Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Selector
La base de datos contiene 1154 problemas y 775 soluciones.

XLV Olimpiada Matemática Española (fase nacional) — 2009

Sesión 1 —  Sant Feliu de Guíxols, 27 de marzo de 2009

Problema 850
Halla todas las sucesiones de $n$ números naturales consecutivos $a_1,a_2,\ldots,a_n$, con $n\geq 3$, tales que \[a_1+a_2+\ldots+a_n=2009.\]
pistasolución 1info
Pista. Expresa $a_k=a_1+k-1$ y usa la fórmula de la suma de los primeros $n-1$ números naturales.
Solución. Si los números son consecutivos, podemos escribir $a_2=a_1+1$, $a_3=a_1+2$,... y así sucesivamente. Esto nos dice que $a_{k}=a_1+k-1$ y, por tanto, \[a_1+\ldots+a_n=a_1+1+a_1+2+\ldots+a_1+(n-1)=na_1+\frac{(n-1)n}{2},\] donde hemos usado la fórmula $1+2+\ldots+k=\frac{k(k+1)}{2}$ de la suma de los primeros $k$ naturales para $k=n-1$. Esto nos dice que la condición del enunciado se traduce en \[na_1+\frac{(n-1)n}{2}=2009\ \Leftrightarrow\ n(2a_1+n-1)=4018.\] De esta forma, $n$ tiene que ser un divisor mayor o igual que $3$ de $4018$ y $2a_1+n-1$ su divisor complementario. Los divisores positivos de $4018=2\cdot 7^2\cdot 41$ pueden calcularse fácilmente y son \[{1, 2, 7, 14, 41, 49, 82, 98, 287, 574, 2009, 4018}\] Como $2a_1+n-1\gt n$, realmente $n$ tiene que ser menor que $\sqrt{4018}\lt 64$, por lo que de los divisores sólo nos quedamos con cuatro casos:
  • $n=7$ y $2a_1+n-1=574$ nos da $a_1=284$ y la sucesión \[\{284,285,286,\ldots,290\}.\]
  • $n=14$ y $2a_1+n-1=287$ nos da $a_1=137$ y la sucesión \[\{137,138,139,\ldots,150\}.\]
  • $n=41$ y $2a_1+n-1=98$ nos da $a_1=29$ y la sucesión \[\{29,30,31,\ldots,69\}.\]
  • $n=49$ y $2a_1+n-1=82$ nos da $a_1=17$ y la sucesión \[\{17,18,19,\ldots,65\}.\]
Estas son las únicas cuatro sucesiones de naturales consecutivos que suman $2009$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 851
Sean $ABC$ un triángulo acutángulo, $I$ el centro de la circunferencia inscrita, $r$ su radio y $R$ el radio de la circunferencia circunscrita. Se traza la altura $AD=h_a$, con $D$ perteneciente al lado $BC$. Demuestra que \[DI^2=(2R-h_a)(h_a-2r).\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 852
Se pintan de rojo algunas de las aristas de un poliedro regular. Se dice que una coloración de este tipo es buena si, para cada vértice del poliedro, existe una arista que concurre en dicho vértice y que no está pintada de rojo. Por otro lado, se dice que dicha coloración es completamente buena si, además de ser buena, ninguna cara del poliedro tiene todas sus aristas pintadas de rojo. ¿Para qué poliedros regulares es igual el número máximo de aristas que se pueden pintar en una coloración buena y en una completamente buena? Justificar la respuesta.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 2 —  Sant Feliu de Guíxols, 28 de marzo de 2009

Problema 853
Determinar justificadamente todos los pares de números enteros $(x,y)$ que verifican la ecuación \[x^2-y^4=2009.\]
pistasolución 1info
Pista. Factoriza $x^2-y^4$ como una diferencia de cuadrados.
Solución. Por simplicidad, podemos suponer que $x,y\geq 0$ cambiándolos de signo si fuera necesario. Es bastante evidente la factorización $x^2-y^4=(x-y^2)(x+y^2)$ como diferencia de cuadrados, por lo que, para cada divisor positivo $d$ de $2009$ tenemos una potencial solución con $x-y^2=d$ y $x+y^2=\frac{2009}{d}$. Como $2009$ es impar, las soluciones de este sistema \[x=\frac{\frac{2009}{d}+d}{2},\qquad y^2=\frac{\frac{2009}{d}-d}{2}\] son números enteros, pero es necesario comprobar para qué elecciones de $d$ el segundo término $\frac{\frac{2009}{d}-d}{2}$ es un cuadrado perfecto. Para que sea positivo, además tendremos que $0\lt d\leq\sqrt{2009}\lt 45$, lo que nos deja solamente tres posibilidades:
  • $d=1$ nos da $y^2=1004$, que no es un cuadrado perfecto.
  • $d=7$ nos da $y^2=140$, que no es un cuadrado perfecto.
  • $d=41$ nos da $y^2=4$, luego $y=2$ y $x=45$.
Finalmente, teniendo en cuenta que habíamos supuesto que las soluciones son positivas, deducimos que las soluciones enteras son $(-45,-2)$, $(-45,2)$, $(45,-2)$ y $(45,2)$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 854
Dados $a,b,c$ números reales positivos tales que $abc=1$, demostrar que \[\left(\frac{a}{1+ab}\right)^2+\left(\frac{b}{1+bc}\right)^2+\left(\frac{c}{1+ca}\right)^2\geq\frac{3}{4}.\]
pistasolución 1info
Pista. Te pueden ser útiles la desigualdad entre las medias aritmética y cuadrática y la desigualdad de Nesbitt.
Solución. La condición $abc=1$ puede eliminarse si escribimos $a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}$, siendo ahora $x,y,z\gt 0$ reales positivos arbitrarios. Esto nos permite escribir la desigualdad a probar como \[\left(\frac{zx}{yz+xy}\right)^2+\left(\frac{xy}{zx+yz}\right)^2+\left(\frac{yz}{xy+zx}\right)^2\geq\frac{3}{4}.\] Por un lado, la desigualdad entre las medias aritmética y cuadrática nos da \[\left(\frac{zx}{yz+xy}\right)^2+\left(\frac{xy}{zx+yz}\right)^2+\left(\frac{yz}{xy+zx}\right)^2\geq\frac{1}{3}\left(\frac{zx}{yz+xy}+\frac{xy}{zx+yz}+\frac{yz}{xy+zx}\right)^2.\] Por otro lado, por la desigualdad de Nesbitt (véase la nota), tenemos que \[\frac{zx}{yz+xy}+\frac{xy}{zx+yz}+\frac{yz}{xy+zx}\geq\frac{3}{2}.\] Combinando estas dos desigualdades, obtenemos la del enunciado.

Nota. La desigualdad de Nesbitt nos dice que \[\frac{A}{B+C}+\frac{B}{C+A}+\frac{C}{A+B}\geq\frac{3}{2}\] para cualesquiera reales positivos $A,B,C$. La igualdad se tiene cuando $A=B=C$. En nuestro caso, la hemos aplicado para $A=zx$, $B=xy$ y $C=yz$, luego si la igualdad se alcanza, se tiene que $x=y=z$. Esto nos lleva a que la igualdad en la desigualdad original se tiene sólo para $a=b=c=1$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 855
En el interior de una circunferencia de centro $O$ y radio $r$, se toman dos puntos $A$ y $B$ simétricos respecto de $O$. Se considera $P$ un punto variable sobre esta circunferencia y se traza la cuerda $PP'$ perpendicular a $AP$. Sea $C$ el punto simétrico de $B$ respecto de $PP'$. Hallar el lugar geométrico del punto $Q$, interseccion de $PP'$ con $AC$ al variar $P$ sobre la circunferencia.
pistasolución 1info
Pista. Demuestra que $AQ+BQ$ es constante cuando se mueve $P$.
Solución. Consideremos los puntos $S$ y $S'$ simétricos de $P$ y $P'$ respecto del centro de la circunferencia, lo que define un rectángulo inscrito $PP'SS'$. Además, como $AP'$ es perpendicular a $PP'$, se tiene que $A$ pertenece al interior del segmento $PS'$ y $B$, por simetría, pertenece al segmento $SP'$. Por la simetría respecto de $O$ y la simetría de $B$ y $C$ respecto de $PP'$, s e tiene que $AS'=BP'=P'C$. Como los segmentos $AS'$ y $P'C$ son paralelos (están en lados opuestos del rectángulo), se tiene que $AS'P'C$ es un paralelogramo, luego $AC=P'S'=2r$. Finalmente, observamos que $QC=QB$ por simetría, luego $AQ+QB=AQ+QC=2r$ y deducimos que la suma de las distancias de $Q$ a $A$ y $B$ es constante. Esto nos asegura que $Q$ está en una elipse de focos $A$ y $B$.

Nos queda determinar de qué elipse se trata concretamente ya que hay infinitas con focos $A$ y $B$. Si prolongamos $AB$ hasta que corte en un punto $X$ a la circunferencia, se tiene claramente que $AX+XB=2r$, luego $X$ también está en la misma elipse. Como la elipse es simétrica respecto de la recta $AB$, no queda otra que ser tangente a la circunferencia en $X$. Además, como $Q$ pertenece a la cuerda $PP'$, los puntos de la elipse siempre son interiores a la circunferencia. Concluimos que el lugar geométrico es la única elipse de focos $A$ y $B$ tangente interiormente a la circunferencia.

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre