Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 1114
Sean $a_1,a_2,a_3,a_4,a_5,a_6$ números reales diferentes y no nulos. Supongamos que \[(a_1^2+a_2^2+\ldots+a_5^2)(a_2^2+a_3^2+\ldots+a_6^2)=(a_1a_2+a_2a_3+\ldots+a_5a_6)^2.\] Demostrar que estos números están en progresión geométrica.
pistasolución 1info
Pista. ¿Qué tiene que ver esa igualdad con la desigualdad de Cauchy-Schwarz?
Solución. Si aplicamos la desigualdad de Cauchy-Schwarz a los vectores $(a_1,a_2,a_3,a_4,a_5)$ y $(a_2,a_3,a_4,a_5,a_6)$ obtenemos que cualesquiera que sean los valores de los seis números dados, se tiene que \[(a_1a_2+a_2a_3+\ldots+a_5a_6)^2\leq (a_1^2+\ldots+a_5^2)(a_2^2+\ldots+a_6^2).\] Ahora bien, el enunciado nos dice que se da la igualdad, luego los dos vectores tienen que ser proporcionales. Como son números no nulos, deberá existir una constante $\lambda\neq 0$ tal que \[(a_2,a_3,a_4,a_5,a_6)=\lambda(a_1,a_2,a_3,a_4,a_5).\] En otras palabras, $a_2=\lambda a_1$, $a_3=\lambda a_2$, $a_4=\lambda a_3$, $a_5=\lambda a_4$ y $a_6=\lambda a_5$. Tenemos así que los números están en progresión geométrica de razón $\lambda$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1113
Sea $ABC$ un triángulo isósceles con $\angle BAC=100^\circ$. La bisectriz del ángulo $\angle CBA$ corta al lado $AC$ en el punto $D$. Demostrar que $BD+DA=BC$.
pistasolución 1info
Pista. Aplica el teorema del seno a $ABD$ y $ABC$.
Solución. El teorema del seno en el triángulo $ABD$ nos dice que \[\frac{AB}{\mathrm{sen}(60)}=\frac{DA}{\mathrm{sen}(20)}=\frac{BD}{\mathrm{sen}(100)}=\frac{DA+BD}{\mathrm{sen}(20)+\mathrm{sen}(100)}.\] El teorema del seno en el triángulo $ABC$ nos dice que \[\frac{AB}{\mathrm{sen}(40)}=\frac{BC}{\mathrm{sen}(100)}.\] Combinando estos dos resultados, tenemos que \[\frac{DA+BD}{\mathrm{sen}(20)+\mathrm{sen}(100)}=\frac{AB}{\mathrm{sen}(60)}=\frac{BC\,\mathrm{sen}(40)}{\mathrm{sen}(60)\mathrm{sen}(100)}.\] Por tanto, será suficiente probar que \[\frac{1}{\mathrm{sen}(20)+\mathrm{sen}(100)}=\frac{\mathrm{sen}(40)}{\mathrm{sen}(60)\mathrm{sen}(100)}\] o lo que es lo mismo \[\mathrm{sen}(60)\mathrm{sen}(100)=\mathrm{sen}(20)\mathrm{sen}(40)+\mathrm{sen}(100)\mathrm{sen}(40).\] Usando una identidad trigonométrica de factorización (ver nota), lo anterior equivale a su vez a \[\cos(40)-\cos(160)=\cos(20)-\cos(60)+\cos(60)-\cos(140),\] y esta igualdad es cierta ya que $\cos(140)=-\cos(40)$ y $\cos(160)=-\cos(20)$ ya que se trata de ángulos suplementarios.

Nota. Hemos usado la identidad de factorización \[\mathrm{sen}(x)\mathrm{sen}(y)=\frac{\cos(x-y)-\cos(x+y)}{2},\] que se deduce fácilmente sumando las fórmulas de los cosenos de la suma y la diferencia.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1112
Un número $n$ de siete cifras es bonito si se puede expresar como la suma de dos números de siete cifras $s$ y $t$ tales que todas las cifras de $s$ son impares y todas las cifras de $t$ son pares. Determinar cuáles de los siguientes números son bonitos: \[6204773, 6372538, 7343053, 8993267, 9652393.\]
pistasolución 1info
Pista. Si una cifra del número es par es porque hay una llevada en la suma de las cifras de orden inferior. Analiza cada número desde las unidades a las unidades de millón y te darás cuenta de que algunos son imposibles de expresar como $t+s$.
Solución. Hay que tener en cuenta que si una de las cifras del número es par es porque hay una llevada de la suma de las cifras de orden inmediatamente inferior. Vamos a analizar cada caso por separado:
  • 6204773 es bonito (por ejemplo, tomando $s=3557931$ y $t=2646842$).
  • 6372538 no es bonito puesto que la cifra de las unidades es par y no puede obtenerse como suma de un dígito par y otro impar (no hay llevadas).
  • 7343053 no es bonito ya que después del cero de las centenas hay necesariamente una llevada, luego la siguiente cifra no puede ser impar y en este caso es un tres.
  • 8993267 no es bonito ya que el 8 en las unidades de millón implica una llevada y por tanto las cifras de $t$ y $s$ en las centenas de millar deben sumar 19, lo que implica que ambas son 9 (más otra llevada de las decenas de millar). Esto impide que las cifras de $s$ sean todas pares.
  • 9652393 es bonito (tomando $t=5371751$ y $s=4280642$).
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1111
Tenemos $2021$ colores y $2021$ fichas de cada color. Colocamos las $2021^2$ fichas en fila. Se dice que una ficha $F$ es mala si a cada lado de $F$ quedan un número impar de las $2020\times 2021$ fichas que no comparten color con $F$.
  1. Determinar cuál es el mínimo número posible de fichas malas.
  2. Si se impone la condición de que cada ficha ha de compartir color con al menos una ficha adyacente, ¿cuál es el mínimo número posible de fichas malas?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1110
Dado un número entero positivo $n$, definimos $\lambda(n)$ como el número de soluciones enteras positivas de la ecuación $x^2-y^2=n$. Diremos que $n$ es olímpico si $\lambda(n)=2021$. ¿Cuál es el menor entero positivo que es olímpico? ¿Y cuál es el menor entero positivo impar que es olímpico?
pistasolución 1info
Pista. La ecuación se puede escribir como $(x+y)(x-y)=n$, luego $\lambda(n)$ tendrá que ver con el número de divisores de $n$ (aunque no es exactamente el número de divisores de $n$).
Solución. Si escribimos $x^2-y^2=(x+y)(x-y)=n$, como $x$ e $y$ son enteros, existirá un divisor $d$ de $n$ tal que $x+y=d$ y $x-y=\frac{n}{d}$. Este sistema de ecuaciones con la suma y la diferencia se resuelve fácilmente dando lugar a \[x=\frac{d+\frac{n}{d}}{2},\qquad y=\frac{d-\frac{n}{d}}{2}.\] Obtenemos así que no vale cualquier divisor de $n$ sino que $d$ y $\frac{n}{d}$ deben tener la misma paridad (en caso contrario, el denominador $2$ en las soluciones anteriores no se puede eliminar) y además $d\gt\frac{n}{d}$ (en caso contrario tendríamos una solución con $y$ negativa). Llamemos $D(n)$ al número de divisores de $n$ y distingamos varios casos:
  • Si $n$ es impar, entonces $d$ y $\frac{n}{d}$ son ambos impares. Si $n$ no es cuadrado perfecto, entonces la condición $d\lt\frac{n}{d}$ ocurrirá para la mitad de divisores, luego $\lambda(n)=\frac{1}{2}D(n)$. Si $n$ es un cuadrado perfecto, entonces hay que excluir el caso $d=\sqrt{n}$ antes de dejar la mitad de divisores, luego $\lambda(n)=\frac{1}{2}(D(n)-1)$.
  • Si $n$ es par pero no múltiplo de $4$, entonces $d$ y $\frac{n}{d}$ tienen necesariamente distinta paridad, luego $\lambda(n)=0$.
  • Si $n$ es múltiplo de $4$, entonces podemos asignar previamente uno de los factores $2$ a $d$ y otro a $\frac{n}{d}$ para que los dos sean pares y repartir los restantes entre $d$ y $\frac{n}{d}$. Razonando de forma análoga al primer caso, tenemos que $\lambda(n)=\frac{1}{2}D(\frac{n}{4})$ si $n$ es no es cuadrado perfecto y $\lambda(n)=\frac{1}{2}(D(\frac{n}{4})-1)$ si lo es.
Si factorizamos $n=p_1^{e_1}\cdots p_r^{e_r}$ como producto de potencias de primos distintos, es bien conocido que $D(n)=(e_1+1)(e_2+1)\cdots(e_r+1)$. Vamos a ver cuál es el menor valor de $n$ en cada uno de los cuatro casos que nos da la discusión anterior y luego analizaremos cuál es el menor y el menor impar.
  • Si $n$ es impar y no es cuadrado, tenemos que resolver $D(n)=2\cdot 2021=2\cdot 43\cdot 47$, luego el menor valor posible es $n=3^{46}5^{42}7$ ya que $3,5,7$ son los primos más pequeños (impares) emparejados con los exponentes en orden opuesto.
  • Si $n$ es impar y cuadrado, tenemos que resolver $D(n)=2\cdot 2021+1=4043=13\cdot 311$, luego el menor valor es $n=3^{310}5^{12}$.
  • Si $n$ es par (múltiplo de $4$) y no es cuadrado, tenemos $D(\frac{n}{4})=2\cdot 2021=2\cdot 43\cdot 47$, luego el menor valor posible es $n=4\cdot 2^{46}3^{42}5=2^{48}3^{42}5$.
  • Si $n$ es par (múltiplo de $4$) y cuadrado, tenemos $D(\frac{n}{4})=2\cdot 2021+1=4043=13\cdot 311$, luego el menor valor posible es $n=4\cdot 2^{310}3^{12}=2^{312}3^{12}$.
De entre los cuatro números elegidos, el menor es $2^{48}3^{42}5$ y el menor impar es $3^{46}5^{42}7$ (¿sabrías justificar rigurosamente por qué?).

Nota. Un punto técnico de esta solución es la factorización de 4043. No debería haber problema en preguntar a los examinadores por tal factorización; en caso de no darla, habría que probar a dividir $4043$ entre los primos desde $3$ a $61$ (que es el más cercano por defecto a $\sqrt{4043}$). Al encontrar así el factor $13$, habría que probar de nuevo desde $3$ a $17$ (que es el más cercano por defecto a $\sqrt{313}$).

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre