Solución. Observamos en primer lugar que la expresión está definida para todo entero $n$ ya que la ecuación $x^2-x+2$ no tiene soluciones reales. Veremos entonces cuándo dos valores se repiten, para lo que calculamos
\begin{align*}
\frac{n^2-2}{n^2-n+2}=\frac{m^2-2}{m^2-m+2}&\ \Leftrightarrow\ \frac{(n^2-2)(m^2-m+2)-(m^2-2)(n^2-n+2)}{(n^2-n+2)(m^2-m+2)}=0\\
&\ \Leftrightarrow\ \frac{m^2 n-4 m^2-m n^2+2 m+4 n^2-2 n}{(n^2-n+2)(m^2-m+2)}=0\\
&\ \Leftrightarrow\ \frac{(m-n)(2-4m-4n+mn)}{(n^2-n+2)(m^2-m+2)}=0.
\end{align*}
La última factorización puede ser difícil de encontrar si no sabemos que realmente tiene que haber un factor $m-n$ ya que se trata de expresiones polinómicas y para $m=n$ se tiene la igualdad que buscamos. En cualquier caso, las parejas que producirán valores iguales de la expresión del enunciado son las soluciones de $2-4m-4n+mn=0$. Esta ecuación se puede expresar como
\[(m-4)(n-4)=14,\]
por lo que $m-4$ y $n-4$ tienen que ser factores complementarios de $14$. Además, tienen que ser $m,n\geq 1$, luego $m-4,n-4\geq -3$ y no se puede tratar de factores negativos. Suponiendo además que $m\lt n$ sin perder generalidad, tenemos sólo dos casos:
- $m-4=1$ y $n-4=14$,
- $m-4=2$ y $n-4=7$.
Deducimos de todo esto que todo entero $n$ entre $1$ y $100$ da un valor distinto al sustituirlo en la expresión dada, salvo las parejas $(5,18)$ y $(6,11)$, que dan el mismo valor. Por tanto, hay $98$ valores distintos de la expresión.