OME Local |
OME Nacional |
OIM |
OME Andalucía |
Retos UJA |
Nota. El problema también se puede resolver mediante combinaciones con repetición usando separadores. Expresando $x=1+x'$, $y=1+y'$ y $z=1+z'$, tenemos que encontrar la cantidad de ternas $x',y',z'\geq 0$ tales que $x'+y'+z'=36$, lo que equivale a elegir dos separadores en una lista de $36+2=38$ elementos, esto es, el número de soluciones es \[\binom{38}{2}=\frac{38\cdot 37}{2}=703.\]
Pongamos $x=AC$ y $r=AO$. Entonces, $CO=r-x$ y el teorema de la altura en el triángulo rectángulo $ADO$ nos dice que $CD^2=AC\cdot CO=x(r-x)$, de donde $AD^2=AC^2+CD^2=x^2+x(r-x)=rx$ por el teorema de Pitágoras. De forma similar, en el triángulo rectángulo $AEO$, el teorema de la altura nos dice que $CE^2=AC\cdot CB=x(2r-x)$, luego \[AE^2=AC^2+CE^2=x^2+x(2r-x)=2xr=2AD^2,\] como queríamos probar.
Si dividimos $2003$ entre $360$, obtenemos cociente $5$ y resto $203$, es decir, $2003^\circ$ consiste en dar 5 vueltas a la circunferencia goniométrica y añadir $203^\circ$, lo que nos da la solución más cercana $5\cdot 360^\circ+225^\circ=2025^\circ$ y esta es la respuesta buscada.
Los triángulos sombreados $PDE$, $SCE$ y $SRQ$ son semejantes (son rectángulos y es muy fácil ver que tienen otro ángulo igual). Como $EC=1-DE=1-x$ se corresponde en la semejanza con $PD= \frac{1-x^2}{2}$, el factor de proporcionalidad para pasar de $PDE$ a $SCE$ es $\frac{2}{1+x}$, luego deducimos que $SCE$ tiene perímetro $2$ (la mitad del perímetro del cuadrado, lo que responde a una de las preguntas del enunciado. Así, las longitudes de los lados de $SCE$ (nos las piden también en el enunciado) son \[CE=\frac{2x}{1+x},\qquad SC=1-x,\qquad SE=\frac{1+x^2}{1+x}.\] Ahora observamos que $SR=1-SE=\frac{x(1-x)}{1+x}$. Como este lado se corresponde con $SC=1-x$ en la semejanza, tenemos que el factor de semejanza para pasar de $SCE$ a $SRQ$ es $\frac{1-x}{2}$, por lo que el perímetro de $SRQ$ es $2\cdot \frac{1-x}{2}=1-x$ y sus lados vienen dados por \[RQ=\frac{x(1-x)}{1+x},\qquad SR=\frac{(1-x)^2}{2},\qquad SQ=\frac{(1+x^2)(1-x)}{2(1+x)}.\] La suma de los perímetros de $PDE$ y $SRQ$ es $(1+x)+(1-x)=2$, el perímetro de $SCE$, luego ya hemos demostrado todo lo que nos piden.
Nota. Para conseguir la configuración final, hemos puesto los dos primos menores ($2$ y $3$) en la misma esquina con configuraciones simétricas, los dos siguientes ($5$ y $7$) en la esquina opuesta y $11$ y $13$ en las otras dos esquinas. Al hacer esto, obteníamos en una casilla el número $11\cdot 13$, que se pasaba de $100$, pero hemos podido resolver el problema intercambiando los papeles del $7$ y el $11$.
Nota. Este esquema para calcular probabilidades, aunque puede parecer sofisticado, es un método establecido en matemáticas conocido como cadenas de Markov. Si quisiéramos hacer un árbol con todas las posibilidades, sería infinito ya que podría ocurrir que nunca nadie saque un $6$. De esta manera, se entiende mucho mejor la logística del juego.