Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Selector
La base de datos contiene 1154 problemas y 775 soluciones.

XLIII Olimpiada Matemática Española (fase nacional) — 2007

Sesión 1 —  Torrelodones, 23 de marzo de 2007

Problema 268
Sean $a_0$, $a_1$, $a_2$, $a_3$ y $a_4$ cinco números positivos en progresión aritmética de diferencia $d$. Probar que \[a_2^3\leq\frac{1}{10}(a_0^3+4a_1^3+4a_3^3+a_4^3){.}\]
pistasolución 1info
Pista. ¿Qué ocurre si escribimos $a_0=a-2d$, $a_1=a-d$, $a_2=a$, $a_3=a+d$ y $a_4=a+2d$?
Solución. La desigualdad del enunciado es equivalente a probar que \[a_0^3+4a_1^3-10a_2^3+4a_3^3+a_4^3\geq 0{.}\] Por la simetría del término de la izquierda, escribamos \[a_0=a-2d,\quad a_1=a-d,\quad a_2=a,\quad a_3=a+d,\quad a_4=a+2d.\] Sustituyendo y desarrollando los cubos tenemos que \[a_0^3+4a_1^3+4a_3^3+a_4^3-10a_2^3=(a-2d)^3+4(a-d)^3-10a^3+4(a+d)^3+(a+2d)^3=48ad^2{,}\] que evidentemente es positivo ya que $a=a_2\gt 0$ y $d\geq 0$.

Nota. La igualdad se alcanza si, y sólo si, $d=0$. La desigualdad sigue siendo cierta siempre que $a_2\geq 0$ (no es necesario que todos los términos sean positivos); de hecho, si $a_2\leq 0$, se obtiene una desigualdad en sentido contrario.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 823
Determinar todos los posibles valores enteros no negativos que puede tomar la expresión \[\frac{m^2+mn+n^2}{mn-1},\] siendo $m$ y $n$ enteros no negativos tales que $mn\neq 1$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 824
Sea $O$ el circuncentro de un triángulo $ABC$. La bisectriz que parte de $A$ corta al lado opuesto en $P$. Probar que se cumple que \[AP^2+OA^2-OP^2=bc.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 2 —  Torrelodones, 24 de marzo de 2007

Problema 825
¿Cuáles son los números enteros positivos que se pueden obtener de exactamente $2007$ maneras distintas como suma de al menos dos números enteros positivos consecutivos? ¿Cuál es el menor de todos ellos?

Por ejemplo, el número $9$ se escribe exactamente de dos maneras distintas: $9=4+5$ y $9=2+3+4$.

pistasolución 1info
Pista. Si $n$ se escribe como suma de $k$ enteros consecutivos y el menor de ellos es $a$, demuestra en primer lugar que se debe cumplir $2n=k(2a+k-1)$, luego la solución tiene algo que ver con los divisores de $2n$.
Solución. Pongamos que $n$ es suma de $k$ números consecutivos. Si llamamos $a\geq 1$ al menor de ellos, usando la conocida fórmula para la suma de los $k-1$ primeros naturales, tenemos que \begin{align*} n=a+(a+1)+\ldots+(a+k-1)&=ka+1+2+\ldots+(k-1)\\ &=ka+\frac{k(k-1)}{2}=k\left(a+\frac{k-1}{2}\right). \end{align*} Esto se puede expresar equivalentemente como \[2n=k(2a+k-1).\] Por tanto, $k$ y $2a+k-1$ deben ser divisores complementarios de $2n$ y además se cumple $2a+k-1\gt k$ ya que $a\geq 1$. Para cada divisor $d$ de $2n$ tal que $1\lt d\lt\sqrt{2n}$, tenemos una posible solución $k=d$ y $2a+k-1=\frac{2n}{d}$, o equivalentemente $2a=\frac{2n}{d}-d+1$. Esto nos da un valor de $a$ positivo, pero podría no ser entero. Si $d$ es impar, entonces $\frac{2n}{d}-d+1$ es par, luego no hay problema. Si $d$ es par, entonces $\frac{2n}{d}-d+1$ es par si y solo si $\frac{2n}{d}$ es impar, es decir, si $d$ es múltiplo de la mayor potencia de $2$ que divide a $n$. En otras palabras, si $\frac{2n}{d}$ es un divisor impar de $n$ (en este caso, la condición $1\lt d\lt\sqrt{2n}$ nos dice que $\sqrt{2n}\lt \frac{2n}{d}\lt 2n$).

Lo anterior se resume diciendo que tenemos una suma de enteros consecutivos igual a $n$ por cada divisor impar de $2n$ distinto del $1$ (aunque $2n$ fuera un cuadrado perfecto, $\sqrt{2n}$ no sería nunca un divisor impar, luego no daría problemas). Si descomponemos en factores primos \[n=2^ap_1^{e_1}p_2^{e_2}\cdots p_r^{e_r},\] con $p_1,\ldots,p_r$ primos impares distintos, entonces $2n$ tiene exactamente $(e_1+1)(e_2+1)\cdots(e_r+1)-1$ divisores impares distintos de $1$ (restamos $1$ por esto último). Por tanto, la condición que estamos buscando es que los exponentes de los primos impares verifiquen \[(e_1+1)(e_2+1)\cdots(e_r+1)=2008.\] Como $2008=2^3\cdot 251$ y $251$ es primo, tenemos pocas posibilidades para el menor número que verifica la condición del enunciado (ponemos los exponentes más grandes a los primos más pequeños):

  • Si $r=1$ y $e_1=2007$, entonces tenemos $n=3^{2007}$.
  • Si $r=2$ y $(e_1,e_2)=(1003,1)$, entonces $n=3^{1003}\cdot 5$.
  • Si $r=2$ y $(e_1,e_2)=(501,3)$, entonces $n=3^{501}\cdot 5^3$.
  • Si $r=2$ y $(e_1,e_2)=(250,7)$, entonces $n=3^{250}\cdot 5^7$.
  • Si $r=3$ y $(e_1,e_2,e_3)=(501,1,1)$, entonces $n=3^{501}\cdot 5\cdot 7$.
  • Si $r=3$ y $(e_1,e_2,e_3)=(250,3,1)$, entonces $n=3^{250}\cdot 5^3\cdot 7$.
  • Si $r=4$ y $(e_1,e_2,e_3,e_4)=(250,1,1,1)$, entonces $n=3^{250}\cdot 5\cdot 7\cdot 11$.
De todos estos números, el menor es $n=3^{250}\cdot 5\cdot 7\cdot 11$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 193
Sea $a\neq 1$ un número real positivo y $n\in\mathbb{N}$ mayor que $1$. Demostrar que \[n^2\lt\frac{a^n+a^{-n}-2}{a+a^{-1}-2}.\]
pistasolución 1info
Pista. La raíz cuadrada del miembro de la derecha es la suma de los términos de una progresión geométrica.
Solución. Observemos en primer lugar que \[\frac{a^n+a^{-n}-2}{a+a^{-1}-2}=\frac{(a^n-1)^2}{a^{n-1}(a-1)^2}.\] Por tanto, la desigualdad a probar es equivalente a \[n\lt \frac{a^n-1}{a^{(n-1)/2}(a-1)}=\frac{1}{a^{(n-1)/2}}(1+a+a+\ldots+a^{n-1}),\] donde hemos usado la fórmula de la suma de los términos de una progresión aritmética. No es demasiado fácil darse cuenta de esta forma de escribirlo, pero es necesario reconocer la fracción $(a^n-1)/(a-1)$ en cualquier contexto. Por tanto, tenemos que probar que \[n\lt a^{(1-n)/2}+a^{(3-n)/2}+a^{(5-n)/2}+\ldots+a^{(n-3)/2}+a^{(n-1)/2}.\] Ahora bien, el producto de todos los sumandos del miembro de la derecha es igual a $1$ (¿por qué?), luego la desigualdad es consecuencia de la desigualdad entre las medias aritmética y geométrica. Notemos que no se puede dar la igualdad ya que, en tal caso, todos estos sumando habrían de ser iguales, con lo que $a=1$, pero el enunciado descarta este caso.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 826
Dada una semicircunferencia de diámetro $AB=2R$, se considera una cuerda $CD$ de longitud fija $c$. Sea $E$ la intersección de $AC$ con $BD$ y $F$ la intersección de $AD$ con $BC$. Probar que el segmento $EF$ tiene longitud constante y dirección constante al variar la cuerda $CD$ sobre la semicircunferencia.
pistasolución 1info
Pista. Demuestra que $E$ y $F$ se mueven sobre arcos de circunferencia que unen $A$ y $B$ al variar $CD$ sin cambiar su longitud.
Solución. Vamos a suponer que los puntos de la circunferencia están dispuestos consecutivamente en el orden $A,C,D,B$, como se ve en la figura, de forma que $E$ es exterior y $F$ es interior al semicírculo.

Es muy fácil darse cuenta de la recta $EF$ ha de ser perpendicular a $AB$: dado que los ángulos $\angle ACB$ y $\angle ADB$ son rectos por comprender al diámetro $AB$ en la semicircunferencia, se tiene que $AD$ y $BC$ son alturas del triángulo $AEB$, luego $F$ es su ortocentro y $EF$ es la tercera altura, que debe ser perpendicular al lado $AB$. Tenemos así que la dirección del segmento $EF$ no varía.

Veamos ahora que su longitud tampoco varía. Por la propiedad del arco capaz, el ángulo $\alpha=\angle CAD=\angle CBD$ sólo depende de $c$, no de la posición concreta de la cuerda $CD$. Como los ángulos $\angle ACB$ y $\angle ADB$ son rectos por comprender al diámetro $AB$ en la semicircunferencia, deducimos que $\angle AEB=90-\alpha$. Además, como la suma de los ángulos del cuadrilátero $ECFD$ es $360$, tenemos también que $\angle AFB=\angle CFD=90+\alpha$. Todo ello nos dice que los puntos $E$ y $F$ se mueven en sendos arcos de circunferencia con extremos $A$ y $B$ (al variar la cuerda $CD$ sin modificar su longitud), como puede verse en la figura. Además, como los ángulos con los que $E$ y $F$ ven al segmento $AB$ son $90-\alpha$ y $90+\alpha$, que suman $180$, estas circunferencias son simétricas respecto de $AB$. En particular, tienen el mismo radio y, al pasar por $A$ y $B$, tiene que ser una trasladada de la otra en la dirección perpendicular a $AB$. De esta forma, la longitud del segmento $EF$ es la del vector de traslación, o sea, constante.

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre