OME Local |
OME Nacional |
OIM |
OME Andalucía |
Retos UJA |
Nota. Hemos usado la identidad de factorización \[\mathrm{sen}(x)\mathrm{sen}(y)=\frac{\cos(x-y)-\cos(x+y)}{2},\] que se deduce fácilmente sumando las fórmulas de los cosenos de la suma y la diferencia.
Nota. Un punto técnico de esta solución es la factorización de 4043. No debería haber problema en preguntar a los examinadores por tal factorización; en caso de no darla, habría que probar a dividir $4043$ entre los primos desde $3$ a $61$ (que es el más cercano por defecto a $\sqrt{4043}$). Al encontrar así el factor $13$, habría que probar de nuevo desde $3$ a $17$ (que es el más cercano por defecto a $\sqrt{313}$).