Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Selector
La base de datos contiene 1154 problemas y 775 soluciones.

L Olimpiada Matemática Española (fase local) — 2014

Sesión 1 —  Viernes 17 de enero de 2014 (mañana)

Problema 953
Tenemos $50$ fichas numeradas del $1$ al $50$ y hay que colorearlas de rojo o azul. Sabemos que la ficha $5$ es de color azul. Para la coloración del resto de fichas se siguen las siguientes reglas:
  • Si la ficha con el número $x$ y la ficha con el número $y$ son de distinto color, entonces la ficha con el número $|x-y|$ se pinta de color rojo.
  • Si la ficha con el número $x$ y la ficha con el número $y$ son de distinto color y $1\leq xy\leq 50$, entonces la ficha con el número $xy$ se pinta de color azul.
Determinar cuántas coloraciones distintas se pueden realizar en el conjunto de fichas verificando estas reglas.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 954
Determinar cuántas soluciones reales tiene la ecuación \[\sqrt{2-x^2}=\sqrt[3]{3-x^3}.\]
pistasolución 1info
Pista. Demuestra que, si $x^2+y^2=2$ y $x,y\geq 0$, entonces $x^3+y^3\leq 2\sqrt{2}$.
Solución. Podemos considerar el problema de cuándo se cortan las gráficas de las funciones $y=\sqrt{2-x^2}$ e $y=\sqrt[3]{3-x^3}$ y esto a su vez nos lleva a considerar el sistema de ecuaciones \[\left\{\begin{array}{l}x^2+y^2=2,\\x^3+y^3=3.\end{array}\right.\] Veremos que el sistema no tiene solución y, por tanto, la ecuación del enunciado tampoco. Por reducción al absurdo, imaginemos que $(x,y)$ es una solución y distinguimos dos casos según el signo de $x$:
  • Si $x\leq 0$, por un lado tenemos que $y^3=3-x^3\geq 3$, luego $y\geq\sqrt[3]{3}$ y, por otro lado, $y^2=2-x^2\leq 2$ implica que $y\leq\sqrt{2}$, luego se cumpliría que $\sqrt[3]{3}\leq y\leq\sqrt{2}$. Esto es una contradicción ya que la realidad es que $\sqrt{2}\lt\sqrt[3]{3}$ (¿sabrías demostrarlo sin usar calculadora?).
  • Si $x\geq 0$, entonces $x\leq\sqrt{2}$, luego $y^3=3-x^3\geq 3-2\sqrt{2}\geq 0$, es decir, $y$ tampoco es negativo. Desarrollamos \begin{align*} (x^2+y^2)^3-(x^3+y^3)^2&=x^6+3x^4y^2+3x^2y^4+y^6-x^6-2x^3y^3-y^6\\ &=x^2y^2(3x^2-2xy+3y^2)=x^2y^2(2x^2+(x-y)^2+2y^2)\geq 0. \end{align*} Como $x$ e $y$ no son negativos, deducimos que $(x^2+y^2)^{1/2}\geq (x^3+y^3)^{1/3}$ (ver la nota), lo que nos da $\sqrt{2}\geq\sqrt[3]{3}$, pero esto ya hemos dicho que es absurdo.

Recordemos que hemos probado así que la ecuación no tiene solución.

Nota. La desigualdad $(x^2+y^2)^3-(x^3+y^3)^2\geq 0$ es, en realidad, parte de la desigualdad entre normas $\ell^p$, que nos dice que, si $1\leq p\lt q$ y $x_1,x_2\ldots,x_n$ son números reales, entonces \[(|x_1|^q+|x_2|^q+\ldots+|x_n|^q)^{1/q}\leq (|x_1|^p+|x_2|^p+\ldots+|x_n|^p)^{1/p}.\] Aquí hemos dado una demostración ad hoc para $n=2$, $p=2$ y $q=3$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 955
Sea $\Delta ABC$ un triángulo y $D$, $E$ y $F$ tres puntos cualesquiera sobre los lados $AB$, $BC$ y $CA$, respectivamente. Llamemos $P$ al punto medio de $AE$, $Q$ al punto medio de $BF$ y $R$ al punto medio de $CD$. Probar que el área del triángulo $\Delta PQR$ es la cuarta parte del área del triángulo $\Delta DEF$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 2 —  Viernes 17 de enero de 2014 (tarde)

Problema 956
Se considera un polígono regular de $90$ vértices numerados del $1$ al $90$ de manera aleatoria. Probar que siempre podemos encontrar dos vértices consecutivos cuyo producto es mayor o igual que $2014$.
Sin pistas
solución 1info
Solución. Vamos a fijarnos en donde pueden estar colocados los 46 números más grandes (los números del 45 al 90, que son la mitad más uno). Si dividimos los 90 vértices en 45 parejas de vértices consecutivos, el principio del palomar nos dice que hay al menos una de esas parejas cuyos números son ambos mayores o iguales que 45, lo que nos da una pareja cuyo producto es mayor o igual que $45\cdot 46=2070\gt 2014$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 957
Hallar las soluciones enteras de la ecuación \[x^4+y^4=3x^3y.\]
pistasolución 1info
Pista. Transforma la ecuación en otra en la que sólo intervenga la incógnita $z=\frac{x}{y}$.
Solución. Si $y=0$, entonces se tiene que $x=0$ y obtenemos la solución $(0,0)$. Si $y\neq 0$, podemos dividir entre $y^4$ para obtener la ecuación equivalente \[\frac{x^4}{y^4}+1=3\frac{x^3}{y^3}\ \Leftrightarrow z^4-3z^3+1=0,\] donde hemos puesto la variable $z=\frac{x}{y}$. Buscamos ahora soluciones racionales de esta ecuación, pero sabemos que el numerador de una tal solución tiene que dividir al término independiente y el denominador al de mayor grado, luego las únicas posibles soluciones racionales de $z^4-3z^3+1=0$ son $z=\pm 1$. Ninguna de ellas cumple la ecuación, luego no hay más soluciones a la ecuación original que $(x,y)=(0,0)$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 958
Probar que $2014^{2013}-1013^{2013}-1001^{2013}$ es múltiplo de $2014^3−1013^3−1001^3$.
pistasolución 1info
Pista. Aunque $p(x)=(x+y)^n-x^n-y^n$ no es en general divisible entre $q(x)=(x+y)^3-x^3-y^3=3xy(x+y)$, pensar en el problema como si se tratara de dividir polinomios puede ayudarte (observa que el resultado se obtendría para $n=2013$, $x=1013$ e $y=1001$).
Solución. Vamos analizar si $(x+y)^{2n+1}-x^{2n+1}-y^{2n+1}$ es múltiplo de $(x+y)^3-x^3-y^3$ para dos enteros $x,y\in\mathbb{Z}$ y $n\in\mathbb{N}$. Para ello, observamos que $(x+y)^3-x^3-y^3=3xy(x+y)$ y, desarrollamos por el binomio de Newton, podemos factorizar \begin{align*} (x+y)^{2n+1}-x^{2n+1}-y^{2n+1}&=\binom{2n+1}{1}x^{2n}y+\binom{2n+1}{2}x^{2n-1}y^2+\ldots+\binom{2n+1}{2n}xy^{2n}\\ &=xy\left(\binom{2n+1}{1}x^{2n-1}+\binom{2n+1}{2}x^{2n-2}y+\ldots+\binom{2n+1}{2n}y^{2n-1}\right) \end{align*} Si vemos el último paréntesis grande como un polinomio $p(x)$ para un valor fijo de $y$, tenemos además que \begin{align*} p(-y)&=\binom{2n+1}{1}(-y)^{2n-1}+\binom{2n+1}{2}(-y)^{2n-2}y+\ldots+\binom{2n+1}{2n}y^{2n-1}\\ &=y^n\left(-\binom{2n+1}{1}+\binom{2n+1}{2}-\ldots+\binom{2n+1}{2n}\right)=0 \end{align*} ya que la suma alternada de números combinatorios es cero. Esto nos dice que podemos factorizar como polinomios $p(x)=(x+y)q(x,y)$, luego podemos factorizar $(x+y)^{2n+1}-x^{2n+1}-y^{2n+1}=xy(x+y)q(x,y)$. Nos falta por ver que podemos sacar también el factor $3$ y para ello haremos $x=1013$ e $y=1001$, lo que nos da \[(x+y)^{2n+1}-x^{2n+1}-y^{2n+1}\equiv 2^{2n+1}-1^{2n+1}-1^{2n+1}=2\cdot 1^{2n}-1-1\equiv 0\ (\text{mod }3.\] Sin embargo, tenemos que $xy(x+y)\equiv 1\cdot 1\cdot 2\not\equiv 0\ (\text{mod }3)$, luego $(x+y)^{2n+1}-x^{2n+1}-y^{2n+1}$ es múltiplo de $3xy(x+y)$ para todo $n\in\mathbb{N}$, en particular, para $n=1006$.

Nota. No es cierto en general que $(x+y)^{2n+1}-x^{2n+1}-y^{2n+1}$ sea múltiplo de $(x+y)^3-x^3-y^3=3xy(x+y)$ y el problema justamente es el $3$ final. No es difícil completar el argumento para ver que esta propiedad es cierta para todo $n$ si, y sólo si, $x\equiv y\equiv 1$ o bien $x\equiv y\equiv 2$ (mod $3$).

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 3 —  Sábado 18 de enero de 2014 (mañana)

Problema 959
Sean $a$ y $b$ números positivos. Probar que \[a+b\geq \sqrt{ab}+\sqrt{\frac{a^2+b^2}{2}}.\]
pistasolución 1info
Pista. Usa la desigualdad entre la media aritmética y la media cuadrática.
Solución. La desigualdad entre las medias aritmética y cuadrática aplicada a $\sqrt{ab}$ y $\sqrt{\frac{a^2+b^2}{2}}$ nos da \[\frac{\sqrt{ab}+\sqrt{\frac{a^2+b^2}{2}}}{2}\leq\sqrt{\frac{ab+\frac{a^2+b^2}{2}}{2}}=\sqrt{\frac{2ab+a^2+b^2}{4}}=\frac{a+b}{2},\] luego tenemos la desigualdad del enunciado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 960
Encontrar las tres últimas cifras del número $7^{2014}$.
pistasolución 1info
Pista. Utiliza el teorema de Euler-Fermat.
Solución. El teorema de Euler-Fermat nos dice que $a^{\varphi(m)}\equiv 1(\ \text{mod }m)$ siempre que $\mathrm{mcd}(a,m)=1$. Podemos aplicar esto para $a=7$ y $m=1000$ (que claramente son primos entre sí), teniendo en cuenta que $\varphi(1000)=\varphi(2^3\cdot 5^3)=(2-1)2^2(5-1)5^2=400$. En otras palabras, tenemos que \[7^{2014}=(7^{400})^5\cdot 7^{14}\equiv 7^{14}\ (\text{mod }1000).\] Ahora podemos calcular $7^{14}$ módulo $1000$ haciendo unas pocas multiplicaciones y quedándonos con la últimas tres cifras (calcular $7^{14}$ completamente lleva un buen rato y podría llevar a más errores): \begin{align*} 7^2&\equiv 49\ (\text{mod }1000),&7^3&\equiv 49\cdot 7\equiv 343\ (\text{mod }1000),\\7^6&\equiv 343\cdot 343\equiv\ 649\ (\text{mod }1000),&7^{12}&\equiv 649\cdot 649\equiv\ 201\ (\text{mod }1000),\\ 7^{14}&\equiv 201\cdot 49\equiv\ 849(\text{mod }1000). \end{align*} Deducimos así que las últimas cifras son $849$.

Nota. La menor potencia $7^n$ que da resto $1$ módulo $1000$ es $n=20$ (un divisor de $\varphi(1000)=400$. Se puede encontrar después de probar un poco si nos damos cuenta de que $7^4\equiv 401\ (\text{mod }1000)$ y que, por consiguiente, potencias de la forma $7^{4k}$ tienen por últimos dígitos $01$. Esto evitaría tener que usar el teorema de Euler-Fermat.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 961
De un prisma recto de base cuadrada, con lado de longitud $L_1$ y altura $H$, extraemos un tronco de pirámide, no necesariamente recto, de bases cuadradas, con lados de longitud $L_1$ (para la inferior) y $L_2$ (para la superior) y altura $H$. Si el volumen del tronco de pirámide es $\frac{2}{3}$ del total del volumen del prisma, ¿cuál es el valor de $\frac{L_1}{L_2}$?
imagen
pista
Sin soluciones
info
Pista. Calcula explícitamente el volumen de prisma y del tronco de pirámide en función de $H$, $L_1$ y $L_2$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 4 —  Sábado 18 de enero de 2014 (tarde)

Problema 962
Hallar los valores del número real $a$ para los que todas las raíces del polinomio $p(x)=x^3-2x^2-25x+a$ son números enteros.
pistasolución 1info
Pista. Calcula la suma de los cuadrados de las raíces y mira de qué formas se puede escribir ese número como suma de tres cuadrados.
Solución. Si llamamos $\alpha,\beta,\gamma$ a las tres raíces de $p(x)$, entonces podemos escribir \begin{align*} p(x)&=(x-\alpha)(x-\beta)(x-\gamma)\\ &=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma, \end{align*} de modo que identificando coeficientes obtenemos las relaciones de Cardano-Vieta: \[\alpha+\beta+\gamma=2,\qquad \alpha\beta+\beta\gamma+\gamma\alpha=-25,\qquad\alpha\beta\gamma=a.\] Esto nos permite calcular \[\alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\gamma\alpha)=4+2\cdot 25=54.\] Las raíces son números enteros y las únicas formas de escribir $54$ como suma de tres cuadrados son $49+4+1$, $36+9+9$ y $25+25+4$. Reordenando las raíces si es necesario, distinguimos tres casos:
  • Si $\alpha=\pm 7$, $\beta=\pm 2$ y $\gamma=\pm 1$, es imposible que se cumpla que $\alpha+\beta+\gamma=2$ (el sumando $\alpha=\pm 7$ es demasiado grande en valor absoluto para que sumarle $\beta+\gamma$ lo hagan igual a $2$), luego no hay soluciones en este caso.
  • Si $\alpha=\pm 6$, $\beta=\pm 3$ y $\gamma=\pm 3$, también es imposible que se cumpla que $\alpha+\beta+\gamma=2$ ya que $\alpha+\beta+\gamma$ siempre dará un múltiplo de tres independientemente de los signos elegidos.
  • Si $\alpha=\pm 5$, $\beta=\pm 5$ y $\gamma=\pm 2$, entonces la condición $\alpha+\beta+\gamma=2$ fuerza a que $\alpha=5$, $\beta=-5$ y $\gamma=2$ (salvo posiblemente intercambiar $\alpha$ y $\beta$). Tenemos entonces que $\alpha\beta\gamma=5\cdot(-5)\cdot 2=-50$, luego $a=50$ único valor que cumple la condición del enunciado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 963
Sean $x$ e $y$ números reales entre $0$ y $1$. Probar que \[x^3+xy^2+2xy\leq 2x^2y+x^2+x+y.\]
pistasolución 1info
Pista. Pasa todo al miembro de la derecha y manipula un poco completando algunos cuadrados perfectos.
Solución. Pasando todos los términos al segundo miembro podemos identificar algunos cuadrados perfectos y reescribir la desigualdad como \[(1-x)(x-y)^2+y(1-y)+x\geq 0.\] Esta desigualdad es evidente ya que 0\leq x,y\leq 1$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 964
Consideramos un número primo $p$. En un torneo de $p$-parchís participan $p^2$ jugadores y en cada partida juegan $p$ jugadores. El torneo se divide en rondas que a su vez se dividen en partidas. Cada jugador juega una o ninguna partida en cada ronda. Al final del torneo cada jugador se ha enfrentado exactamente una vez con cada uno de los otros jugadores. Determinar si es posible diseñar un torneo de estas características. En caso afirmativo, obtener el mínimo número de rondas que puede tener el torneo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre