
DEGREE THESIS

TELECOMMUNICATIONS ENGINEERING

LoRaWAN Gateway and IoT
Low-Cost Mote Prototype

Author
Angel Guzman-Martinez

Supervisors
Jorge Navarro-Ortiz

Sandra Sendra-Compte

School of Informatics and Telecommunications Engineering
—

Granada, June of 2017

3

LoRaWAN Gateway and IoT
Low-Cost Mote Prototype

Author
Angel Guzman-Martinez

Supervisors
Jorge Navarro-Ortiz

Sandra Sendra-Compte

Dpt. of Signal Theory, Telematics and Communications
—

Granada, June of 2017

Prototipo de un gateway LoRaWAN y una mota IoT
low-cost para comunicaciones LPWAN

Ángel Guzmán Mart́ınez

Palabras clave: Internet de las cosas, baja potencia, LoRaWAN, mota de
bajo coste, gateway.

Resumen
El Internet de las cosas es un tema candente hoy en d́ıa que va tomando cada
vez más relevancia. Sin embargo, esto trae consigo una serie de problemas
que las redes convencionales no solventan correctamente, como el alcance y
la duración de las bateŕıas de los dispositivos conectados a estas redes.

Como solución a estos problemas, surgen las redes de baja potencia.
Dichas redes están orientadas a proporcionar un mayor alcance con un menor
consumo, a cambio de una menor velocidad de transmisión. Por este motivo,
las redes de baja potencia son el candidato ideal para los dispositivos del
internet de las cosas. Una de estas redes de baja potencia es LoRaWAN,
que es en la que se basará este proyecto.

El objetivo de este proyecto es el desarrollo de dos dispositivos relaciona-
dos con LoRaWAN:

• Una mota que env́ıe información a través de una red LoRaWAN. En
particular una mota de bajo coste, con el objetivo de demostrar que
LoRaWAN es una tecnoloǵıa al alcance de cualquier usuario. Aunque
esto solo será posible si los usuarios disponen de un gateway LoRaWAN
ya desplegado cercano a ellos.

• Un gateway LoRaWAN que sea capaz de recibir los paquetes Lo-
RaWAN env́ıados por las motas y transmitirlos, en tiempo a real, a las
aplicaciones, de forma que los usuarios puedan ver de forma remota la
información que sus motas están transmitiendo.

LoRaWAN Gateway and IoT Low-Cost Mote Prototype

Angel Guzman-Martinez

Keywords: Internet of Things, LPWAN, LoRaWAN, low cost mote, gate-
way.

Abstract
Nowadays, the Internet of Things (IoT) is a trending topic that is growing
in relevance every day. However, it brings out some problems that are not
properly solved by the conventional networks, such as the range and battery
life of the devices connected these networks.

The Low Power Wide Area Networks (LPWAN) appear as a solution
to these problems. These networks provide an improved range and less
power consumption, at the expense of the data rate. Thus, these low power
networks are the ideal candidate for the IoT devices. One of these low power
networks standards is called LoRaWAN, which is the one this project will
be based on.

The goal of this project is to develop two LoRaWAN related devices:

• A mote capable of transmitting information through LoRaWAN. Par-
ticularly, a low cost mote in order to prove that LoRaWAN is a tech-
nology that everyone can use. Although this is only possible as long
as there is an already deployed LoRaWAN gateway nearby.

• A LoRaWAN gateway that is able to receive the LoRaWAN packets
sent by the motes and forward them, in real time, to the applications
owned by the users, so that they can remotely see the data their motes
are transmitting.

Yo, Angel Guzman-Martinez, alumno de la titulación Grado en In-
genieŕıa de Tecnoloǵıas de Telecomunicación de la Escuela Técnica Supe-
rior de Ingenieŕıas Informática y de Telecomunicación de la Uni-
versidad de Granada, con DNI XXX, autorizo la ubicación de la siguiente
copia de mi Trabajo Fin de Grado en la biblioteca del centro para que pueda
ser consultada por las personas que lo deseen.

Fdo: Angel Guzmán Mart́ınez

Granada, 21 de junio de 2017.

D. Jorge Navarro Ortiz, Profesor del Área de Ingenieŕıa Telemática
del Departamento de Teoŕıa de la Señal, Telemática y Comunicaciones de
la Universidad de Granada.

D. Sandra Sendra Compte, Profesora del Área de Ingenieŕıa Telemática
del Departamento de Teoŕıa de la Señal, Telemática y Comunicaciones de
la Universidad de Granada.

Informan:

Que el presente trabajo, titulado Prototipo de un gateway LoRaWAN
y una mota IoT low-cost para comunicaciones LPWAN, ha sido re-
alizado bajo su supervisión por Ángel Guzmán Mart́ınez, y autorizamos
la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a
21 de junio de 2017.

Los directores:

Jorge Navarro Ortiz Sandra Sendra Compte

Acknowledgements

First off, I would like to start by thanking Jorge, my supervisor, because
despite being extremely busy with his own work and being the director of
many other projects, he still helped me greatly and got very involved with
this project. In addition, I understand I might have been quite an annoyance
to him with all of my questions, yet he was always friendly and willing to
help me.

Secondly, I want to thank my parents and friends for encouraging me
when I was feeling overwhelmed by all of the work I had to do, not only
because of this project but also because of the many classes I was taking at
the same time.

Lastly, a special mention to Sandra, Miguel Angel and Pablo, for let-
ting us place the gateway on their terrace and for acting as our ”personal
maintenance team”.

Contents

Glossary 21

1 Introduction 23
1.1 Context and Motivation . 23
1.2 Goals and Reach of the Project 23
1.3 LoRaWAN’s Current Situation 24
1.4 Structure of the document . 24

2 LoRaWAN Overview 27
2.1 LoRa Modulation . 27

2.1.1 Direct Sequence Spread Spectrum (DSSS) 27
2.1.2 LoRa Spread Spectrum 28
2.1.3 Main Properties of LoRa Modulation 30
2.1.4 Link Budget Example 31

2.2 LoRaWAN . 32
2.2.1 Device Classes . 33
2.2.2 Regional Parameters 35
2.2.3 Security . 35

2.3 The Things Network . 36

3 State of the Art 39
3.1 Gateways . 39

3.1.1 LoRaWAN Single-Channel Packet Forwarder 39
3.1.2 Multi-channel DIY LoRaWAN Gateway 42
3.1.3 The Things Gateway 44
3.1.4 Other Multi-Channel Already-Built Gateways 45

3.2 Motes . 46
3.2.1 Mote Without LoRaWAN Stack Implemented 46
3.2.2 Mote With Already Implemented LoRaWAN Stack . . 48

4 Planning and Cost Estimate 51
4.1 Development Stages . 51

4.1.1 State of the Art Revision 51
4.1.2 Requirement Specifications 53

13

14 CONTENTS

4.1.3 Design . 53

4.1.4 Implementation . 53

4.1.5 Testing . 53

4.1.6 Documentation . 53

4.2 Resources and Cost Estimate 53

4.2.1 Human Resources . 53

4.2.2 Material Resources . 54

4.3 Total Budget . 56

5 Requirement Specifications 57

5.1 Gateway . 57

5.1.1 Functional Requirements 57

5.1.2 Non-Functional Requirements 57

5.2 Mote . 58

5.2.1 Function Requirements 58

5.2.2 Non-Functional Requirements 58

5.3 Application . 59

5.3.1 Functional Requirements 59

5.3.2 Non-Functional Requirements 59

6 Design 61

6.1 Mote . 61

6.1.1 Development Board 61

6.1.2 Transceiver Module 63

6.1.3 Antenna . 63

6.2 Gateway . 64

6.2.1 Embedded Linux Board 64

6.2.2 Concentrator . 65

6.2.3 Antenna . 65

6.2.4 Enclosure . 66

7 Implementation 67

7.1 Application . 67

7.2 Mote . 69

7.2.1 Wiring . 69

7.2.2 Software . 71

7.3 Gateway . 73

7.3.1 Wiring . 73

7.3.2 Software . 74

7.3.3 Registration . 75

7.3.4 Enclosure . 76

7.3.5 Location . 78

CONTENTS 15

8 Testing and Results 79
8.1 Sending Data to the Application 79
8.2 Gateway Coverage . 81

8.2.1 Indoors . 82
8.2.2 Outdoors . 88

8.3 Channel Hopping Histogram 89
8.4 Spectrum Analysis . 91
8.5 Power Consumption . 91

8.5.1 Worst Case Scenario 93
8.5.2 Realistic Scenario . 94

9 Conclusions 97
9.1 LoRa . 97
9.2 LoRaWAN and TTN . 97
9.3 The Gateway . 97
9.4 Low Cost Mote . 98

Appendices 101

A Arduino Program for the Mote 103

B Matlab Histogram Scripts 109
B.1 Floor 5 Histogram . 109
B.2 Floor 4 Histogram . 109
B.3 Floor 3 Histogram . 109
B.4 Floor 2 Histogram . 110
B.5 Floor 1 Histogram . 110
B.6 Floor 0 Histogram . 110
B.7 Floor -1 Histogram . 110
B.8 Channel Hopping Histogram 111

C Matlab Functions Used for the Spectrum Analysis 113
C.1 Function That Captures and Stores the Spectrum 113
C.2 Function That Displays the Spectrum 115

List of Figures

1.1 World market for Internet connected devices forecast [1]. . . . 24

1.2 LoRaWAN gateways in Spain 25

2.1 DSSS Example [5]. 28

2.2 Chirp signal in the time domain. 29

2.3 LoRa modulation in the frequency domain [6]. 29

2.4 LoRaWAN Topology [8]. 33

2.5 LoRaWAN Classes [2]. 34

2.6 Class A receive windows [2]. 34

2.7 LoRaWAN EU863-870MHz ISM band parameters [7]. 35

2.8 LoRaWAN’s security [9]. 36

2.9 The Things Network’s architecture 37

3.1 Single channel LoRaWAN gateway example [13]. 40

3.2 Multi-channel DIY LoRaWAN gateway [14]. 42

3.3 The Things Gateway[10]. 44

4.1 Gantt chart. 52

6.1 Wemos D1 Mini [16]. 62

6.2 NodeMCU. 62

6.3 Some of the different LoRa modules available[17]. 63

6.4 LoRa BEE by Dragino [18]. 64

6.5 Antenna and pigtail for iC880A concentrator [19]. 65

7.1 Application configuration example. 68

7.2 Device configuration example. 68

7.3 Wemos D1 Mini pinout [16]. 69

7.4 LoRa BEE pinout [18]. 70

7.5 Mote after the wiring process. 71

7.6 Example of Arduino parameters configuration. 73

7.7 Arduino pin mapping. 73

7.8 Gateway after the wiring process. 75

7.9 Example of gateway registration. 76

17

18 LIST OF FIGURES

7.10 Gateway status: connected. 76
7.11 Gateway privacy settings. 77
7.12 Gateway information. 77
7.13 Gateway enclosed. 78

8.1 Packets received at the gateway. 80
8.2 Fragment of the packet details at the gateway. 80
8.3 Packets received at the application. 81
8.4 Fragment of the packet details at the application. 82
8.5 Fragment of the log file for floor 0. 83
8.6 Floor 5 RSSI histogram. 84
8.7 Floor 4 RSSI histogram. 84
8.8 Floor 3 RSSI histogram. 85
8.9 Floor 2 RSSI histogram. 86
8.10 Floor 1 RSSI histogram. 86
8.11 Floor 0 RSSI histogram. 87
8.12 Floor -1 RSSI histogram. 88
8.13 Results of the outdoor coverage testing 89
8.14 Zoomed in results of the outdoor coverage testing 90
8.15 Histogram of the different channels used. 91
8.16 Spectrum centered on 868MHz when nothing is transmitting. 92
8.17 Spectrum centered on 868MHz when packets are being trans-

mitted. 92
8.18 USB Tester after measuring for 32 minutes during worst case

scenario. 93
8.19 USB Tester after measuring for one hour during realistic sce-

nario. 94

List of Tables

3.1 Total cost for the single channel gateway. 40
3.2 Total cost for the multi-channel DIY gateway. 43
3.3 Cost estimate for the ESP8266 chip based mote. 47
3.4 Cost estimate for the LoRaWAN certified chip based mote. . 48

4.1 Distribution of days for the different development stages. . . 52
4.2 Human resources cost. 54
4.3 General purpose hardware cost. 54
4.4 Mote hardware cost. 55
4.5 Gateway hardware cost. 56
4.6 Total cost of the project. 56

7.1 Pin connections for ground and power input. 70
7.2 Pin connections for SPI bus. 70
7.3 Pin connections for I2C bus. 70
7.4 Pin connections between the Raspberry Pi and the concentrator. 74

19

Glossary

ABP Activation By Personalization.

ADR Adaptive Data Rate.

AES Advanced Encryption Standard.

BW Bandwidth.

CPU Central Processing Unit.

DIY Do It Yourself.

DR Data Rate.

DSSS Direct Sequence Spread Spectrum.

ETSI European Telecommunications Standards Institute.

EUI Extended Unique Identifier.

FHSS Frequency-Hopping Spread Spectrum.

FSK Frequency-Shift Keying.

GPIO General-Purpose Input/Output.

GPS Global Positioning System.

I2C Inter-Integrated Circuit.

IoT Internet of Things.

ISM band The industrial, scientific, and medical radio band.

LoRa Long Range.

LoRaWAN Long Range Wide Area Network.

21

22 Glossary

LPWAN Low Power Wide Area Network.

MAC Media Access Control.

MIC Message Integrity Check.

MISO Master Input Slave Output.

MOSI Master Output Slave Input.

MQTT Message Queue Telemetry Transport.

NF Noise Figure.

OTAA Over The Air Activation.

RSSI Received Signal Strength Indicator.

SCK Serial Clock.

SCL Serial Clock Line.

SDA Serial Data Line.

SDR Software-Defined Radio.

SF Spreading Factor.

SIR Signal to Interference Ratio.

SNR Signal to Noise Ratio.

SPI Serial Peripheral Interface.

SS/NSS Slave Select.

TTN The Things Network.

WAN Wide Area Network.

Chapter 1

Introduction

1.1 Context and Motivation

Nowadays, the Internet of Things is a trending topic as the number of de-
vices that are connected to the Internet is growing at incredible pace, see
Figure 1.1. We see the appearance of new devices with Internet connection
capabilities everywhere, which range from household appliances that can
be accessed remotely to clothes that change their appearance based on the
current weather. Usually, these devices are mobile, wireless and depend on
batteries, which can be a problem with the regular WiFi networks, since a
WiFi connection can be very taxing to the battery life. In order to address
this problem, we are in need of another type of Internet network.

This is where Low Power Wide Area Networks (LPWANs) come into
play. They are designed to make these Internet connections possible while
allowing the battery to last longer than it would by using WiFi.

However, these LPWANs are not suitable for all IoT devices, as they
have very small bandwidth and do not allow for high data rates. As a
consequence, an IoT device that needs to transmit at a high data rate does
not benefit from using a LPWAN.

On the other hand, a device like a mote, which usually only needs to
send a little bit of data every so often, will make great use of a LPWAN,
allowing its battery to last much longer, thus reducing its maintenance cost.

One of these LPWANs is called LoRaWAN, which makes use of the
physical layer protocol LoRa, and is the one this project will be based on.

1.2 Goals and Reach of the Project

The goal of this project consists of building two LoRaWAN related devices:

1. A fully functional LoRaWAN gateway.

23

24 1.3. LoRaWAN’s Current Situation

Figure 1.1: World market for Internet connected devices forecast [1].

2. A low cost mote capable of transmitting data to the gateway, as well
as receiving data from it.

Regarding the mote, we want to make it cheap and affordable in order to
prove that using a LoRaWAN network does not require any large economical
effort, as long as there is an already deployed gateway in the area of interest.

With respect to the gateway, it will be made using a Raspberry Pi and
a concentrator in order to provide a multi-channel service, thus complying
with the LoRaWAN standard.

Lastly, when the project is completed, our intention is to set up the
gateway on top of the school so it can be freely used by everyone around
and be the one of the firsts LoRaWAN gateways in Granada, Spain.

1.3 LoRaWAN’s Current Situation

LoRaWAN is a very recent technology, as LoRaWAN version 1.0 came up
in January 2015 [2]. Due to this, there are very few LoRaWAN gateways
deployed, especially in Spain, Figure 1.2.

As we will explain later, gateways play a crucial part in LoRaWAN.
Accordingly, a lack of gateways shows a clear underdevelopment of this
technology in Spain, which we hope will change in the coming years.

1.4 Structure of the document

This document consists of nine chapters which will now be briefly described:

Introduction 25

Figure 1.2: LoRaWAN gateways registered by the TTN Mapper application
[3] in Spain, June 2017.

1. Introduction. Brief explanation of the context and reasons that lead
to the creation of this project.

2. LoRaWAN Overview. Overview of the main protocols and stan-
dards that take part in this project.

3. State of the Art. Analysis of alternative options which seek the
same purpose as this project.

4. Planning and Cost Estimate. Rough estimate of the time required
to carry out the project, as well as an approximation of the total cost.

5. Requirement Specifications. Quick summary of the functional and
non functional requirements of the elements involved in the project.

6. Design. Explanation and reasoning behind the hardware and software
used.

7. Implementation. Documentation of the process followed to set ev-
erything up for both hardware and software.

8. Testing and Results. Summary of the different tests performed once
everything is working, as well as the results obtained from them.

9. Conclusions. Overview of what we have learned during the realiza-
tion of this project.

In addition, there are three appendices at the end of the document:

26 1.4. Structure of the document

1. Appendix A. Arduino program used for the mote.

2. Appendix B. Matlab scripts used to make the histograms.

3. Appendix C. Matlab functions used for the spectrum analysis.

Chapter 2

LoRaWAN Overview

In this chapter, we will introduce the protocols and technologies that make
this project possible. Specifically:

1. LoRa. It is the physical layer protocol that LoRaWAN is based on,
thus it is necessary to have a basic understand of it before moving onto
LoRaWAN.

2. LoRaWAN. A network protocol and the core of this project. We will
briefly describe what makes LoRaWAN unique and its properties.

3. The Things Network (TTN). A non-profit organization whose backend
will be of great help for us.

2.1 LoRa Modulation

The following section is based on the Semtech’s LoRa description [4].

LoRa stands for Long Range and is a Semtech proprietary spread spectrum
modulation. Its main selling point consists of being able to gain range at the
expense of data rate. What makes LoRa stand out from other modulation
methods is its unique spread spectrum technique, which provides robustness
against interferences and a very low minimum SNR for the receiver to be
able to demodulate the signal.

2.1.1 Direct Sequence Spread Spectrum (DSSS)

This is the traditional way of applying the spread spectrum technique. An
expanded signal is obtained by multiplying the original data signal with a
spreading code (chip sequence). In the time domain, this spreading code
has a much faster rate than the data signal, which translates into a wider
bandwidth, beyond the original one, in the frequency domain.

27

28 2.1. LoRa Modulation

Figure 2.1: DSSS Example [5].

Then, said expanded signal can be recovered at the receiver by multiply-
ing again with a replica of the spreading sequence generated at the receiver
itself, Figure 2.1.

This method is widely used but it presents some problems for low-cost
or power-constrained devices, as they require a highly accurate and expen-
sive reference clock source. Furthermore, the longer the spreading code, the
longer the time required by the receiver to perform a correlation over the en-
tire length of the code sequence. This is problematic for devices that cannot
always be on and need to be able to repeatedly and rapidly synchronize.

2.1.2 LoRa Spread Spectrum

Semtech’s LoRa modulation provides a robust alternative to the traditional
spread-spectrum techniques. Its strong points are its low-cost and low-power
requirements.

In this case, the spreading of the spectrum is achieved by generating a
chirp signal that continuously varies in frequency, Figure 2.2. This chirp
signal is first sent several times without any data modulated onto it, as
a synchronization mechanism, known as the preamble. The preamble also
includes the transmission of the inverse chirp, which is used by the receiver
to demodulate the signal. As a result, this method does not require a highly
accurate source clock, unlike in DSSS, which helps reduce the cost of the
receiver.

After the synchronization phase has been completed, the chirp signal is
used to modulate the data signal, by shifting the phase of the chirp, Figure
2.3.

LoRaWAN Overview 29

Figure 2.2: Chirp signal in the time domain.

Figure 2.3: LoRa modulation in the frequency domain [6].

30 2.1. LoRa Modulation

Furthermore, we can also adapt our data rate depending on what we
need, as a result of the orthogonal spread spectrum factors that the LoRa
modulation provides us. These spreading factors are what enable LoRa to
perform a trade off between data rate and range. Likewise, the higher the
spreading factor the more robust our signal is against interferences at the
expense of lowering the data rate. For example, if we apply a lower spreading
factor to our signal, it will be more vulnerable to interferences, thus lowering
the range but also allowing us to transmit at a higher rate.

In addition, using a higher spreading factor also translates into a longer
airtime for the signal, since the symbol period is defined by the following
formula:

Ts =
2SF

BW
seconds

Lastly, the different spreading factors do not interfere with each other,
as they are orthogonal with each other. As a result, we can transmit several
signals over the same frequency range by using different spreading factors.

2.1.3 Main Properties of LoRa Modulation

Adaptability

We can adapt our date rate and range according to our needs by simply
choosing the appropriate spreading factor. However, we need to understand
that we cannot have both high data rate and long range at the same time.

Constant Envelope

Similarly to FSK, LoRa is a constant envelope modulation scheme. This
means that the amplitude level of the signal is constant throughout its
length, therefore the data contained within the signal is not related to its am-
plitude level, making it robust against possible nonlinear distortion caused
by power amplifiers. As a result, we can use highly efficient non-linear power
amplifiers. For reference, non constant envelope signals require a fully linear
power amplifier, which is not ideal as this type of power amplifier tends to
be very inefficient.

Robustness

Due to its asynchronous nature, a LoRa signal is very resistant to both in-
band and out-of-band interference mechanisms. The LoRa symbol period
is longer than the usual short-duration burst of FHSS systems, providing
excellent immunity to interferences caused by Pulse Amplitude Modulation,
which consists of several pulses of short duration that vary in amplitude.

LoRaWAN Overview 31

Fading Resistant

Thanks to the chirp pulse being relatively broadband, the LoRa signal is
resistant to multipath and fading.

Doppler Resistant

The Doppler effect introduces a relatively negligible shift in the time axis of
the baseband signal, which makes LoRa ideal for mobile data communica-
tions.

Long Range Capability

For a fixed throughput and output power, the robustness to interference
and fading mechanisms allows the LoRa signal to achieve a range about
four times better than that of the conventional FSK.

2.1.4 Link Budget Example

Let us calculate a quick example to showcase the power of the LoRa mod-
ulation. In order to calculate the link budget, we have to account for the
power transmitted and the sensitivity of the receiver, which gives us the
maximum path loss allowed by the receiver:

PathLossmax(dB) = PowerTx(dB) − SensitivityRx(dB) (2.1)

Typically, we have to take into account the gain of the antennas and the loss
caused by the connectors, but we are going to ignore these factors to simplify
the example. It is also worth noting, when talking about LoRa modulation,
the main limiting factor is the SNR rather than the SIR. This is caused
by LoRa’s robustness against interference but very low power transmission,
making it vulnerable to noise.

Then we need to know the formula for the receiver sensitivity, which
specifies the minimum signal power in order to be demodulated by the re-
ceiver:

Sensitivity(dBm) = −174 + 10 log10(BW) + NF + SNR (2.2)

Where:

NF is the receiver noise figure (dB).

SNR is the minimum Signal-to-Noise ratio allowed by the receiver.

Next, if we assign some realistic values to these variables:

• Power Transmitted = 14dBm.

32 2.2. LoRaWAN

• SNR = -20.

• NF = 6dB.

• Bandwidth = 125kHz.

And apply these values to equations 2.2 and 2.1, we obtain:

Sensitivity = −137dBm (2.3)

PathLossmax = 14 + 137 = 151dB (2.4)

This means we can lose about 150dB between the transmitted signal and
the received signal and the receiver would still be able to demodulate it. In
fact, if we take the free space path loss formula:

FSPL(dB) = 20 log10(d) + 20 log10(f) + 32.44

Where:

d is the distance of the receiver from the transmitter (km)

f is the signal frequency (MHz)

We obtain that the signal could travel almost 800km and the receiver
would still manage to demodulate it. Obviously, this is too good to be
true, because in reality we do not work with free space and there are other
effects like multipath, Fresnel zones, fading, etc., that also affect our signal.
Nonetheless, this example showcases LoRa’s capabilities and why it is a
strong option for most of the low-power networks.

2.2 LoRaWAN

The following section is based on the LoRaWAN specification [2] and Re-
gional Parameters [7] defined by the LoRa Alliance 1.

LoRaWAN is a network protocol optimized for battery-powered end-devices
that are either mobile or static.

LoRaWAN network topology usually consists of a star-of-stars involving
end-devices, gateways and a central network server. On one hand, gateways
are connected to the network server using standard IP connections. On the
other hand, end-devices make use of single-hop LoRa or FSK modulation to
one or multiple gateways, Figure 2.4.

1LoRa Alliance is an open, non-profit association whose goal is to standardize Low
Power Area Networks (LPWAN) and guarantee interoperability between operators in one
open global standard.

LoRaWAN Overview 33

Figure 2.4: LoRaWAN Topology [8].

Communication between end-devices and gateways is spread out on dif-
ferent frequency channels and data rates. LoRa data rates range from
0.3kbps to 50kbps. In order to maximize both battery life of the end-devices
and overall network capacity, the LoRa network is able to manage each end-
device individually via an ADR scheme.

The end-devices must respect the following rules in order to transmit on
any channel available at any time:

• The end-device changes channel in a pseudo-random way for every
transmission.

• The end-device respects the maximum transmit duty cycle relative to
the sub-band used and local regulations. For example, if a device just
transmitted a 0.5 seconds long frame on one of the default channels, in
order to comply with the 1% duty cycle, that device cannot transmit
on that whole sub-band (868-868.6MHz) during 49.5 seconds.

• The end-device respects the maximum transmit duration relative to
the sub-band used and local regulations. In our case, there is no dwell
time limitation for the EU863-870 ISM band.

2.2.1 Device Classes

A LoRa network distinguishes between a basic LoRaWAN class (named class
A) and optional features (class B and class C), Figure 2.5:

• Bi-directional end-devices (Class A): Each end-device’s uplink trans-
mission is followed by two short downlink receive windows, Figure 2.6.
The end-device is able to transmit based on its own needs with a small

34 2.2. LoRaWAN

Figure 2.5: LoRaWAN Classes [2].

Figure 2.6: Class A receive windows [2].

random variation (ALOHA-type protocol). Downlink communications
from the server at any other time will have to wait until the next sched-
uled uplink. This is the ideal class for applications that only require
a response from the server shortly after transmitting.

• Bi-directional end-devices with scheduled receive slots (Class B): In
addition to the Class A random receive windows, Class B devices open
extra receive windows at scheduled times. To achieve this, the end-
device has to be synchronized with the gateway, which is done by using
a time synchronized beacon sent by the gateway. This way the server
knows when the end-device is listening.

• Bi-directional end-devices with maximal receive slots (Class C): This
class allows for nearly continuous open receive windows that are only

LoRaWAN Overview 35

Figure 2.7: LoRaWAN EU863-870MHz ISM band parameters [7].

closed when transmitting. This class is the most power-demanding of
the 3 classes, but it also offers the lowest latency for server to end-
device communication.

2.2.2 Regional Parameters

To be able to ensure interoperability between different LoRaWAN networks,
the LoRaWAN specification defines the parameters that should be followed
for each region.

In our case, we will be using the European 863-870 MHz ISM band. In
Figure 2.7 we can see the different data rates allowed for the European ISM
band. These data rates translate into the different bitrates a transmitter can
choose from. These data rates are directly related to the spreading factors
seen previously in LoRa modulation.

In order to access the physical medium of these free-license bands, the
European Telecommunications Standards Institute (ETSI) imposes some re-
strictions such as maximum time the transmitter can be on or the maximum
time a transmitter can transmit per hour. Currently, the LoRaWAN spec-
ification uses duty-cycled limited transmissions to comply with the ETSI
regulations.

2.2.3 Security

This section will briefly explain the security fundamentals of LoRaWAN.
The main principle is that LoRaWAN makes use of three different 128

bits keys:

• Application key. Generated using AES-128 and it is used to generate
the other two keys.

• Network session key. Derived from the Application Key. This key
is known by the network in order to prove and verify the integrity and
authenticity of the packets.

• Application session key. Derived from the Application Key. En-
sures encryption end to end for the application payload.

36 2.3. The Things Network

Figure 2.8: LoRaWAN’s security [9].

In addition, these keys can be managed in two ways:

• Activation By Personalization. The end-device skips the join pro-
cedure, which means the session keys become static and do not change
over different sessions.

• Over The Air Activation. The end-device performs a join proce-
dure with the network. As a result, the session keys are generated
dynamically for each session.

Moreover, a frame counter is also used to prevent reply attacks. If
a packet is received with a frame counter lower than the expected frame
counter, the packet is dropped.

Lastly, it is recommended that the session keys are generated by a sepa-
rate entity from the network, in order to ensure the network cannot decrypt
the application payloads.

In conclusion, from how the session keys are used and from Figure 2.8,
we can see that the network session key is only used within the network
while the application session key is used end to end. This means that the
integrity of the payload is not guaranteed once it leaves the network to reach
the application, but the confidentiality is.

2.3 The Things Network

In this project we are building a gateway and an end-device, yet a LoRaWAN
network requires another element called network server.

LoRaWAN Overview 37

Figure 2.9: The Things Network’s architecture: Gateway, Router, Broker,
Network Server, Handler and Application [10].

A network server is an element of LoRaWAN that performs several tasks
such as integrity check, frame counter update, downlink template generation,
etc.

Sine we do not dispose of a network server nor plan on implementing
one, we will be using The Things Network backend, which provides not only
the network server but all of the elements in between needed to connect to
it, Figure 2.9.

Furthermore, TTN is a community driven project, so it provides its
features for free as long as we provide a gateway to connect to it. However,
connecting to TTN adds a limitation in the form of ”Fair access policy” [11].
This policy states the following:

• Maximum of 30 seconds of uplink time on air, per day and per device.

• Maximum of 10 downlink messages per day, per device.

• Under 12 bytes payload.

For now, this policy is not enforced. In fact, we will most likely not
respect it while testing our devices. Nevertheless, it should be respected
after the testing phase is over.

Chapter 3

State of the Art

In this chapter we will present and analyze the different possibilities we have
to build a LoRaWAN gateway and a mote. This analysis will involve several
parameters such as hardware requirements, price and TTN support among
others, which will help us choose the best option for the project.

3.1 Gateways

This section will go through the different LoRaWAN gateways available and
compare their characteristics such as price, hardware requirements, software
requirements, LoRaWAN compatibility, etc. To be precise, we will study the
following gateway possibilities:

• Single-channel gateway.

• Multi-channel DIY gateway.

• The Things Gateway.

• Other multi-channel already-built gateways.

The Things gateway, although being a multi-channel already-built gate-
way, is the official gateway distributed by TTN. Therefore, we thing it is
worth a deeper analysis and its own section.

3.1.1 LoRaWAN Single-Channel Packet Forwarder

This is the simplest and cheapest version of a LoRaWAN gateway, Figure
3.1. However, it has very limited features and it is only able to listen on one
channel [12].

39

40 3.1. Gateways

Figure 3.1: Single channel LoRaWAN gateway example [13].

Concept Unit cost Quantity Total

Raspberry Pi 39.90e 1 39.90e
RF transceiver1 5.58e 1 5.58e

Antenna2 5.58e 1 5.58e
Total 51.06e

Table 3.1: Total cost for the single channel gateway.

Hardware Requirements

In order to build this gateway we need the following items:

• Raspberry Pi (any model).

• Radio frequency transceiver.

• Antenna.

From this list we can see why this is the cheapest option, as it requires very
little hardware, at the cost of only being able to listen on a single channel.

Cost Estimate

Table 3.1 shows the estimated of the cost for each hardware component and
the total cost they add up to.

For a total cost of about 50e, this is a very affordable gateway.

1SX1272 used as reference.
23dBi and 868MHz antenna as reference.

State of the Art 41

Software

There is one repository with all the code needed for the gateway [12], which
consists of a C++ program you have to run as root in the Raspberry Pi
as well as some configurable parameters. Unfortunately, this repository is
deprecated and no longer up to date to use on TTN.

Supported Features

The following list contains the most important features that are fully devel-
oped for this type of gateway.

• Able to listen on configurable frequency.

• Spreading factors from SF7 to SF12.

• Status updates.

• Can forward to two routers.

Not Supported Features

Here we will list the features that either never made it into the final product
or were never intended to be implemented.

• FSK modulation.

• Downstream messages.

This gateway not being able to retrieve downstream messages in addition
to being single channel makes it not fully LoRaWAN compatible, thus it is
not officially supported by TTN.

Main Advantages

According to the previous points, these are the main advantages of the single
channel LoRaWAN gateway.

• Very cheap components.

• Easy to build.

• Great for getting started with LoRaWAN.

Final Notes

Due to its single channel nature, it has less than 2% of the capacity of a real
multi-channel gateway, in addition to not being supported by TTN and not
fully LoRaWAN compatible.

In conclusion, this type of gateway is best used for testing and educa-
tional purposes.

42 3.1. Gateways

Figure 3.2: Multi-channel DIY LoRaWAN gateway [14].

3.1.2 Multi-channel DIY LoRaWAN Gateway

The multi-channel DIY LoRaWAN gateway, Figure 3.2, is a fully LoRaWAN
compatible gateway and officially supported by TTN. Its cost is greater than
the previous alternative, but it offers a wider range of features [14].

Hardware Requirements

This is the hardware equipment needed to build the gateway:

• Embedded Linux board.

• iC880A concentrator board.

• Pigtail for antenna.

• Antenna.

• Raspberry Pi to iC880A interface.

The most expensive element is the iC880A concentrator board, which is
the piece that enables the gateway to provide multi-channel features.

Cost Estimate

Table 3.2 shows the cost estimate for the multi-channel DIY gateway.

3Raspberry Pi 3 model B used as reference.
4iC880A antenna as reference.
5Double female jumper wire as the reference.

State of the Art 43

Concept Unit cost Quantity Total

Embedded Linux board3 39.90e 1 39.90e
iC880A concentrator 189e 1 189e

Antenna4 6.50e 1 6.50e
Pigtail for antenna 6.50e 1 6.50e

RPi to iC880A interface5 0.20e 7 1.40e
Total 243.30e

Table 3.2: Total cost for the multi-channel DIY gateway.

As we we can see, this type of gateway is several times more expensive
than the single channel version, mainly due to the need of using a concen-
trator.

Software

As a result of this gateway being officially supported by TTN, they provide
us with an installation script [14].

Therefore, assuming we already have our Raspberry Pi ready to work,
as in having an operating system installed and updated, we only need to
download and run the script as well as configure a few parameters such as
our contact name, location, email, etc.

Main Advantages

These are the main advantages of the DIY multi-channel LoRaWAN gate-
way:

• Compatible and fully supported by TTN.

• Instructions on how to build it provided by TTN, both for the hard-
ware and the software.

Final Notes

Since TTN is basically a crowfunded network that relies on the community to
set up the gateways, they want to provide us with good and easy instructions
on how to set them up. As consequence, building this type of gateway is
fairly easy even for someone who is new to LoRaWAN.

Overall, a very solid option that directly contributes to TTN and the one
we have chosen for this project, as it is the cheapest multi-channel gateway
as well as being fully LoRaWAN compatible.

44 3.1. Gateways

Figure 3.3: The Things Gateway[10].

3.1.3 The Things Gateway

This is the official gateway distributed by TTN, Figure 3.3. It is fully
LoRaWAN compatible and especially designed to work with TTN’s backend
and it comes fully built and ready to use [10].

Hardware Requirements

This gateway comes fully built as a pack. All the necessary equipment
needed for the set up is included in the package.

Cost Estimate

As mentioned before, the gateway is shipped as one pack, which costs 300e.
Since we do not need anything else to set up the gateway, the price of the
pack accounts for the total cost associated to this gateway.

Software

Same as the hardware, the software comes already set up, meaning that we
do not have to run any script or implement any program in order for the
gateway to start working.

In addition, the only process required is the registration of the gateway
over TTN, unless we use a private LoRaWAN network which does not make

State of the Art 45

use of TTN’s backend, thus not requiring any kind of registration.

Main Advantages

These are the main advantages of The Things Gateway.

• Easy to install.

• Especially designed to work with TTN.

• Includes a bluetooth modem for indoor IoT connections.

• Runs on open hardware and open software.

• Can serve up to 10,000 nodes.

Final Notes

It is a great option if you do not have the time to build your own gateway. On
top of that, the registration process over TTN is very easy and intuitive even
for someone not familiar with LoRaWAN. Furthermore, being especially
designed for TTN ensures an smooth experience when using TTN’s backend.

Overall, an interesting choice for an easy to install and use gateway. It
is also the most expensive option, although not by a large margin.

3.1.4 Other Multi-Channel Already-Built Gateways

There are a few other gateways of this type apart from The Things Gateway.
Some of these other gateways are:

• MultiTech Conduit.

• Lorrier LR2.

• Link Labs LL-BS-8.

Although they would be valid options for our project, we will soon see
that their high price will be reason behind discarding them.

MultiTech Conduit

This gateway supports multiple protocols, so in order to use it for LoRa
we also have to buy the appropriate LoRa cards. This results in quite a
expensive LoRaWAN gateway. The price for the gateway itself is 442e,
while the price for one LoRa card is 159e. This gives us a price of 601e,
which is almost double the price of The Things Gateway.

46 3.2. Motes

Lorrier LR2

The Lorrier gateway is fairly similar to the DIY multi-channel gateway, as
it is built using using an iC880A concentrator and a BeagleBone Green.
Moreover, it is designed to be an outdoors gateway, thus it is enclosed in an
IP66 metal case. Lastly, it has a price of 575e, which is quite high but it
includes the price of the enclosure as well.

Link Labs LL-BS-8

This gateway from Link Labs is based on a Linux board and with a dual
core CPU of 1GHz. Additionally, it is worth mentioning that it supports
cellular connections. Price of 822e, the most expensive gateway presented
in this chapter.

3.2 Motes

We will now go through the different possibilities for motes, and choose the
one that best suits our project.

Most importantly, we have to remember that we are looking for a low-
cost option, so price will be a very important factor when choosing the
mote.

Furthermore, similarly to the gateways we will only discuss the two main
types of LoRaWAN motes:

• Mote Without LoRaWAN Stack Implemented.

• Mote With Already Implemented LoRaWAN Stack.

3.2.1 Mote Without LoRaWAN Stack Implemented

This mote does not come with the MAC layer already implemented, which
means we have to do it ourselves. However, there are some libraries with
already implemented LoRaWAN MAC functions which will ease this task.

Hardware Requirements

These are the hardware pieces we need to build the mote:

• Board with chip ESP8266.

• Antenna.

• Micro-USB cable.

• Breadboard or shell.

State of the Art 47

Concept Unit cost Quantity Total

Board with chip ESP82666 2.72e 1 2.72e
Antenna7 12.38e 1 12.38e

Micro-USB cable 4e 1 4e
Breadboard 6e 1 6e

Total 25.1e

Table 3.3: Cost estimate for the ESP8266 chip based mote.

Cost Estimate

According to the hardware required, Table 4.4 shows the estimate of the
price for this mote.

At the expense of having to program it ourselves, this mote comes at
quite a low price.

Software

For this mote we have to implement the software ourselves, however it is easy
to find already programmed LoRaWAN examples made by the community.
These examples together with the LMIC-Arduino library, which contains all
the necessary functions to set up the LoRaWAN MAC, make the software
implementation much more manageable.

Main Advantages

Here we are going to list the strong points of this type of mote.

• Very affordable.

• Small size.

While it does not have many advantages, the very low price is what we
are looking for, which outweighs its disadvantages.

Final Notes

This is the mote we have chosen for the project, the main reason being its
price. Although we have to program it ourselves, the minimal hardware
requirements makes this mote the ideal candidate for the low-cost mote we
are looking for.

6Board Wemos D1 Mini used as reference for the price.
7Dragino LoRa BEE used as reference for the price.

48 3.2. Motes

Concept Unit cost Quantity Total

Certified chip8 11.95e 1 11.95e
Antenna9 12.38e 1 12.38e

Micro-USB cable 4e 1 4e
Breadboard 6e 1 6e

Total 34.33e

Table 3.4: Cost estimate for the LoRaWAN certified chip based mote.

3.2.2 Mote With Already Implemented LoRaWAN Stack

This mote comes with an already implemented LoRaWAN MAC layer, at
the expense of a higher price.

The chip used in this type of mote has to pass the LoRa Alliance certifi-
cation test, which ensures an easy integration into any LoRaWAN network.

Hardware Requirements

Here is the list of the different hardware elements required for this type of
mote:

• LoRaWAN Chip.

• Antenna.

• Breadboard or shell.

• Micro USB cable.

Cost Estimate

Table 3.4 shows an estimate of the price based on the hardware requirements.

In summary, it is significantly more expensive than the previous option,
which makes it the main disadvantage for this type of mote.

Software

This type of motes come wit that a fully integrated LoRaWAN chip, meaning
we do not have to implement any kind of program ourselves. Moreover, some
chips may even include a text based interface for configuration purposes.

8RN2483 used as reference for the price.
9Dragino LoRa BEE used as reference for the price.

State of the Art 49

Main Advantages

The take away features of this type of mote.

• MAC layer already implemented.

• Less development time required.

• Easy LoRaWAN network integration.

Final Notes

In conclusion, the main strong point is the easy integration as counterpart
for the higher price. Therefore, it is very reasonable choice to minimize
development time. However, its higher price makes it unappealing for our
project, since we are committed to building a mote with very low budget.

Chapter 4

Planning and Cost Estimate

In this chapter we will first describe the different stages involved in the
development of this project, followed by a Gantt chart that shows the time
required for each one of them.

In addition, this chapter will also contain an estimate for the total cost
of the project, which be obtained by calculating four independent budgets:

1. Human resources. Rough estimate of the cost associated to the
work hours by the people involved.

2. General purpose hardware. Element or elements needed through-
out the whole project.

3. Gateway budget. We will estimate its cost based on the individual
pieces that conform the gateway.

4. Mote budget. Similarly to the gateway, we will estimate its cost by
adding up the prices for the individual pieces.

Lastly, we will add those four budgets together to obtain the total esti-
mated cost for the project as a whole.

4.1 Development Stages

This section will contain the distribution of days for each development stage,
Table 4.1 and Figure 4.1, followed by a brief description of them.

4.1.1 State of the Art Revision

In order to make an adequate and informed decision for the project, we must
study the already existing solutions.

51

52 4.1. Development Stages

Development stage Duration Start End

State of the art revision 25 days 10/11/2016 05/12/2016

Specifications 24 days 05/12/2016 30/12/2016

Design 45 days 30/12/2016 13/02/2017

Implementation 60 days 13/02/2017 15/04/2017

Testing and results 28 days 15/04/2017 13/05/2017

Documentation 183 days 10/11/2016 13/05/2017

Table 4.1: Distribution of days for the different development stages.

Figure 4.1: Gantt chart.

Planning and Cost Estimate 53

4.1.2 Requirement Specifications

We will define the different functional and non functional requirements that
both the mote and the gateway should meet.

4.1.3 Design

Aiming to meet the previously defined specifications, we will work on choos-
ing the different hardware and software elements.

4.1.4 Implementation

Once the design phase is completed, we will proceed with its implementation.

4.1.5 Testing

Lastly, we are now able to test our devices and ascertain that they work as
we expected.

4.1.6 Documentation

This phase consists on the writing of this document and, although it is
placed as the last phase, is carried out in parallel alongside the rest of the
previous phases.

4.2 Resources and Cost Estimate

This section will study the resources employed for this project, which will be
split in human, hardware and software resources. Additionally, an estimate
of the cost associated to the elements in the different categories will also be
included.

4.2.1 Human Resources

The following people have taken part in the accomplishment of this project:

• Jorge Navarro-Ortiz, associate professor of the Department of Signal
Theory, Telematics and Communications of the University of Granada,
as thesis supervisor.

• Sandra Sendra-Compte, associate professor of the Department of Sig-
nal Theory, Telematics and Communications of the University of Granada,
as thesis supervisor.

• Angel Guzman-Martinez, student of the School of Informatics and
Telecommunications Engineering of the University of Granada.

54 4.2. Resources and Cost Estimate

Concept Cost/time Quantity Total

Project work 20e/h 704 hours 14,080e
Tutorship 50e/h 16 hours 800e

Total 14,880e

Table 4.2: Human resources cost.

Concept Unit cost Average lifespan Time used Total

Personal laptop 700e 4 years 183 days 87.74e
Total 87.74e

Table 4.3: General purpose hardware cost.

Currently in Spain, disclosing a salary/price of reference for any profession
or service is forbidden by law [15]. Therefore, this category will be based
on the assumption that a telecommunication engineer, usually earns no less
than 20e per hour and no more than 50e per hour. From there, we have
decided to assign 20e/h to Angel Guzman-Martinez and 50e/h to Jorge
Navarro-Ortiz and Sandra Sendra-Compte.

In addition, we need to make a rough estimate of the total amount of
hours that each of the participants will spend on the project:

• Angel Guzman-Martinez: 4 hours a day during 8 months excluding
weekends. This gives us, approximately, 704 hours.

• Jorge Navarro-Ortiz: 8 hours in total of tutorship.

• Sandra Sendra-Compte: 8 hours in total of tutorship.

Gathering all of the previous data, we have presented the results in Table
4.2, where we obtain a total cost of 15,580e.

4.2.2 Material Resources

Here we will present the necessary physical elements for the execution of the
project, which will be divided into three categories: hardware for the mote,
for the gateway and a the general purpose hardware which will be used for
the project as a whole.

General purpose

The items in this section will be used throughout the entirety of the project:

• Personal laptop.

The result from this category is shown in Table 4.3. From this table,
700e is the total cost obtained.

Planning and Cost Estimate 55

Concept Unit cost Quantity Total

Wemos D1 Mini 2.72e 1 2.72e
Dragino LoRa BEE 12.38e 1 12.38e

Micro-USB cable 4e 1 4e
Breadboard 6e 1 6e

Wemos to LoRa BEE interface1 0.20e 9 1.8e
Total 26.9e

Table 4.4: Mote hardware cost.

Mote

The following list presents us with the required materials to build the low-
cost mote:

• Wemos D1 Mini.

• Dragino LoRa BEE.

• Micro-USB cable.

• Breadboard or shell.

• Wemos to LoRa BEE interface. In the case we do not use a shell.

As we mentioned before, the total price for the mote is an important
result. From Table 4.4, we can conclude that our goal of building a low-cost
mote is achievable, as its total cost is only of 25.1e2. We consider this a
very affordable price for anyone interested in using LoRaWAN.

Gateway

Here we list what we need to build the LoRaWAN gateway:

• Embedded Linux board.

• iC880A concentrator.

• Antenna.

• Pigtail for antenna.

• Board to iC880A interface.

• Right angle USB connector.

• IP54 metal enclosure.

56 4.3. Total Budget

Concept Unit cost Quantity Total

Embedded Linux board3 39.90e 1 39.90e
iC880A concentrator 189e 1 189e

Antenna4 6.50e 1 6.50e
Pigtail for antenna 6.50e 1 6.50e

Board to iC880A interface5 0.20e 7 1.40e
Right angle USB connector 2.99e 1 2.99e

IP54 metal enclosure 6.36e 1 3.36e
Total 249.65e

Table 4.5: Gateway hardware cost6.

Table 4.5 shows the result for the cost of the gateway, with the total cost
being 249.65e.

4.3 Total Budget

To wrap up, we are now able to make an estimate of the total cost of the
project based on the tables for the four different budgets defined previously.

Concept Cost

Human 14,480e
General purpose 87.74e
Hardware mote 26.9e
Hardware gateway 249.65e
Total 14,844.29e

Table 4.6: Total cost of the project.

Finally, from Table 4.6, the total cost estimated for this project is
14,844.29e, FOURTEEN THOUSAND EIGHT HUNDRED AND FORTY
FOUR WITH TWENTY NINE EUROS.

1Double male jumper wire used as reference.
2Assuming we already have a laptop available, which is needed for setting up the

mote’s software.
3Raspberry Pi 3 model B used as reference.
4iC880A antenna used as reference.
5Double female jumper wire used as reference.
6Cost for the initial set up of the Raspberry Pi (Ethernet/HDMI cable, external key-

board...) not included.

Chapter 5

Requirement Specifications

This chapter will talk about the functional and non-functional requirements
the gateway and the mote have to fulfill in order for the project to be
considered successful.

Furthermore, we have to remember that the final destination of the data,
sent by the mote and forwarded by the gateway, is an application. Simi-
larly to the mote and the gateway, the application also has to meet some
requirements in order for us to recover useful information. Therefore, the
application requirements will also be described in this chapter.

5.1 Gateway

Here we define the requirements we aim to meet with the gateway once it is
working. Although some of the requirements are not fully necessary for the
gateway to work, all of them should be met for a quality experience when
using it.

5.1.1 Functional Requirements

• Able to receive packets over the LoRa physical layer.

• Able to forward the received packets over to TTN via either WiFi or
Ethernet, in order to reach the application.

5.1.2 Non-Functional Requirements

• Fully LoRaWAN compatible.

• Supported by TTN, since we aim to forward the packets through it.

• Wide coverage.

• Reasonably cheap. Only the necessary features.

57

58 5.2. Mote

• Must provide security throughout the entire communication process.

• Availability. It should not have long periods of downtime.

• Easy to access and maintain.

• Efficient, as to make the power consumption as low as possible.

• Must support interoperability, as to be able to receive and forward
packets from a wide range of different end-devices.

• Must support concurrency, the gateway should be able to handle sev-
eral motes transmitting simultaneously.

• Scalable. The gateway must be able to handle the exponential growth
of IoT devices.

5.2 Mote

In this section we will list the requirements our mote should meet after the
implementation phase is done. Again, we do not have to meet all of them for
the mote to work, in fact it would be fine for testing purposes not to meet
some of them. However, we want to build a mote that closely resembles one
that would be used in a real scenario, hence why all of the requirements
should be met.

5.2.1 Function Requirements

• Able to transmit and receive packets over LoRa as the physical layer.

• Must be able to encrypt the packets before sending them.

• Will allow customizable payloads, such as a simple string or data from
a sensor.

• Will have the option to change the spreading factor used, as to adapt
to different distances and data rates

• Capable of changing the transmission frequency. In order to comply
with TTN’s fair access policy.

5.2.2 Non-Functional Requirements

• It must be cheap and affordable.

• Power efficient. A very important aspect, since in a real scenario the
mote will be powered by a battery.

Requirement Specifications 59

5.3 Application

Lastly, here we list the requirements that the application must meet. More-
over, it is important that the application meets these basics requirements,
as that will help us perform the testing phase properly.

5.3.1 Functional Requirements

• Able to decrypt the payload and display the content in plain text.

• Allows to change the encryption keys in case we need it.

• Must not be restricted to one device. It needs to be capable of receiving
packets from different end-devices. Therefore, it also must be able to
distinguish packets from different end-devices.

5.3.2 Non-Functional Requirements

• Secure. We will need to provide our credentials before having access
to the data.

• Availability. Similarly to the gateway, it must has as little downtime
as possible.

• Readability. The data should be easy to interpret.

• Informative. It should display the information for different parameters,
such as RSSI or SNR.

Chapter 6

Design

This chapter will explain the process followed to design both the gateway
and the mote, describing the different hardware elements employed as well
as the reasoning behind them.

In addition, we have to keep in mind that the goal of this design process
is to build a mote and a gateway that meet the requirement specifications
defined for them in the previous chapter.

6.1 Mote

First, we will start with the design of the mote. Note that the design does
not include any type of sensor, as it is not needed to test that everything
works together. In the case we wanted to add a sensor, we would have to
perform the necessary wiring to the development board and adapt the code,
so that the payload contains the information gathered by the sensor.

6.1.1 Development Board

As we mentioned in the state of the art chapter, we decided to build a mote
that does not come with the LoRaWAN MAC layer already implemented in
order to minimize the cost as much as possible. Therefore, when designing
the mote, we mainly considered two boards:

• Wemos D1 Mini, Figure 6.1.

• NodeMCU, Figure 6.2.

These two boards are very cheap and they both come with the ESP12
chip, which contains the WiFi module ESP8266. However, this chip can be
programmed to work with LoRa so we can use it to implement the MAC
layer.

From this point and although both boards are very similar and cost
about the same price, we decided to go with the Wemos D1 Mini because

61

62 6.1. Mote

Figure 6.1: Wemos D1 Mini [16].

Figure 6.2: NodeMCU.

Design 63

Figure 6.3: Some of the different LoRa modules available[17].

of its fairly smaller size: 34.2mm long and 25.6mm wide as opposed to the
49mm long and 24.5mm wide NodeMCU.

On a side note, we could have minimized the price even further if we just
chose to work with the ESP8266 chip by itself, but we felt the board was
already cheap enough, thus working with the chip by itself was not worth
the extra hassle.

6.1.2 Transceiver Module

This is the part in charge of taking the packets and modulate them using
LoRa. We have a few different options for it, Figure 6.3.

Firstly, since we are in Europe, we need a module that supports the
868MHz frequency range, so we have to discard both RFM96W and RFM98W.

Secondly, the difference in price between the modules is almost ne-
glectable, so we are looking for the one with the best performance. From
Figure 6.3 we can see that the module RFM95W supports all five spreading
factors and has the best estimated sensitivity, so it will be the one we choose.

Finally, now that we have decided that we will use the RFM95W module,
we need to find a chip with it. In our case we have found the chip SX1276,
by Semtech.

6.1.3 Antenna

An antenna is the last part we need to have a functional mote, whose func-
tions consist of transmitting and receiving the signal over the 868MHz fre-
quency range.

Since we need the chip SX1276, we have decided to use the transceiver
module LoRa BEE, which is based on said chip and it comes with an 868MHz
antenna, Figure 6.4.

With this final piece we now have all of the necessary hardware to build
our mote. From this point, we only have to properly wire the pieces together,
implement the MAC layer and we will have a working mote.

64 6.2. Gateway

Figure 6.4: LoRa BEE by Dragino [18].

6.2 Gateway

In the State of the Art chapter, we decided to build the DIY multi-channel
Raspberry Pi gateway and therefore we will need the following:

• Embedded Linux board.

• Concentrator.

• Antenna.

• Pigtail for the antenna.

• Board to concentrator interface.

• Enclosure. Since we plan on placing it outside.

6.2.1 Embedded Linux Board

There are several embedded Linux boards to choose from such as Raspberry
Pi, Beagle Bone and Banana Pi among others. However, we are more famil-
iar with the Raspberry Pi and it will be the embedded Linux board we will
be using.

Now, there are several different Raspberry Pi models, and almost all of
them should work except for the original versions [14]. In addition, we are
not aiming for a low-cost gateway, so we can afford to use the latest versions.

Design 65

Figure 6.5: Antenna and pigtail for iC880A concentrator [19].

In our case we will use the Raspberry Pi 3 model B, which is well over the
minimum requirements but it will help improve the overall performance of
the gateway.

6.2.2 Concentrator

As we have mentioned before in previous chapters, the concentrator is the
piece that allows our gateway to be multi-channel.

Regarding the specifications, the concentrator needs to be LoRaWAN
compatible and be able to handle packets with different spreading factors
and data rates. We have found that the iC880A concentrator meets all of
those requirements and so it will be the one we will use.

Lastly, this concentrator allows for female jumper wire as interface be-
tween it and the board. This means that we will use double female jumper
wires to connect the concentrator and the Raspberry Pi.

6.2.3 Antenna

Similarly to the mote, an antenna is a crucial part of the gateway, in charge
of transmitting and receiving the LoRa packets over the ISM band.

Luckily for us, the manufacturer that sells the concentrator also sells the
antenna and pigtail for it. Therefore and mainly for convenience, we will
be using those ones, Figure 6.5. However, any antenna that supports the
adequate frequency range, 868MHz in our case, should work too.

66 6.2. Gateway

6.2.4 Enclosure

Since we want the gateway to be outside for maximum coverage, we need
to make sure it does not get damaged by the weather, birds, insects or
dust. However, Granada is not a very rainy city, thus we do not need an
extreme water proof enclosure. Nevertheless, it is important that we choose
the adequate level of protection according to our zone, as it is a big factor
in our gateway’s useful life and performance. Therefore and taking all of
those factors into account, we have chosen an IP54 enclosure:

1. The first number in IP54, 5, stands for the level of protection against
small objects. In this case, level 5 means complete protection against
contact and dust deposit.

2. The second number in IP54, 4, stands for the level of waterproofing.
In this case, level 4 means protection against splashed water, which is
enough for us.

Finally, we feel that this level of protection is enough for our zone. How-
ever, we should monitor the state of the gateway and make sure the enclosure
is working as intended.

Chapter 7

Implementation

This chapter will describe the steps followed to set up the mote, the gateway
and the application. Thus, it will include the process between having the
different hardware elements by themselves and everything working together
and fully operational.

Also, we have to set up the application before the mote, since we will
need some parameters from the application to implement the mote.

7.1 Application

Here we will go through the process of creating our application, which will
be linked to our mote in order to receive and decipher the packets. Since
we are making use of TTN, we have to create the application through their
website.

To start off, we need to register an account before we can create the
application. Then, after logging in with said account, we navigate to the
console of TTN: https://console.thethingsnetwork.org/, where we have the
option to either register a gateway or create an application. Right now we
want to create an application, so we click on ”Applications”. This will take
us to the application manager, but we do not have any applications yet so
we click on ”add application”.

When creating the application, we have to fill in some fields which will
help describe and identify our application. An example configuration is
shown in Figure 7.1.

At this point our application is ready, however we are not done yet
because we have to link at least one device to it. In order to link a device
we navigate to the ”Devices” tab and click on ”register device”. Here we
only have to fill in the ”Device ID” field, as the rest of the fields will be
generated automatically. Example configuration shown in Figure 7.2.

To wrap up, the last thing we have to do is enter the ”Settings” tab in
our device and change the ”Activation Method” from OTAA to ABP, as it

67

68 7.1. Application

Figure 7.1: Application configuration example.

Figure 7.2: Device configuration example.

Implementation 69

Figure 7.3: Wemos D1 Mini pinout [16].

will be the activation method that we will use on the mote. After this last
step, we have generated all the keys and parameters we will later need to
set up the mote.

Finally, as a suggestion and only during testing, we should disable the
”Frame Counter Checks” option, so that our application picks up all the
packets after we reset the transmission.

And that is it, we are done. Our application is ready to receive packets
from our mote through TTN.

7.2 Mote

In this section we will describe how to set up both the hardware and the
software for the mote. The goal here is to end up with a fully functional
transceiver capable of sending a customizable payload over the LoRa phys-
ical layer.

7.2.1 Wiring

Although we could start with the software first, we are going to begin build-
ing the mote by wiring the different pieces together.

First thing we have to do is identify the pins for both the Wemos and
LoRa BEE, Figures 7.3 and 7.4 respectively.

Secondly, now that we know the pins layout, we will connect the ground
and power pins, Table 7.1.

Then we will connect the serial peripheral interface bus, by connecting
the MISO, MOSI, SCK and SS pins together, Table 7.2.

Finally, we will connect the I2C bus, Table 7.3.

70 7.2. Mote

Figure 7.4: LoRa BEE pinout [18].

Function Wemos pin LoRa BEE pin

3.3V Power input 3V3 1

Ground G 10

Table 7.1: Pin connections for ground and power input.

Function Wemos pin LoRa BEE pin

MISO D6 4

MOSI D7 11

SCK D5 18

SS D8 17

Table 7.2: Pin connections for SPI bus.

Function Wemos pin LoRa BEE pin

SCL D1 12

SDA D2 13

Table 7.3: Pin connections for I2C bus.

Implementation 71

Figure 7.5: Mote after the wiring process.

Now, we should have everything properly connected and waiting for the
software to be implemented. However, we encountered a problem during the
wiring process. The distance between the LoRa BEE pins is different from
the distance between the pins in the breadboard. Thus, we had to figure
out a different way to connect the wires. As a result, we ended up welding
the wires between the Wemos board and the LoRa BEE, Figure 7.5.

7.2.2 Software

First of all, we need to know what language we are going to use. The
Wemos D1 Mini development board supports Arduino, NodeMCU and Mi-
croPython. We are familiar with the Arduino language, thus it will be the
one will be using.

Secondly, it is not viable and out of the reach of this project to implement
the LoRaWAN MAC layer from scratch, therefore we will use the Arduino-
LMIC library [20] version 1.5, which is based on the LMIC library developed
by IBM for C language.

Once we have the library downloaded and added to Arduino we can start
our program but, again, we do not have to start from scratch as the library
also includes some LoRaWAN demo programs that we can use as a starting
point. To be specific, it comes with two LoRaWAN examples:

72 7.2. Mote

• ”Hello World” program class A node using ABP.

• ”Hello World” program class A node using OTAA.

Either of the examples can be used as a valid starting point, but ABP
is slightly simpler to implement and the one we will use. Then, with our
Arduino sketch open, we have to configure some parameters:

• Network session key, ”NWSKEY”.

• Application session key, ”APPSKEY”.

• Device address, ”DEVADDR”.

• Pin map, ”lmic pins”.

• Transmission interval, ”TX INTERVAL”. We should set this interval
over 1 minute in order to comply with TTN’s fair access policy. How-
ever, we are going to set it to 6 seconds during our testing process and
then, revert it back to 1 minute once we are done testing.

• Payload, ”mydata”. This one is optional, we will leave the default
”Hello, world!” because it is enough for our testing purposes. However,
if we had a sensor we would have to adjust the payload so it contains
the information gathered by the sensor.

• Spreading Factor, ”DR SF”. An optional parameter as well, we will
leave it as 7 but we can increase it up to 12 if we need longer range.
Also, by leaving it as 7 it will decrease the airtime and thus, we can
transmit packets a higher frequency. Additionally, note that forcing
an specific spreading factor in the program is considered ”hard-coding
an spreading factor”, and TTN strongly advises not to use motes with
hard-coded SF11 or SF12.

Most of the parameters are located at the start of the sketch. The values
we need to use for the network session key, the application session key and
the device address were generated by the device we previously registered for
the application. Therefore, we have to go back to the TTN console and copy
those values into the Arduino sketch using the right hexadecimal format.

We can see an example configuration in Figure 7.6. Also, the entire
Arduino sketch is available in Appendix A at the end of this document.

As for the pin map, Figure 7.7 shows the Arduino code that corresponds
to the wiring configuration we did earlier. Also, when configuring the pin
map, we have to take a few things into consideration:

• The names on the left correspond to pins on the transceiver, while the
numbers refer to GPIO number on the Wemos side. For example, 15
means GPIO15 which corresponds to D8.

Implementation 73

Figure 7.6: Example of Arduino parameters configuration.

Figure 7.7: Arduino pin mapping.

• We do not need to specify the pins for the SPI bus, as they are always
the same.

• Pins not used should be specified as ”LMIC UNUSED PIN”.

• Do not change the name of the struct, as it is a special name recognized
by the library.

Finally, once we are done configuring all the parameters, we verify the
sketch to make sure we have not made any mistakes, and then upload it
to the Wemos board. Once this is done, we will now have both end points
ready, the mote and the application, and at this point we are only missing
the gateway for a fully operational LoRaWAN.

7.3 Gateway

7.3.1 Wiring

Wiring the Raspberry to the concentrator is very similar to the wiring we
performed for the mote: we have to connect the 5V power input, ground and
the SPI bus. Therefore, in this case we will list all the connections directly
in Table 7.4.

74 7.3. Gateway

Function Concentrator pin Raspberry Pi pin

5V Power input 21 2

Ground 22 6

Reset 13 22

SPI Clock 14 23

MISO 15 21

MOSI 16 19

NSS 17 23

Table 7.4: Pin connections between the Raspberry Pi and the concentrator.

And that is it for the wiring between the Raspberry Pi and the concen-
trator, Figure 7.8. The next step will be to set up the software.

7.3.2 Software

The first thing we have to do is install an operative system in the Raspberry
Pi using the SD card. For this step we have chosen the Raspbian Jessie Lite
operative System.

Following the installation of the operative system, we need to enter the
following command:

1 $ sudo raspi -config

Here we can enable the SPI (”Interfacing options”) and expand the file
system (”Advanced options”).

Now, we should make sure our system is up to date with the commands:

1 $ sudo apt -get update

2 $ sudo apt -get upgrade

Then we install ”git”:

1 $ sudo apt -get install git

At this point, we can now install the software for the gateway. Thank-
fully, TTN provides us with a script that installs everything for us [14]. We
can make use of this script by typing these commands:

1 $ git clone -b spi https :// github.com/ttn -zh/ic880a -gateway.git ~/

ic880a -gateway

2 $ cd ~/ic880a -gateway

3 $ sudo ./ install.sh spi

When running the script, we will be asked if we want to use remote
configuration. Remote configuration is a handy option that will allow us

Implementation 75

Figure 7.8: Gateway after the wiring process.

to change the settings of our gateway without actually having to connect
our gateway, since it can be cumbersome once the gateway is properly set
up. However, in our case we do not feel like we need this feature, so we will
answer ”no” and proceed to fill in the parameters manually. The positioning
parameters we will be using are the following:

• Latitude: 37.19706.

• Longitude: -3.62453.

• Altitude: 750.

We obtained the latitude and longitude using ”Google maps”, while the
altitude is a rough estimate based on the altitude of our city, Granada.

In addition, during the installation we will be prompted with the EUI of
our gateway and we should write it down somewhere, as we will need it soon
for the registration of the gateway. In our case our EUI is ”B827EBFFFE4A3814”.

At this point, our gateway is capable of receiving packets, but it cannot
forward them to our application yet.

7.3.3 Registration

Next, we have to register our gateway on TTN before it is able to forward
packets to TTN. For this, we have to go again to the TTN console, click

76 7.3. Gateway

Figure 7.9: Example of gateway registration.

Figure 7.10: Gateway status: connected.

on ”Gateways” and then on ”register gateway”. Here we will have to fill
in some fields, like our gateway’s EUI and our frequency plan. An example
using our parameters is shown in Figure 7.9.

Since the script we used to install the software for the gateway was based
on the ”Semtech packet forwarder”, we have to check the box that says ”I’m
using the legacy packet forwarder”.

As for the frequency plan, our gateway is located in Europe so we have
to choose the European ISM band, which is the 868MHz band.

If everything has been set up correctly and our gateway is plugged in,
we should now see the status of the gateway as ”connected”, Figure 7.10.

Lastly, we are going to set the privacy settings of the gateway as public,
Figure 7.11, and add all of the information possible, Figure 7.12.

7.3.4 Enclosure

To wrap up, we are going to mount the gateway in the enclosure in order to
keep it safe from insects, birds, rain, etc. But before doing so, we have to
make two holes:

• One for the power supply. The gateway would not be able to do much
without a power supply.

Implementation 77

Figure 7.11: Gateway privacy settings.

Figure 7.12: Gateway information.

78 7.3. Gateway

Figure 7.13: Gateway enclosed.

• Another one for the Ethernet cable. This one is optional, but in
case we need to reconfigure our gateway for whatever reason we will
not have to open the enclosure. Alternatively, we could set up the
”wpa supplicant” on the Raspberry Pi so we can access it via WiFi,
however the enclosure might weaken the WiFi signal to the point where
it barely reaches outside the enclosure.

As seen in Figure 7.8, the Ethernet cable barely fits in the enclosure and
thus, cannot be turned in order to connect it to the Raspberry Pi. Due to
this, we bought a right angle USB connector.

7.3.5 Location

Finally, we are going to place the gateway on high place so that it has better
reach. For this purpose, we have placed the gateway on the terrace of the
fifth floor of the school. Although we would like it to be even higher, the
gateway will stay there during all of the testing process.

Chapter 8

Testing and Results

In this chapter, now that we have everything up and running, we will go
through the results obtained by the different tests we have performed. These
tests are the following:

• Sending data to our application using the mote.

• Gateway coverage measurement, both indoors and outdoors.

• Channel hopping histogram.

• Spectrum analysis of an uplink transmission.

• Mote power consumption measurement.

8.1 Sending Data to the Application

This is the most important test. We are going to start transmitting with
our mote and see if we receive the packets in the application. If this test
fails it means something has gone wrong during the implementation and we
would have to redo it again.

The test itself is really simple, first of all we have to make sure the
gateway is connected and running. Once that is done, we plug in the mote
and start transmitting. Then, if everything is set up properly, we should be
able to see our packets using the TTN website.

First, we are going to check if the gateway is receiving the packets. In
order to check the traffic of our gateway, we have to log on our TTN account,
go to the console, navigate to our gateway and click on the ”Traffic” tab. In
Figure 8.1 we can see that the gateway is indeed receiving the packets. We
can recognize the packets are from our mote by looking at the device address.
Moreover, if we click on a packet we can see more detailed information,
Figure 8.2. From the packet details we can obtain some parameters like the
encrypted payload, RSSI, airtime, channel, etc.

79

80 8.1. Sending Data to the Application

Figure 8.1: Packets received at the gateway.

Figure 8.2: Fragment of the packet details at the gateway.

Testing and Results 81

Figure 8.3: Packets received at the application.

Now that we know the gateway is receiving the packets correctly, it is
time to see if the application does too. This process is very similar to one
we did for the gateway. We start by logging on our TTN account, then go
to the console, navigate to the applications, select the device we are using
and click on ”Data”.

It looks like everything is working as intended, as the packets are being
received at the application, Figure 8.3. Similarly to the gateway, we can see
the details of the packets by clicking on then, Figure 8.4. These details are
very similar to the ones shown by the gateway, except for the payload which
is decrypted.

Finally, to make sure that the payload is being decrypted correctly we
are going to convert it to text, since the payload shown by the application
is hexadecimal.

Hexadecimal string:

1 48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21

Converting it to text we obtain:

1 Hello , world!

So everything has been a success, the payload is correctly received and
decrypted at the application.

8.2 Gateway Coverage

An important part of our gateway is its range, therefore the goal of this test
is to measure how far away we can get from the gateway while it is still able
to receive the packets with sufficient signal power.

However, these measurements vary greatly depending if we are measuring
indoors or outdoors. Accordingly, we are going to perform the test in both
situations.

82 8.2. Gateway Coverage

Figure 8.4: Fragment of the packet details at the application.

8.2.1 Indoors

The indoors test will consist on transmitting packets with the mote during
10 minutes on each floor of the school, except for floor 2 which will be
explained on its own section. We will start on floor 5 and end on floor -1,
for a total of seven floors. Moreover, we will store the RSSI level of each
packet received during those 10 minutes. Lastly, these values will be used
to make an RSSI histogram for each floor.

However, we cannot work directly with the data received on the appli-
cation, unless we manually write down the values. Therefore, we use an
MQTT client, Mosquitto version 3.1 in our case, to store the data so that
we can work with it. By looking at the API provided by TTN, we use the
following command to store the data:

1 $ mosquitto_sub -h eu.thethings.network -u mota01 -P ttn -account -v2.

gtalAJgsBw4IEtL -jsZml_WF77dMLdnF -a5tYuXJU4Y -t "+/ devices /+/up" >

lora_mqtt_floorX.log)

Where:

-h is the host to connect.

-u is the username, in this case it corresponds to the Application ID.

-P is the Access Key of the application.

Testing and Results 83

Figure 8.5: Fragment of the log file for floor 0.

-t indicates the topic we want to subscribe to.

> indicates the file where the data will be stored.

Once we have the data stored in a log file, we need to, somehow, store
the RSSI values in an array in Matlab. We also have to keep in mind that
we have stored much more data aside from the RSSI, such as SNR, airtime,
channel, etc. Example of log file in Figure 8.5.

The procedure to get the RSSI array in Matlab involves opening the log
file with excel in order to separate the different fields in different columns
and, once that is done, we can use Matlab to read a specific column of the
excel file to store it as an array. The code for the Matlab scripts can be
found in Appendix B at the end of this document.

Lastly, remember the gateway is located on the fifth floor, as we men-
tioned in the implementation chapter.

Floor 5

We start our test on floor 5, Figure 8.6. We can see that the most common
RSSI values are -57 and -60dBm with 11 and 9 appearances respectively.

These RSSI values are not that good considering we are almost next to
the gateway. This might be due to the location of the gateway, which is
placed right in front of the metallic grid that covers the entrance to the ter-
race. This grid might be deteriorating the received signal and thus, lowering
the RSSI level.

Floor 4

On floor 4, Figure 8.7, the most common RSSI values are -51 and -52dBm
with 14 and 13 appearances respectively, which are better values than on
floor 5.

These measurements were taken slightly closer to the gateway (on the
horizontal plane) than the ones taken on floor 5. That small deviation plus
the metallic grid not being directly in the way is what might be causing the
RSSI levels to better here than on floor 5.

Floor 3

On floor 3, Figure 8.8, the most common RSSI values are -81 and -79dBm
with 12 and 7 appearances respectively.

84 8.2. Gateway Coverage

Figure 8.6: Floor 5 RSSI histogram.

Figure 8.7: Floor 4 RSSI histogram.

Testing and Results 85

Figure 8.8: Floor 3 RSSI histogram.

It is on this floor where we started seeing a noticeable degradation of the
RSSI levels.

Floor 2

On floor 2, Figure 8.9, the most common RSSI values are -90, -91, -97 and
-99dBm with 69, 58, 58 and 58 appearances respectively.

We have a larger sample size on this floor because one of my supervisors
has his office on this floor, so he was able to leave the mote sending packets
for about 2 hours. Additionally, the test for this floor was performed on a
different day than the rest of the floors.

We expected the histogram to be more similar to a Gaussian distribution
with this large sample size. However, that is not what happened as the there
are several RSSI levels evenly distributed. We think this is caused by the
channel hopping that occurs when using LoRaWAN, leading to different
RSSI levels for each channel.

Floor 1

On floor 1, Figure 8.10, the most common RSSI values are -81 and -87dBm
with 11 and 10 appearances respectively.

Although there are now four floors between us and the gateway, the
packets are still being received with acceptable RSSI levels. In fact, these
packets have a slightly better RSSI than the ones received from floor 2. We

86 8.2. Gateway Coverage

Figure 8.9: Floor 2 RSSI histogram.

Figure 8.10: Floor 1 RSSI histogram.

Testing and Results 87

Figure 8.11: Floor 0 RSSI histogram.

think this might be caused by the small sample size and the fact that the
measurements on floor 2 were taken on a different day.

Floor 0

On floor 0, Figure 8.11, the most common RSSI values are -87 and -84dBm
with 9 and 8 appearances respectively.

Despite being one floor below, we have about the same RSSI levels as on
floor 4. This might be due to sending the testing packets from a different
point on the floor, as I did not want to obstruct the stairs to the library on
floor 1. Therefore, I ended up taking the measurements on a different point
that was closer to the gateway on the horizontal plane.

Floor -1

On floor -1, Figure 8.12, the most common RSSI values are -101 and -97dBm
with 9 and 7 appearances respectively.

Finally, on the last floor, there are 6 floors between us and the gateway
and the packets are still being received just fine. We also have to keep in
mind that there is concrete between each floor.

88 8.2. Gateway Coverage

Figure 8.12: Floor -1 RSSI histogram.

8.2.2 Outdoors

As the second part of this coverage test, we are going to perform it outside.
For this, we could use the same procedure we used for the indoors part,
however we found an application called ”TTN Mapper”, which will yield us
more elegant results.

For this part, all we need is a phone with and GPS receiver and Android
operative system (version 4.03 or higher), as well as a LoRaWAN transmit-
ter. Of course, the gateway has to be running too. To be more specific, we
used:

• Sony Xperia phone with Android version 4.3.

• Our low-cost LoRaWAN mote.

• TTN Mapper application version 27 and build date 01/04/2017.

The procedure for this part is fairly simple:

1. We open the application and link our mote to it, either manually or
by logging on our TTN account and selecting the device.

2. We plug in the mote and start transmitting, while keeping the phone
close to it.

3. On the application, we click on ”Start mapping”.

Testing and Results 89

Figure 8.13: Results of the outdoor coverage testing on the TTN Mapper
website [3].

Now, we can start moving around with the mote and the TTN Mapper
will display the position of our mote, by using the GPS of our phone, and
the RSSI level obtained from that position. Also, during this test we used
SF7 for several reason:

• It is the recommended spreading factor by the TTN Mapper applica-
tion.

• It is the worst case scenario, as SF7 has the lowest range.

• It allows us to transmit packets mote often due to the duty cycle
limitations, thus improving the resolution of the coverage map.

Once we are done mapping, we can see the results on Figures 8.13 and
8.14, obtained from the TTN Mapper website [3]. In these figures, the point
with the TTN symbol represents the position of our gateway.

The furthest point measured is about 550m away from the gateway and
was still received within the greater than -100dBm range.

8.3 Channel Hopping Histogram

Taking advantage of the log files we stored for the coverage measurements,
we used the data in them to plot a histogram of the different channels used,
Figure 8.15. This histogram will be based on the data collected from floor
2 because of the larger sample size. Furthermore, the script used can be
found in Appendix B at the end of this document.

As a result from the histogram, we can clearly see how the channels are
practically evenly distributed and there is no preferred channel.

90 8.3. Channel Hopping Histogram

Figure 8.14: Zoomed in results of the outdoor coverage testing on the TTN
Mapper website [3].

Testing and Results 91

Figure 8.15: Histogram of the different channels used.

8.4 Spectrum Analysis

This test consists on using Matlab and an SDR to capture the spectrum
of the ISM band for a few seconds. The Matlab script can be found in
Appendix C at the end of this document.

Firstly, we will capture the spectrum when no packets are being trans-
mitted, Figure 8.16. In this case, the small peak on the center of the image
is caused by the hardware of the SDR.

Secondly, we will capture the spectrum once our mote has started trans-
mitting packets, Figure 8.17. Also, note that for this test we are using SF7.

As a result of this test, we can clearly see the wideband nature of LoRa,
as the signal is spread across the available bandwidth.

8.5 Power Consumption

One of the main advantages of LoRaWAN is its low power consumption.
In fact, it is one of the reasons to use LoRaWAN over WiFi or cellular
networks, as to minimize battery usage. Knowing this, we want to test
how much power our mote consumes when transmitting packets every six
seconds.

To perform this test, we will used a little device, called USB tester, that
is connected between the power source and the mote. When running, this

92 8.5. Power Consumption

Figure 8.16: Spectrum centered on 868MHz when nothing is transmitting.

Figure 8.17: Spectrum centered on 868MHz when packets are being trans-
mitted.

Testing and Results 93

Figure 8.18: USB Tester after measuring for 32 minutes during worst case
scenario.

devices shows the following parameters:

• Time expired. Resolution of one minute.

• Voltage, shown in Volts. Resolution of 0.01V.

• Current, shown in Amperes. Resolution of 0.01A.

• Accumulated electric charge, shown as milliamperes hour. Resolution
of 1mAh.

Furthermore, this test will be split into two different tests:

1. First test will measure the mote during the worst case scenario. This
is, when the mote is transmitting every few seconds, limited only by
the duty cycle and using SF7.

2. Second test will repeat these measurements but for a more realistic
scenario. This is, when the mote transmits a packet every five minutes
in addition to disabling WiFi on the ESP8266, since we are not making
use of it.

8.5.1 Worst Case Scenario

In this case, the mote is transmitting packets every 12 seconds approximately
and the WiFi module, which we are not using, is still enabled. Then, after
measuring for 32 minutes and transmitting 160 packets, we obtained 29mAh
at 5.09V, Figure 8.18.

94 8.5. Power Consumption

Figure 8.19: USB Tester after measuring for one hour during realistic sce-
nario.

PowerWorstCase = 29 ∗ 10−3 ∗ 5.09 ∗ 60

32
= 0.2768W (8.1)

From this result we can draw the conclusion that this mode is not rec-
ommended for a battery dependent mote, as it is slightly power intensive.
For reference, a 10,000mAh battery would only last for a little over a week.

8.5.2 Realistic Scenario

During this test, the mote will be transmitting packets every five minutes
and the WiFi module will be disabled.

In order to disable the WiFi module we have to slightly modify our
Arduino program. Firstly, we include library for the ESP8266 Module at
the start of the sketch.

1 #include <ESP8266WiFi.h>

Then, we add in the ”setup” these two commands:

1 WiFi.forceSleepBegin (0); //This function turns on modem sleep mode (

turns off RF but not CPU)

2

3 delay (1); //For some reason the modem won’t go to sleep unless you do

a delay(non -zero -number) -- no delay , no sleep and delay (0), no

sleep

Now that the WiFi module is turned off, we proceed to measure the
power consumed for one hour, Figure 8.19. For some reason the timer shows
49 minutes, but the actual measuring time was one hour.

PowerRealistic = 8 ∗ 10−3 ∗ 5.08 ∗ 60

60
= 0.0406W (8.2)

Testing and Results 95

From these results, it is clear that in a realistic scenario and with some
optimizations, the power consumption is extremely low. Using the same
reference we used for the worst case scenario, a 10,000mAh battery would
last for about 52 days. Also, it is worth noting that we could reduce the
power consumption even further by doing the following:

• Working with the ESP12 chip by itself without the Wemos board.

• By using the Deep Sleep mode available on the ESP8266 chip, which
consumes about 60 µA [21], and activating it in between transmissions.

Chapter 9

Conclusions

In this final chapter, we will draw our conclusions based on what we have
learned throughout the whole process of carrying out this project.

9.1 LoRa

LoRa works really well despite the density of buildings surrounding the
gateway. Accordingly, we would expect LoRa to work even better on open
environments, so it is better suited for agricultural purposes.

Furthermore, it surpasses WiFi range without a doubt. For reference,
and average WiFi antenna might reach about 30 meters.

9.2 LoRaWAN and TTN

LoRaWAN is still an up and coming technology with a lot of potential,
however it relies heavily on the community as its only way of deploying
LoRaWAN gateways.

So far this method has been working out, but if the interest of the com-
munity dies out in the next few years and not enough gateways remain
operative, then LoRaWAN might fall out of relevance.

Moreover, TTN is also a great factor in LoRaWAN’s success. TTN allows
the users to make use of their network structure, so that only a gateway and
an end-device are needed in order to have a fully operational LoRaWAN.

9.3 The Gateway

Our gateway has been a great success so far. It is able to receive packets
from a large distance, from different motes, with different spreading factors
and data rates.

Yet, we have encountered a problem we did not think of when we started:
heat. Granada is a city that can get extremely hot during summer and, on

97

98 9.4. Low Cost Mote

top of that, the enclosure of our gateway is black. Right now the gateway is
not directly exposed to the sun most of the day and it reaches about 70oC
(measurement obtained from the Raspberry Pi). Therefore, if we want to
place it somewhere else, we have to be careful with the sun exposure.

All in all and despite that temperature issue, the gateway is working
extremely well while also being fairly simple to build.

9.4 Low Cost Mote

The mote has proven to work properly while meeting the requirement of
being cheap and affordable. In contrast, it has been slightly cumbersome
to build since the LoRa BEE has a distance between its pins that is not
compatible with a breadboard, so we had to come up with an inventive way
of connecting the LoRa BEE and the Wemos board. We could also have
made the process more convenient if we increased the price slightly and
bought a shell that connects the Wemos and the LoRa BEE.

On one hand, this is an affordable mote that, if properly optimized, can
last for a long time without having to replace the batteries.

On the other hand, the fact that we have to include the LoRaWAN
MAC layer ourselves means that the average user might need some technical
support, thus being less practical.

Overall, the mote is an excellent choice if the user is comfortable in-
cluding the library that implements the MAC layer. Otherwise, it might be
worth it to pay about 10 extra euros and buy a full LoRaWAN stack chip.

Bibliography

[1] Bill Morelli, “Internet Connected Devices: Evolving from the
”Internet of Things” to the ”Internet of Everything”,” 2013,
accessed on 20/06/2017. [Online]. Available: https://www.ihs.com/
pdf/IHS-IOT-Evolution 161384110915583632.pdf

[2] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O.Hersent,
“LoRaWAN Specification,” Jan. 2015, accessed on 20/06/2017.
[Online]. Available: https://www.lora-alliance.org/portals/0/specs/
LoRaWAN%20Specification%201R0.pdf

[3] JP Meijers, “TTN Mapper,” accessed on 20/06/2017. [Online].
Available: http://ttnmapper.org/

[4] Semtech Corporation, “LoRa Modulation Basics,” May 2015, accessed
on 20/06/2017. [Online]. Available: http://www.semtech.com/images/
datasheet/an1200.22.pdf

[5] Mostafa Hassan Dahshan, “Spread Spectrum.”

[6] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A Study of
LoRa: Long Range & Low Power Networks for the Internet of Things,”
Sensors, vol. 16, no. 9, p. 1466, Sep. 2016, accessed on 20/06/2017.
[Online]. Available: http://www.mdpi.com/1424-8220/16/9/1466

[7] LoRa Alliance Technical committee, “LoRaWAN Regional Parame-
ters,” Jul. 2016.

[8] LoRa Alliance, “LoRa Technology,” accessed on 20/06/2017. [Online].
Available: https://www.lora-alliance.org/What-Is-LoRa/Technology

[9] Gemalto, Actility, and Semtech, “LoRaWAN Security. Full end-to-
end encryption for IoT application providers.” Feb. 2017, accessed on
20/06/2017.

[10] The Things Network, “The Things Gateway,” accessed on 20/06/2017.
[Online]. Available: https://shop.thethingsnetwork.com/index.php/
product/the-things-gateway/

99

https://www.ihs.com/pdf/IHS-IOT-Evolution_161384110915583632.pdf
https://www.ihs.com/pdf/IHS-IOT-Evolution_161384110915583632.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
http://ttnmapper.org/
http://www.semtech.com/images/datasheet/an1200.22.pdf
http://www.semtech.com/images/datasheet/an1200.22.pdf
http://www.mdpi.com/1424-8220/16/9/1466
https://www.lora-alliance.org/What-Is-LoRa/Technology
https://shop.thethingsnetwork.com/index.php/product/the-things-gateway/
https://shop.thethingsnetwork.com/index.php/product/the-things-gateway/

100 BIBLIOGRAPHY

[11] Wienke Giezeman, “Fair Access Policy,” Jan. 2016, accessed on
20/06/2017. [Online]. Available: https://speakerdeck.com/wienke/
the-things-network-2016-update#28

[12] T. Telkamp, “Single Channel LoRaWAN Gateway,” May 2017,
accessed on 20/06/2017. [Online]. Available: https://github.com/
tftelkamp/single chan pkt fwd

[13] Telkamp, “Single Channel Gateway Part 1,” accessed on
20/06/2017. [Online]. Available: http://www.thethingsnetwork.org/
forum/t/single-channel-gateway-part-1/798

[14] The Things Network, “The Things Network: iC880a-based gateway,”
2015, accessed on 20/06/2017. [Online]. Available: https://github.
com/ttn-zh/ic880a-gateway

[15] Spanish Government, “Defensa de la Competencia,” Jul. 2007, accessed
on 20/06/2017. [Online]. Available: https://www.boe.es/diario boe/
txt.php?id=BOE-A-2007-12946

[16] Wemos Electronics, “Wemos D1 Mini,” accessed on 20/06/2017.
[Online]. Available: https://wiki.wemos.cc/products:d1:d1 mini

[17] HopeRF Electronic, “RFM Datasheet,” accessed on 20/06/2017.
[Online]. Available: http://www.hoperf.com/upload/rf/RFM95 96 97
98W.pdf

[18] Dragino, “Lora BEE,” accessed on 20/06/2017. [Online]. Available:
http://wiki.dragino.com/index.php?title=Lora BEE

[19] IMST, “Antenna and Pigtail for iC880a-SPI,” accessed
on 20/06/2017. [Online]. Available: http://webshop.imst.de/
pigtail-for-ic880a-spi-and-ic880a-usb.html

[20] M. Kooijman, “Arduino-LMIC,” Aug. 2016, accessed
on 20/06/2017. [Online]. Available: https://github.com/
matthijskooijman/arduino-lmic

[21] Espressif Systems IOT Team, “ESP8266ex Datasheet,” 2015, accessed
on 20/06/2017. [Online]. Available: http://download.arduino.org/
products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf

https://speakerdeck.com/wienke/the-things-network-2016-update#28
https://speakerdeck.com/wienke/the-things-network-2016-update#28
https://github.com/tftelkamp/single_chan_pkt_fwd
https://github.com/tftelkamp/single_chan_pkt_fwd
http://www.thethingsnetwork.org/forum/t/single-channel-gateway-part-1/798
http://www.thethingsnetwork.org/forum/t/single-channel-gateway-part-1/798
https://github.com/ttn-zh/ic880a-gateway
https://github.com/ttn-zh/ic880a-gateway
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2007-12946
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2007-12946
https://wiki.wemos.cc/products:d1:d1_mini
http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
http://wiki.dragino.com/index.php?title=Lora_BEE
http://webshop.imst.de/pigtail-for-ic880a-spi-and-ic880a-usb.html
http://webshop.imst.de/pigtail-for-ic880a-spi-and-ic880a-usb.html
https://github.com/matthijskooijman/arduino-lmic
https://github.com/matthijskooijman/arduino-lmic
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf

Appendices

101

Appendix A

Arduino Program for the
Mote

This is the Arduino program we have used to implement LoRaWAN MAC
layer on the mote. This program is based on an example provided by the
Arduino-LMIC library, version 1.5.

1 /* **

2 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman

3 *

4 * Permission is hereby granted , free of charge , to anyone

5 * obtaining a copy of this document and accompanying files ,

6 * to do whatever they want with them without any restriction ,

7 * including , but not limited to, copying , modification and

redistribution.

8 * NO WARRANTY OF ANY KIND IS PROVIDED.

9 *

10 * This example uses ABP (Activation -by -personalisation), where a

DevAddr and

11 * Session keys are preconfigured (unlike OTAA , where a DevEUI and

12 * application key is configured , while the DevAddr and session keys

are

13 * assigned/generated in the over -the -air -activation procedure).

14 *

15 * Note: LoRaWAN per sub -band duty -cycle limitation is enforced (1% in

16 * g1, 0.1% in g2), but not the TTN fair usage policy.

17 *** */

18

19 #include <lmic.h>

20 #include <hal/hal.h>

21 #include <SPI.h>

22

23 // LoRaWAN NwkSKey , network session key

24 // This is the default Semtech key , which is used by the early

prototype TTN

25 // network.

26 static const PROGMEM u1_t NWKSKEY [16] = { 0x55 , 0xE5 , 0xF4 , 0xFE , 0xDF

, 0xB4 , 0xD7 , 0x43 , 0xFD , 0xD6 , 0x65 , 0xB3 , 0xD9 , 0xAE , 0xD1 , 0xAD

};

27

28 // LoRaWAN AppSKey , application session key

29 // This is the default Semtech key , which is used by the early

103

104

prototype TTN

30 // network.

31 static const u1_t PROGMEM APPSKEY [16] = { 0xD9 , 0x44 , 0x61 , 0x6B , 0x0D

, 0xC1 , 0x42 , 0x8A , 0x97 , 0x55 , 0xF9 , 0x7F , 0x80 , 0xFE , 0x24 , 0x70

};

32

33 // LoRaWAN end -device address (DevAddr)

34 static const u4_t DEVADDR = 0x260111CE;

35

36 // These callbacks are only used in over -the -air activation , so they

are

37 // left empty here (we cannot leave them out completely unless

38 // DISABLE_JOIN is set in config.h, otherwise the linker will complain

).

39 void os_getArtEui (u1_t* buf) { }

40 void os_getDevEui (u1_t* buf) { }

41 void os_getDevKey (u1_t* buf) { }

42

43 static uint8_t mydata [] = "Hello , world!";

44 static osjob_t sendjob;

45

46 // Schedule TX every this many seconds (might become longer due to

duty

47 // cycle limitations).

48 const unsigned TX_INTERVAL = 6;

49

50 // Pin mapping

51 const lmic_pinmap lmic_pins = {

52 .nss = 15,

53 .rxtx = LMIC_UNUSED_PIN ,

54 .rst = LMIC_UNUSED_PIN ,

55 .dio = {4, 5, LMIC_UNUSED_PIN},

56 };

57

58 void onEvent (ev_t ev) {

59 Serial.print(os_getTime ());

60 Serial.print(": ");

61 switch(ev) {

62 case EV_SCAN_TIMEOUT:

63 Serial.println(F("EV_SCAN_TIMEOUT"));

64 break;

65 case EV_BEACON_FOUND:

66 Serial.println(F("EV_BEACON_FOUND"));

67 break;

68 case EV_BEACON_MISSED:

69 Serial.println(F("EV_BEACON_MISSED"));

70 break;

71 case EV_BEACON_TRACKED:

72 Serial.println(F("EV_BEACON_TRACKED"));

73 break;

74 case EV_JOINING:

75 Serial.println(F("EV_JOINING"));

76 break;

77 case EV_JOINED:

78 Serial.println(F("EV_JOINED"));

79 break;

80 case EV_RFU1:

81 Serial.println(F("EV_RFU1"));

82 break;

83 case EV_JOIN_FAILED:

84 Serial.println(F("EV_JOIN_FAILED"));

85 break;

Arduino Program for the Mote 105

86 case EV_REJOIN_FAILED:

87 Serial.println(F("EV_REJOIN_FAILED"));

88 break;

89 case EV_TXCOMPLETE:

90 Serial.println(F("EV_TXCOMPLETE (includes waiting for RX

windows)"));

91 if (LMIC.txrxFlags & TXRX_ACK)

92 Serial.println(F("Received ack"));

93 if (LMIC.dataLen) {

94 Serial.println(F("Received "));

95 Serial.println(LMIC.dataLen);

96 Serial.println(F(" bytes of payload"));

97 }

98 // Schedule next transmission

99 os_setTimedCallback (&sendjob , os_getTime ()+sec2osticks(

TX_INTERVAL), do_send);

100 break;

101 case EV_LOST_TSYNC:

102 Serial.println(F("EV_LOST_TSYNC"));

103 break;

104 case EV_RESET:

105 Serial.println(F("EV_RESET"));

106 break;

107 case EV_RXCOMPLETE:

108 // data received in ping slot

109 Serial.println(F("EV_RXCOMPLETE"));

110 break;

111 case EV_LINK_DEAD:

112 Serial.println(F("EV_LINK_DEAD"));

113 break;

114 case EV_LINK_ALIVE:

115 Serial.println(F("EV_LINK_ALIVE"));

116 break;

117 default:

118 Serial.println(F("Unknown event"));

119 break;

120 }

121 }

122

123 void do_send(osjob_t* j){

124 // Check if there is not a current TX/RX job running

125 if (LMIC.opmode & OP_TXRXPEND) {

126 Serial.println(F("OP_TXRXPEND , not sending"));

127 } else {

128 // Prepare upstream data transmission at the next possible

time.

129 LMIC_setTxData2 (1, mydata , sizeof(mydata)-1, 0);

130 Serial.println(F("Packet queued"));

131 }

132 // Next TX is scheduled after TX_COMPLETE event.

133 }

134

135 void setup() {

136 Serial.begin (115200);

137 Serial.println(F("Starting"));

138

139 #ifdef VCC_ENABLE

140 // For Pinoccio Scout boards

141 pinMode(VCC_ENABLE , OUTPUT);

142 digitalWrite(VCC_ENABLE , HIGH);

143 delay (1000);

144 #endif

106

145

146 // LMIC init

147 os_init ();

148 // Reset the MAC state. Session and pending data transfers will be

discarded.

149 LMIC_reset ();

150

151 // Set static session parameters. Instead of dynamically

establishing a session

152 // by joining the network , precomputed session parameters are be

provided.

153 #ifdef PROGMEM

154 // On AVR , these values are stored in flash and only copied to RAM

155 // once. Copy them to a temporary buffer here , LMIC_setSession

will

156 // copy them into a buffer of its own again.

157 uint8_t appskey[sizeof(APPSKEY)];

158 uint8_t nwkskey[sizeof(NWKSKEY)];

159 memcpy_P(appskey , APPSKEY , sizeof(APPSKEY));

160 memcpy_P(nwkskey , NWKSKEY , sizeof(NWKSKEY));

161 LMIC_setSession (0x1, DEVADDR , nwkskey , appskey);

162 #else

163 // If not running an AVR with PROGMEM , just use the arrays

directly

164 LMIC_setSession (0x1, DEVADDR , NWKSKEY , APPSKEY);

165 #endif

166

167 #if defined(CFG_eu868)

168 // Set up the channels used by the Things Network , which

corresponds

169 // to the defaults of most gateways. Without this , only three base

170 // channels from the LoRaWAN specification are used , which

certainly

171 // works , so it is good for debugging , but can overload those

172 // frequencies , so be sure to configure the full frequency range

of

173 // your network here (unless your network autoconfigures them).

174 // Setting up channels should happen after LMIC_setSession , as

that

175 // configures the minimal channel set.

176 // NA -US channels 0-71 are configured automatically

177 LMIC_setupChannel (0, 868100000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

178 LMIC_setupChannel (1, 868300000 , DR_RANGE_MAP(DR_SF12 , DR_SF7B),

BAND_CENTI); // g-band

179 LMIC_setupChannel (2, 868500000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

180 LMIC_setupChannel (3, 867100000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

181 LMIC_setupChannel (4, 867300000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

182 LMIC_setupChannel (5, 867500000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

183 LMIC_setupChannel (6, 867700000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

184 LMIC_setupChannel (7, 867900000 , DR_RANGE_MAP(DR_SF12 , DR_SF7),

BAND_CENTI); // g-band

185 LMIC_setupChannel (8, 868800000 , DR_RANGE_MAP(DR_FSK , DR_FSK),

BAND_MILLI); // g2 -band

186 // TTN defines an additional channel at 869.525 Mhz using SF9 for

class B

187 // devices ’ ping slots. LMIC does not have an easy way to define

Arduino Program for the Mote 107

set this

188 // frequency and support for class B is spotty and untested , so

this

189 // frequency is not configured here.

190 #elif defined(CFG_us915)

191 // NA -US channels 0-71 are configured automatically

192 // but only one group of 8 should (a subband) should be active

193 // TTN recommends the second sub band , 1 in a zero based count.

194 // https :// github.com/TheThingsNetwork/gateway -conf/blob/master/US

-global_conf.json

195 LMIC_selectSubBand (1);

196 #endif

197

198 // Disable link check validation

199 LMIC_setLinkCheckMode (0);

200

201 // TTN uses SF9 for its RX2 window.

202 LMIC.dn2Dr = DR_SF9;

203

204 // Set data rate and transmit power for uplink (note: txpow seems

to be ignored by the library)

205 LMIC_setDrTxpow(DR_SF7 ,14);

206

207 // Start job

208 do_send (& sendjob);

209 }

210

211 void loop() {

212 os_runloop_once ();

213 }

Appendix B

Matlab Histogram Scripts

These are the scripts used to make the histograms shown on the ”Testing
and Results” chapter. Note that for these scripts to work the excel file must
be located in the same folder as the script.

B.1 Floor 5 Histogram

1 RSSI = xlsread(’Planta5.xlsx’,’AH1:AH70’) ’;

2 %RSSI levels are located in the AH column.

3

4 histogram(RSSI)

5 title(’Floor 5 histogram ’)

6 xlabel(’RSSI’)

7 ylabel(’Number of Appearances ’)

B.2 Floor 4 Histogram

1 RSSI = xlsread(’Planta4.xlsx’,’AH1:AH70’) ’;

2 %RSSI levels are located in the AH column.

3

4 histogram(RSSI)

5 title(’Floor 4 histogram ’)

6 xlabel(’RSSI’)

7 ylabel(’Number of Appearances ’)

B.3 Floor 3 Histogram

1 RSSI = xlsread(’Planta3.xlsx’,’AH1:AH70’) ’;

2 %RSSI levels are located in the AH column.

3

4 histogram(RSSI)

109

110 B.4. Floor 2 Histogram

5 title(’Floor 3 histogram ’)

6 xlabel(’RSSI’)

7 ylabel(’Number of Appearances ’)

B.4 Floor 2 Histogram

1 RSSI = xlsread(’Planta2.xlsx’,’AH1:AH712’)’;

2 %RSSI levels are located in the AH column.

3 %We have up to 712 RSSI values for this floor.

4

5 histogram(RSSI)

6 title(’Floor 2 histogram ’)

7 xlabel(’RSSI’)

8 ylabel(’Number of Appearances ’)

B.5 Floor 1 Histogram

1 RSSI = xlsread(’Planta1.xlsx’,’AH1:AH70’) ’;

2 %RSSI levels are located in the AH column.

3

4 histogram(RSSI)

5 title(’Floor 1 histogram ’)

6 xlabel(’RSSI’)

7 ylabel(’Number of Appearances ’)

B.6 Floor 0 Histogram

1 RSSI = xlsread(’Planta0.xlsx’,’AH1:AH70’) ’;

2 %RSSI levels are located in the AH column.

3

4 histogram(RSSI)

5 title(’Floor 0 histogram ’)

6 xlabel(’RSSI’)

7 ylabel(’Number of Appearances ’)

B.7 Floor -1 Histogram

1 RSSI = xlsread(’PlantaSotano.xlsx’,’AH1:AH70’) ’;

2 %RSSI levels are located in the AH column.

3

4 histogram(RSSI)

5 title(’Floor -1 histogram ’)

6 xlabel(’RSSI’)

7 ylabel(’Number of Appearances ’)

Matlab Histogram Scripts 111

B.8 Channel Hopping Histogram

1 Channels = xlsread(’Planta2.xlsx’,’AF1:AF712’)’;

2 %Channels are located in the AF column.

3

4 histogram(Channels)

5 title(’Channel histogram ’)

6 xlabel(’Channel ’)

7 ylabel(’Number of Appearances ’)

Appendix C

Matlab Functions Used for
the Spectrum Analysis

These are the Matlab functions used to perform the Spectrum Analysis test
in the ”Testing and Results” chapter.

C.1 Function That Captures and Stores the Spec-
trum

This first function will capture the spectrum during a specified time, given
by the sampling rate and the amount of frames we want to capture, and it
will store the results on a file.

1 % Signal reception from a USPR (tested with NI 2901, i.e. B210)

2 % Syntax: [data ,len]= receiveDataFromUSRP(<centerFrequency >, <

samplingRate >, <noSamples >[, <bSpectrumAnalizer >][, <gain >])

3 % Example: [data ,len]= receiveDataFromUSRP (1.85e9, 200e3 , 20e6)

4 function[data ,len]= receiveDataFromUSRP(centerFrequency , samplingRate ,

noSamples , varargin)

5 debugPeriod = 100; % Show a message every ’debugPeriod ’ frames

6

7 if nargin < 3

8 error(’receiveDataFromUSRP:TooFewInputs ’, ...

9 ’requires at least 3 inputs: centerFrequency , samplingRate

, noSamples ’);

10 end

11

12 % Optional arguments: bSpectrumAnalizer , gain , ...

13 numvarargs = length(varargin);

14 if numvarargs > 2

15 error(’receiveDataFromUSRP:TooManyInputs ’, ...

16 ’requires at most 2 optional inputs ’);

17 else

18 % set defaults for optional inputs

19 optargs = {0, 30}; % optargs = {defVal1 , defVal2 , ...};

20 [bSpectrumAnalizer , gain] = optargs {:}; % [param1 , param2 ,

...] = optargs {:};

21

113

114 C.1. Function That Captures and Stores the Spectrum

22 if (numvarargs == 1)

23 bSpectrumAnalizer = varargin {1};

24 elseif (numvarargs == 2)

25 bSpectrumAnalizer = varargin {1};

26 gain = varargin {2};

27 end

28 end

29

30 disp([’centerFrequency: ’ num2str(centerFrequency) ...

31 ’, samplingRate: ’ num2str(samplingRate) ...

32 ’, noSamples: ’ num2str(noSamples) ...

33 ’, bSpectrumAnalizer: ’ num2str(bSpectrumAnalizer) ...

34 ’, gain: ’ num2str(gain)]);

35

36 %connectedRadios = findsdru;

37 %if (connectedRadios (1).Status == ’Success ’)

38

39 masterClockRate = 20e6; % Default value

40 samplesPerFrame = 10000;%4096; % Default value

41

42 %if (connectedRadios (1).Platform == ’B210 ’)

43 % masterClockRate = 20e6; % For B210

44 %end

45 decimationFactor = masterClockRate/samplingRate;

46

47 % radio=comm.SDRuReceiver (...

48 % ’Platform ’, connectedRadios (1).Platform , ...

49 % ’SerialNum ’, connectedRadios (1).SerialNum , ...

50 % ’CenterFrequency ’, centerFrequency , ...

51 % ’MasterClockRate ’, masterClockRate , ...

52 % ’DecimationFactor ’, decimationFactor , ...

53 % ’SamplesPerFrame ’, samplesPerFrame , ...

54 % ’OutputDataType ’, ’double ’, ...

55 % ’Gain ’, gain);

56

57 radio=comm.SDRuReceiver (...

58 ’Platform ’, ’B210’, ...

59 ’SerialNum ’, ’30B56E1 ’, ...

60 ’CenterFrequency ’, centerFrequency , ...

61 ’MasterClockRate ’, masterClockRate , ...

62 ’DecimationFactor ’, decimationFactor , ...

63 ’SamplesPerFrame ’, samplesPerFrame , ...

64 ’OutputDataType ’, ’double ’, ...

65 ’Gain’, gain);

66

67 rxLog = dsp.SignalSink;

68 if (bSpectrumAnalizer)

69 hSpectrumAnalyzer = dsp.SpectrumAnalyzer (...

70 ’Name’, ’Spectrum ’ ,...

71 ’Title’, [’Spectrum centered

at ’ num2str(floor(centerFrequency /1e5)/10) ’ MHz’

], ...

72 ’SpectrumType ’, ’Power density ’ ,...

73 ’FrequencySpan ’, ’Full’, ...

74 ’SampleRate ’, samplingRate , ...

75 ’YLimits ’, [-110,-50],...

76 ’SpectralAverages ’, 50, ...

77 ’FrequencySpan ’, ’Start and stop

frequencies ’, ...

78 ’StartFrequency ’, -samplingRate /2, ...

79 ’StopFrequency ’, samplingRate /2,...

80 ’Position ’, figposition ([50 30

Matlab Functions Used for the Spectrum Analysis 115

30 40]));

81 end

82

83 totalFrames = ceil(noSamples / samplesPerFrame);

84 for counter = 1: totalFrames

85 [rxSig , len] = step(radio);

86 if (len > 0)

87 rxLog(rxSig);

88 if (bSpectrumAnalizer)

89 % Display received frequency spectrum.

90 hSpectrumAnalyzer(rxSig);

91 end

92 end

93

94 if(mod(counter ,debugPeriod) == 0)

95 disp([’captured ’ num2str(counter) ’ frames (out of ’

num2str(totalFrames) ’)...’]);

96 end

97 end

98 %end

99

100 data = rxLog.Buffer;

101 len = length(data);

102

103 % Release all System objects

104 release(radio);

105 clear radio;

C.2 Function That Displays the Spectrum

The second function takes the output of the first function as input and
displays the spectrum.

1 % Spectrum from data saved from a USPR (tested with NI 2901, i.e. B210

)

2 % Syntax: spectrumFromData(<samplingRate >)

3 % Example: spectrumFromData(’lora868.mat ’, 2e6)

4 function spectrumFromData(filename , samplingRate)

5 debugPeriod = 100; % Show a message every ’debugPeriod ’ frames

6

7 load(filename);

8

9 samplesPerFrame = 4096;

10 datalength = length(data);

11 totalFrames = floor(datalength / samplesPerFrame);

12

13 hSpectrumAnalyzer = dsp.SpectrumAnalyzer (...

14 ’Name’, ’Spectrum ’ ,...

15 ’Title’, ’Spectrum ’, ...

16 ’SpectrumType ’, ’Power density ’

,...

17 ’FrequencySpan ’, ’Full’, ...

18 ’SampleRate ’, samplingRate ,

...

19 ’YLimits ’, [-110,-50],...

20 ’SpectralAverages ’, 50, ...

21 ’FrequencySpan ’, ’Start and stop

frequencies ’, ...

116 C.2. Function That Displays the Spectrum

22 ’StartFrequency ’, -samplingRate /2,

...

23 ’StopFrequency ’, samplingRate

/2,...

24 ’Position ’, figposition ([50

30 30 40]));

25

26 for counter = 1: totalFrames

27 rxSig = data (1+(counter -1)*samplesPerFrame : counter*

samplesPerFrame);

28 % Display received frequency spectrum.

29 hSpectrumAnalyzer(rxSig);

30

31 if(mod(counter ,20) == 0)

32 keydown = waitforbuttonpress;

33

34 if(mod(counter ,debugPeriod) == 0)

35 disp([’shown ’ num2str(counter) ’ frames ...’]);

36 end

37 end

38 end

	Glossary
	Introduction
	Context and Motivation
	Goals and Reach of the Project
	LoRaWAN's Current Situation
	Structure of the document

	LoRaWAN Overview
	LoRa Modulation
	Direct Sequence Spread Spectrum (DSSS)
	LoRa Spread Spectrum
	Main Properties of LoRa Modulation
	Link Budget Example

	LoRaWAN
	Device Classes
	Regional Parameters
	Security

	The Things Network

	State of the Art
	Gateways
	LoRaWAN Single-Channel Packet Forwarder
	Multi-channel DIY LoRaWAN Gateway
	The Things Gateway
	Other Multi-Channel Already-Built Gateways

	Motes
	Mote Without LoRaWAN Stack Implemented
	Mote With Already Implemented LoRaWAN Stack

	Planning and Cost Estimate
	Development Stages
	State of the Art Revision
	Requirement Specifications
	Design
	Implementation
	Testing
	Documentation

	Resources and Cost Estimate
	Human Resources
	Material Resources

	Total Budget

	Requirement Specifications
	Gateway
	Functional Requirements
	Non-Functional Requirements

	Mote
	Function Requirements
	Non-Functional Requirements

	Application
	Functional Requirements
	Non-Functional Requirements

	Design
	Mote
	Development Board
	Transceiver Module
	Antenna

	Gateway
	Embedded Linux Board
	Concentrator
	Antenna
	Enclosure

	Implementation
	Application
	Mote
	Wiring
	Software

	Gateway
	Wiring
	Software
	Registration
	Enclosure
	Location

	Testing and Results
	Sending Data to the Application
	Gateway Coverage
	Indoors
	Outdoors

	Channel Hopping Histogram
	Spectrum Analysis
	Power Consumption
	Worst Case Scenario
	Realistic Scenario

	Conclusions
	LoRa
	LoRaWAN and TTN
	The Gateway
	Low Cost Mote

	Appendices
	Arduino Program for the Mote
	Matlab Histogram Scripts
	Floor 5 Histogram
	Floor 4 Histogram
	Floor 3 Histogram
	Floor 2 Histogram
	Floor 1 Histogram
	Floor 0 Histogram
	Floor -1 Histogram
	Channel Hopping Histogram

	Matlab Functions Used for the Spectrum Analysis
	Function That Captures and Stores the Spectrum
	Function That Displays the Spectrum

