OME Local |
OME Nacional |
OIM |
OME Andalucía |
Retos UJA |
Nota. El poliedro en cuestión existe y se llama cuboctaedro truncado. Puede verse en la figura de arriba (extraída de Wikipedia). ¿Sabrías contar el número de aristas? ¿Sabrías probar que es el único poliedro tal que en cada vértice concurren un cuadrado, un hexágono y un octógono? En otras palabras, los datos de 12 cuadrados, 8 hexágonos y 6 octógonos son redundantes.
La única posibilidad que nos queda es $x=2$, que nos da $y=f(x)=f(2)=2$ y $z=f(y)=f(2)=2$. En consecuencia, $x=y=z=2$ es la única solución del sistema.
Con todo esto, tenemos tres ecuaciones lineales que involucran a las incógnitas $S_1$, $S_2$, $S_5$, $S_6$ y $S_3+S_4$. El sistema no es compatible determinado pero nos permite despejar en términos de $S_1$ el resto de áreas (¡compruébalo!): \[S_2=S_1,\qquad S_6=\frac{2}{3}S_2,\qquad S_5=\frac{1}{3}S_1,\qquad S_3+S_4=S_1.\] Ahora bien, si llamamos $x=AP$ y $20-x=PF$, podemos hacer un truco similar a los anteriores ya que las áreas de $APC$ y $PFC$ son proporcionales a $x$ y $20-x$ y también lo son las de $APB$ y $PBF$. Esto nos da las relaciones siguientes: \[\frac{S_1+S_2}{x}=\frac{S_3}{20-x},\qquad \frac{S_5+S_6}{x}=\frac{S_4}{20-x}.\] Sumando ambas expresiones y poniendo todo en función de $S_1$, nos queda \[\frac{S_1+S_2+S_5+S_6}{x}=\frac{S_4+S_5}{20-x}\ \Longleftrightarrow\ \frac{3S_1}{x}=\frac{S_1}{20-x}.\] Eliminando $S_1$ de ambos miembros, la ecuación se resuelve fácilmente y nos da $x=15$. Por lo tanto, también podemos despejar $S_3$ y $S_4$ en términos de $S_1$: \[S_3=\frac{20-x}{x}(S_1+S_2)=\frac{2}{3}S_1,\qquad S_4=\frac{20-x}{x}(S_5+S_6)=\frac{1}{3}S_1.\]
Ya solamente nos queda calcular $S_1$ y esta es la parte difícil. Como $S_1=S_2$, se sigue que $D$ es el punto medio de $AC$, luego $PD$ es la mediana de $APC$. La mediana puede calcularse en función de los lados como \[36=AD^2=\frac{AP^2+PC^2}{2}-\frac{AC^2}{4}=\frac{15^2+9^2}{2}-\frac{AC^2}{4}\ \Leftrightarrow\ AC^2=468,\] de donde $CD=\frac{1}{2}AC=\sqrt{117}$. Como $PC^2+PD^2=9^2+6^2=117$, el triángulo $DPC$ es rectángulo. y podemos calcular $S_1=S_2=\frac{1}{2}\cdot 6\cdot 9=27$. Por tanto, el área de $ABC$ es \[S_1+S_2+S_3+S_4+S_5+S_6=S_1+S_1+\frac{2}{3}S_1+\frac{1}{3}S_1+\frac{1}{3}S_1+\frac{2}{3}S_1=4S_1=108.\]
Nota. Si no nos damos cuenta en el paso final de que el triángulo es rectángulo, siempre podríamos haber usado la fórmula de Herón en $APD$. Es relativamente difícil caer en la cuenta de que $DPC$ es rectángulo (al escribir esta solución, se vio lo del triángulo rectángulo por haberlo dibujado previamente con Geogebra).
Para calcular $\alpha$, podemos suponer que $T$ tiene lado $1$. Seccionando $T$ por un plano que contiene a una de sus aristas y al punto medio de la arista opuesta. El triángulo en la intersección es isósceles y tiene un lado de longitud $1$, la arista de $T$, y los otros dos de longitud $\frac{\sqrt{3}}{2}$, la altura de una de las caras de $T$. El ángulo que buscamos es el que forman estos dos lados iguales, que puede calcularse como \[\alpha=2\,\mathrm{arcsen}\left(\frac{1/2}{\sqrt{3}/2}\right)=2\,\mathrm{arcsen}\left(\frac{1}{\sqrt{3}}\right)\gt 2\,\mathrm{arcsen}\left(\frac{1}{2}\right)=60^\circ.\] Además, está claro que $\alpha\lt 90^\circ$, por lo que no pueden completarse $90^\circ$ sumando un cierto número entero de ángulos iguales a $\alpha$.
Nota. Este es un resultado relativamente conocido en el ámbito de la geometría de olimpiadas. ¿Sabrías probar que $AH=2R\cos A$ y $OM=R\cos A$, siendo $R$ el radio de la circunferencia circunscrita? ¿Sabrías probar a partir de este resultado que las rectas $OA$ y $MH$ se cortan en un punto de la circunferencia circunscrita?
Nota. Las exponenciales pueden ocultar la aplicación de la desigualdad entre las medias aritmética-geométrica, pero una solución similar se tiene aplicando la desigualdade de Jensen a la función convexa $f(t)=3^t$. ¿Sabrías escribir los detalles?
Por tanto, tenemos tantos planos ecualizadores como particiones: hay $3$ particiones de $2+2$ puntos y $4$ particiones de $3+1$ puntos, lo que nos da un total de $7$ planos ecualizadores.
Nota. Este fue también el problema 4 de la fase nacional de la Olimpiada Matemática Española de 1995.
Nota. La igualdad se cumple cuando $h_1=h_2=h_3$, luego los tres triángulos pequeños deben ser iguales (congruentes). Esto se cumple si y solo si $P$ es el baricentro del triángulo. ¿Sabrías demostrarlo?