Ledn-Palmero
et al. 2020a). Harrison et al. (2017) and Beaulieu et al. (2018)
showed that water level decline triggers the release of CHy-rich
bubbles from the sediments. Finally, the diffusive flux was also
positively correlated with NEP (Fig. 3f). There are at least two
non-exclusive underlying mechanisms to explain this relation-
ship. First, there is evidence of a direct link between CH,4
production and photosynthesis by picoeukaryotes and cyano-
bacteria in surface waters (e.g., Klintzsch et al. 2019; Bizi¢
et al. 2020; Leon-Palmero et al. 2020b), and previous works
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have reported maximum fluxes associated with spring algae
blooms (Waldo et al. 2021b). Second, methanogenesis in sedi-
ments appears to be boosted by phytoplanktonic organic mat-
ter exported to sediments (West et al. 2015, 2016). Indeed, we
have observed a lagged response between phytoplankton-
derived particulate organic matter and methane emissions in
the study reservoir (Martinez-Garcia et al. 2024). Similarly,
Bertolet et al. (2020) found a relationship between the CH,4
storage in the hypolimnion and the GPP. This result could
explain why we did not find a synchronous relationship
between NEP and the CH, ebullitive flux. This pattern with
maximum CH, emissions during summer was also observed in
previous studies of temperate latitudes (Jacinthe et al. 2012;
Beaulieu et al. 2014; McClure et al. 2020), and it differs from
that observed in boreal lakes with peaks shortly after ice-off
(Denfeld et al. 2018), in other temperate lakes with peaks during
the fall mixing (Encinas Fernandez et al. 2013) or in reservoirs
that experience flood control drawdowns (Harrison et al. 2017).
The main fixed drivers of N,O emissions were water tem-
perature (Fig. 4a,d), wind speed (Fig. 4b,e), and GPP (Fig. 4c,f)
(Supporting Information Table S1). The GPP values ranged
from 0.22 to 3.29 mg C L~! d~! (Fig. 4c). Surprisingly, we did
not find a significant relationship between the N,O emissions
and nitrate and these emissions decreased with increases of
GPP. Previous studies have also shown positive relationships
between N,O emissions and temperature (Zhu et al. 2013;
Musenze et al. 2014; Xiao et al. 2019; Yang et al. 2023) associ-
ated with increased microbial activity. An increment in wind

Phenology of greenhouse gas emissions

speed also stimulates the transference of N,O to the atmo-
sphere. Leén-Palmero et al. (2020a) also reported a relevant
influence of wind speed on N,O emissions. In previous stud-
ies, however, positive correlations between  Chl
a concentration (that could be considered as a surrogate of
primary production) and the emission of N,O have been
reported (Xiao et al. 2019).

All the results above highlight the importance of tempera-
ture in the Mediterranean zone as a driver of the three GHGs,
although the quadratic function obtained for CO, emissions
needs further exploration to unravel its ultimate causes.
Furthermore, autochthonous production only correlated
synchronously with diffusive CH4 emissions, but surprisingly
not with CO, emissions.

Finally, we compared our results (black and white triangles
in Fig. 5) with previous studies that reported GHG seasonal
dynamics in reservoirs and lakes across latitudes (Supporting
Information Tables S2-S4). In the case of CO, fluxes (Fig. 5a),
the variability range was broader—including negative fluxes—
in tropical/subtropical (0° to 30°), temperate low latitudes (light
orange bands 30° to 45°) that include the Mediterranean zone,
and temperate high latitudes (45° to 60°) than in the boreal
(> 60°) latitude that presented a lower amplitude. In the case of
CH, fluxes (Fig. 5b), all values were always positive (i.e., CHy
sources). The most wide-ranging variability was also found in
the systems from the 30°-45° latitudes (light orange bands),
and the lowest ones in the boreal systems (Fig. Sb). The same
observation was also reported by Johnson et al. (2021) using a
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Fig. 4. LMMs for the main drivers of the N,O fluxes. Time series of water temperature (a), wind speed (b), and GPP (c). N,O emission as function of
water temperature (d), wind speed (e), and GPP (f). The blue dots are the observations (n = 218), the black lines are the fit lines, and the gray areas are

the 95% confidence intervals. Conditional R? = 0.46; marginal R?=0.13.
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Fig. 5. Locations of the reservoirs and lakes with temporal variability of CO, (orange dots), CH, (green dots), and N,O (blue dots) fluxes found in the lit-
erature (Supporting Information Tables S2-S4) and our study reservoir (white triangle). The magnitude of seasonal variability in the fluxes is represented
by the line, the white dots represent the minimum values and the colored dots the maximum values, including the negative values for CO, fluxes (a)
CH,4 fluxes (b), and N;O fluxes (c). The variability of the study reservoir is represented by a line with white (minimum values) and black (maximum
values) triangles. The temperate low latitude from 30° to 45° (including the Mediterranean zone) is represented with a light orange shadow.

different approach. For N,O fluxes (Fig. 5¢), the most extensive
variability—including negative fluxes—was also observed in
the systems located at 30° to 45° latitudes, and the smallest
again in the boreal latitudes. Despite the lack of data for some
regions, this comparison emphasizes the relevance of including
seasonal variability, particularly from temperate low latitudes
from 30° to 45°, in the upscaling models and exploring local
drivers that can be easily obtained using remote sensing
approaches such as primary productivity and inundation sur-
face. In addition, new models should consider other sources of
variability not included here, such as the differences in fluxes
between day and night (Liu et al. 2016; Golub et al. 2023) and
the high spatial variability in some reservoir fluxes (Colas
et al. 2020; Linkhorst et al. 2020; Liu et al. 2021). This model
improvement could provide more accurate projections under
future scenarios of increasing temperatures and more extended
stratification periods (Woolway and Merchant 2019) resulting

in anoxic hypolimnia (Jane et al. 2021), which can enhance
methanogenesis and denitrification, as well as more severe
eutrophication (Beaulieu et al. 2019).
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