OME Local |
OME Nacional |
OIM |
OME Andalucía |
Retos UJA |
Si $x=2$ es solución, sustituyendo en la ecuación original obtenemos que $(2-a)(2-b)=1$ y, si $x=4$ es solución, entonces $(4-a)(4-b)=-1$. Si ambos valores de $x$ son soluciones, entonces $4-a$ y $2-a$ son iguales a $\pm 1$ y, como se diferencian en $2$ unidades, tiene que ser $4-a=1$ y $2-a=-1$, es decir, $a=3$. Sustituyendo $a=3$ en $(2-a)(2-b)=1$, tenemos que $2-b=-1$ y, por tanto, $b=3$. No obstante, $a=b=3$ no cumple $(4-a)(4-b)=-1$ y hemos llegado a una contradicción.
Nota. Una dificultad de este problema es que la intuición parece decirnos que la coloración no puede existir ya que hay demasiadas rectas posibles. Sin embargo, si nos ponemos en que sí puede existir y pensamos en que en cada recta con al menos dos colores estos alternan, es fácil llegar a la solución propuesta.
Para $k=1$, está claro que $a_1=1$ (es un lado del polígono) y $a_2=d_2$ por simetría de este primer triángulo respecto de la mediatriz del lado $BC$. Supongamos entonces cierto que $a_{k-1}a_k=d_{k-1}$ para cierto $k$ y probemos que $a_ka_{k+1}=d_k$. Para ello, consideramos el triángulo que se obtiene al unir los triángulos $(k-1)$-ésimo y $k$-ésimo, que tiene por lados $a_{k-1}$, $a_{k+1}$ y $d_{k-1}+d_k$, de forma que $a_k$ es la longitud de una de sus bisectrices interiores. El teorema de la bisectriz (ver la nota) nos da entonces el resultado deseado: \[\frac{a_{k+1}}{d_k}=\frac{a_{k-1}}{a_{k-1}a_k}=\frac{1}{a_k}\ \Leftrightarrow\ a_ka_{k+1}=d_k.\]
Nota. El teorema de la bisectriz nos dice que la bisectriz interior de un triángulo desde un vértice divide al lado opuesto en dos segmentos proporcionales a los lados correspondientes.
Finalmente, descartamos también que el número sea un decimal exacto. Esto viene de que el denominador $n (n+1) (n+2)$ es múltiplo de $3$ (es el producto de tres enteros consecutivos) mientras que el numerador $3n^2+6n+2$ deja resto $2$ al dividirlo entre $3$. Un número decimal limitado se tiene que poder escribir como una fracción en la que el denominador sólo tiene factores $2$ o $5$, pero este argumento nos dice que en cualquier fracción que exprese a este número habrá un factor $3$ en el denominador.
Nota. Si se alcanza la igualdad en la desigualdad del enunciado, entonces $r=s=u=v=\frac{1}{2}$.
En cuanto al apartado (b), calculamos el área del triángulo de dos formas distintas. Por un lado, $S=\frac{1}{2}(a+b+c)r$ y por otro $S=\frac{1}{2} ah_a$, siendo $h_a$ la altura relativa al vértice $A$. Sustituyendo $a=\frac{b+c}{2}$ en ambas expresiones e igualándolas, se llega directamente a que $h_a=3r$.
Finalmente, para el apartado (c) usaremos la fórmula $abc=4RS$ y la fórmula de Herón, de forma que \begin{align*} R-r&=\frac{abc}{4S}-\frac{2S}{a+b+c}=\frac{abc(a+b+c)-8S^2}{4(a+b+c)S}\\ &=\frac{abc(a+b+c)-\frac{1}{2}(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4(a+b+c)S}\\ &=\frac{2abc-(-a+b+c)(a-b+c)(a+b-c)}{8S}=\frac{(b+c)bc-\frac{b+c}{2}(\frac{-b+3c}{2})(\frac{3b-c}{2})}{8S}\\ &=\frac{(b+c)(3b^2-2bc+3c^2)}{64S}=\frac{abc\cos(A)}{4S}=R\cos(A). \end{align*} Si $O$ es el circuncentro y $M$ el punto medio de $BC$, entonces el triángulo $BOM$ es rectángulo y tiene $\angle COM=A$ ya que este es la mitad del ángulo central. Por tanto, en este triángulo rectángulo se cumple que $\cos(A)=\frac{OM}{OB}$, es decir, $OM=OB\cos(A)=R\cos(A)$ y hemos terminado.
Nota. Probablemente, la demostración del apartado (c) no sea la más elegante, pero es sistemática en el sentido de que expresamos $R-r$ en función únicamente de los lados $a,b,c$. Luego se puede expresar también $OM$ en términos de estos lados y usando la condición $a=\frac{b+c}{2}$ se tiene que conseguir probar el enunciado. En la solución propuesta, se ha introducido además el área y el coseno de $A$ como atajo para evitar más cálculos.