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Resumen

Hoy en d́ıa, las diferentes redes desplegadas alrededor del mundo tienen
que lidiar con tráfico muy heteroǵeneo. Esto se acentúa más aún con la
introducción del Internet de las Cosas. Especialmente con la llegada del
5G en un futuro próximo, las redes celulares tendrán que tratar con difer-
entes flujos de tráfico cuyas necesidades de ancho de banda difieren en gran
medida.

Tradicionalmente, para dar un trato especializado a diferentes flujos de
tráfico se aplican técnicas de Quality of Service (QoS). Dichas técnicas per-
miten a las redes distinguir entre diferentes tipos de paquetes y aplicarles
poĺıticas distintas.

No obstante, el uso de mecanismos de QoS, como DiffServ que es la
implementación más habitual, tiene sus limitaciones. Por ejemplo, no es
posible aplicar ingenieŕıa de tráfico sino que se basa en el uso de prioridades.
Es decir, los paquetes prioritarios viajan junto al resto del tráfico, pero son
procesados antes por los routers y pasan menos tiempo en colas.

Para aplicar ingenieŕıa de tráfico, habŕıa que hacer uso de otros protoco-
los como MPLS. A su vez, MPLS tiene también sus desventajas. Requiere
que los routers tengan capacidades adicionales y tiene carencias de flexibil-
idad y adaptabilidad.

Una de las posibles soluciones a este problema consiste en particionar
Redes Definidas por Software (SDN), ya que esta técnica ofrece la posiblidad
de separar flujos de datos del mismo tipo de tráfico. No obstante, esta
tecnoloǵıa es relativamente reciente y no está lo suficientemente madura y,
en consecuencia, presenta algunos problemas en su implementación.

En el presente proyecto se plantea la exploración del uso de un hiper-
visor en una red SDN para simplificar el particionado de la red. Al mismo
tiempo, usar un hipervisor solventa, o al menos palia, los inconvenientes que
presenta el método covencional de redes SDN sin hipervisor, especialmente
la escalabilidad, flexibilidad y adaptabilidad.
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Abstract

Nowadays, the different networks deployed around the world have to
handle very heterogeneous traffic. Even more so with the introduction of
the Internet of Things. Furthermore, with the arrival of 5G in the near
future, cell networks will have to deal with different types of traffic whose
bandwidth needs vary widely.

Traditionally, in order to treat each type of traffic in a different manner,
Quality of Service (QoS) techniques are applied. These techniques allow
networks to distinguish between different types of packets and apply different
policies to each type.

However, QoS techniques, such as DiffServ which is the most common
implementation, have some limitations. For instance, it is not possible to
apply traffic engineering, it relies on the use of priorities instead. This means
the high priority packets are routed with the rest of the traffic, but they are
processed faster and spend less time waiting in queues.

To perform traffic engineering, other protocols, such as MPLS, need to
be used. Likewise, MPLS has its own drawbacks. It requires routers with
additional capabilities and lacks flexibility and adaptability.

One of the possible solutions involves slicing Software Defined Networks
(SDN). Yet, this technology is relatively recent and is not mature enough.
Consequently, there are some implementation issues.

As a result, the present project proposes to explore the use of a hyper-
visor within an SDN, in order to simplify network slicing while solving, or
at least diminishing, the pitfalls of a conventional SDN without hypervisor,
i.e., scalability, flexibility and adaptability.
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sitario en Ingenieŕıa de Telecomunicación de la Escuela Técnica Superior 
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Chapter 1

Introduction

1.1 Context and Motivation

The world of telecommunications is evolving. Every so often there is a new
network protocol, technique or application. A recent one that is gaining a lot
of traction is the Internet of Things (IoT), which will have proper support
in the coming generation of cell networks, in addition to other new protocols
such as enhanced mobile broadband (eMBB) and ultra-reliable low latency
communications (URLLC).

With such heterogeneous traffic being handled by the network, it is not
efficient to treat everything equally, as each type of traffic has its own needs.
For instance, traffic coming from an IoT device usually requires a very small
amount of bandwidth. As a result, there is a need to distinguish between
different types of traffic so that each one can be treated accordingly.

The old fashioned solution to this problem would be to apply QoS tech-
niques, based on priorities, or traffic engineering protocols such as MPLS.
However, both alternatives suffer from some limitations.

• DiffServ, currently the most common implementation of QoS, works
with aggregated traffic. This means that it cannot distinguish between
two tenants sending the same type of traffic.

• DiffServ and MPLS both require that the network implements ad-
ditional capabilities in order to understand the tags assigned to the
packets.

• The routes assigned in MPLS can be considered static and they are
not trivial to modify. This creates an adaptability problem.

Given these limitations, a more modern solution arises alongside the

1



2 1.2. Goals and Reach of the Project

emergence of Software Defined Networks (SDN). It involves taking advan-
tage of the nature of SDN and slicing it into different virtual networks,
which is known as network slicing. But yet again, this approach comes
with some difficulties, e.g., scalability. This is a consequence of, mainly, the
lack of maturity of the SDN technology.

So, in summary, the motivation of the present project lies on addressing
the current difficulties and pitfalls of slicing an SDN with the conventional
methods.

1.2 Goals and Reach of the Project

First of all, it is important to mention that we do not intend on developing
a tool or framework from scratch, that would be out of the scope of this
project. The intent of the project resides on the deployment of already
existing tools and frameworks, as well as testing their functionality.

Taking that first point into account and the motivation explained above,
we will establish this project’s objective as the search of a method to slice
a network in such a way that is reasonably simple and easy to maintain.

Furthermore, let us establish a starting point. We are already aware that
the solution we are looking for is the introduction of a new element called
hypervisor. An entity that sits between the forwarding device and the
OpenFlow controller used in SDNs. This is what will enable us to perform
the type of network slicing we are aiming for.

In addition, we want this proof of concept to be simple as well, so overly
complicated networks will be avoided. We will try to use a sensible network
topology that allows for a clean network slicing, without obfuscating the
configuration with unnecessary complexity.

Finally, we will provide some network slicing examples that could be
applied to a real production scenario, albeit at a smaller scale.

1.3 Structure of the Document

The structure for the present project will consist of eight chapters.

1. Introduction. Brief explanation of the motivation and context that
led to the making of this project.

2. Technologies Involved. Overview of the main relevant technologies
that take part in this project.
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3. State of the Art. Review of the current solutions to the problem we
are trying to solve.

4. Planning and Cost Estimate. Rough estimate of the time and
budget needed.

5. Environment Setup. Description of how to set up the virtual envi-
ronment used to test the network slicing.

6. Implementation. Design and application of the network slicing.

7. Testing. Summary of the different tests performed in order to verify
that everything is working correctly.

8. Conclusions. Deliberation about the results of the project and future
work.

In addition, this document has three appendices that cover the code and
scripts used.

1. Appendix A. Python code used to generate the Mininet topology.

2. Appendix B. Bash script for TCP port based slicing.

3. Appendix C. Bash script for IP address based slicing.
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Technologies Involved

This chapter will present the different technologies that make this project
possible. It will try to cover the basics for each technology as well as how
they function within the context of the project. The following technologies
will be covered:

• Software Defined Network.

• OpenFlow.

• Network Slicing Hypervisor.

• Open vSwitch.

• Mininet.

• MQTT.

• LoRa and LoRaWAN.

There are some other, more well known, technologies which will not be
covered by this chapter, e.g., operative system virtualization. The reader is
expected to be already familiar with such technologies.

2.1 Software Defined Network

Traditionally, each networking device, like a router or a switch, has to be
configured individually. This configuration can be done manually, using a
script or with the help of configuration tools like NETCONF. In addition,
these devices must support a plethora of protocols in order to discover the
topology around them (RIP, OSPF, BGP), poll information (SNMP) or
support certain configurations (HSRP, GLBP) among other tasks.

5



6 2.1. Software Defined Network

Figure 2.1: Sample SDN topology with a switch as forwarding device.

As such, each device is expected to have a certain computational strength
and, consequently, they require a capable CPU along with an operating
system that is able to handle all of the required protocols.

This traditional scenario presents some clear flaws. The major ones
are scalability, adaptability and hardware dependency (as the protocols and
features supported depend on the hardware used).

This is where Software Defined Networks (SDN) come in, as they were
designed to address the flaws and shortcomings of traditional networks. An
SDN, at its core, is nothing more than the separation of the control plane
and the data plane, shown in Figure 2.1. This means that all of the compu-
tational intensive operations are handled by an external entity called con-
troller, so that the networking device can focus on just forwarding packets
and following some simple instructions generated by said controller.

In practice, this method has many advantages. Here we list some of
them.

• Cheaper hardware. The networking devices become just forwarding
devices, which do not need to have strong computational capabilities,
and hence they can rely on less powerful CPUs.

• Global topology vision. Having a centralized controller allows for
a better vision and understanding of the entire network, making tasks
such as traffic engineering far simpler.
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• Adaptability. The controller can quickly reconfigure the forwarding
devices if needed.

• Scalability. A controller can manage many forwarding devices (al-
though it depends on the services implemented). However, it is possi-
ble to increase the number of controllers if necessary.

• Hardware agnostic. Each physical device is just a generic forward-
ing device, all of the services and protocols are implemented via soft-
ware on the controller.

In general, SDNs are a great alternative to traditional networks. They
are becoming more and more prevalent as time goes on, and rightfully so.
For instance the up and coming 5G mobile generation will be based on this
technology.

2.2 OpenFlow

Software Defined Networks and OpenFlow[1] are tightly tied together, since
OpenFlow is the communication protocol used between the forwarding de-
vices and the controller or controllers.

OpenFlow has two main messages, Packet In and Packet Out. The
former, Packet In, is used to query the controller when the forwarding device
does not know what to do with a certain packet or data stream. The latter,
Packet Out, is the response to the Packet In message. It tells the forwarding
device what to do with the packet and, optionally, it might install a flow on
that device.

But, what is a flow? A flow is to a forwarding device what an entry in
the routing table is to a traditional router. It basically tells the forwarding
device what to do with a packet that matches certain fields. A flow has two
major components:

• Matching fields. As its name indicates, it contains the fields that a
packet must match in order to follow this flow.

• Action. What to do with the packet when it matches the flow.

A simple example is shown below. This example comes from the tool
Open vSwitch, to which section 2.4 offers a brief overview.

1 sudo ovs -ofctl add -flow s1 ip,nw_dst =10.0.0.1 , actions=output :2

In this example, we are adding a new flow to a forwarding device called
s1. In this flow we are specifying the matching fields as the IP protocol and
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the destination IP address 10.0.0.1, while the action would be to output it
through port 2 of s1.

An OpenFlow flow supports a wide a variety of matching fields and
actions, giving the controller a high level of control and granularity over the
forwarding devices.

It is also important to note that OpenFlow has several versions that,
currently, go from 1.0 to 1.5, with each version mainly adding some new
features. Due to technical reasons which will be later discussed, we will be
using OpenFlow 1.0 for this project.

2.3 Network Slicing Hypervisor

This is the main element for the project. It allows us to slice a physi-
cal network into multiple virtual networks. A hypervisor sits between the
OpenFlow switches and the controllers, redirecting each Packet In to its
correspondent controller, as shown in Figure 2.2. This way, a controller
only sees a subset of the actual physical network, according to the packages
received. Effectively, this is network slicing or virtualization.

If we dive deeper into the technical details, we find that what a hypervisor
actually does, in its simplest form, is create flowspaces. And a flowspace is
nothing more but a rule or a set of rules that match the incoming packets
and assign them to a particular slice.

In reality the way it works is very similar to just plain OpenFlow. There
are rules that match certain packets but, instead of assigning an action
to them, a slice is assigned. However, in this case only the Packet In are
matched against the different rules, as opposed to every packet within the
physical network.

Despite its potential usefulness, using a hypervisor also has a few down-
sides.

• Single point of failure. A single hypervisor serves multiple con-
trollers. As a result, a failure in the hypervisor may have extended
consequences for several slices, effectively rendering the entire physi-
cal network, or a big part of it, unusable.

• Added latency. The introduction of an extra step for the packets
results in a higher delay between the packet arrival and an action being
taken. Said delay depends on several factors, e.g., the physical location
of the hypervisor and the controllers. This extra delay may not be an
issue for most applications, but it might affect the performance of real
time applications with strict time constraints.
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Figure 2.2: Simplistic overview of a network virtualization hypervisor.
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One could also argue that a hypervisor requiring extra configuration is
also a downside. However, using a hypervisor usually helps simplify the
logic of the controllers that sit above it, therefore reducing the time and
cost needed to set up the network.

2.4 Open vSwitch

Since we do not have access to physical OpenFlow switches, we have to rely
on virtualization. Open vSwitch[2] (OVS) is a tool that allows us to emulate
one or multiple switches which support an ample amount of protocols, such
as NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag, etcetera [3].

For the most part, we will not be using OVS directly as it is handled
automatically by the the tool in section 2.5, Mininet. Nevertheless, OVS
provides a useful command line interface that can prove very useful, es-
pecially for debugging, as it allows us to interact directly with the virtual
switches. Some of these useful commands are shown below.

1 # Shows the OpenFlow flows installed on a particular virtual switch.

2 sudo ovs -ofctl dump -flows <switch >

1 # Useful to map the interface names to their corresponding

2 # port number.

3 sudo ovs -ofctl show <switch >

1 # Live update of the OpenFlow messages received by the virtual switch.

2 sudo ovs -ofctl snoop <switch >

2.5 Mininet

On the same topic of virtualization, we may come to the conclusion that
virtual switches are not enough to emulate a network. This is the reason why
we will use Mininet[4], an open source network emulator. While it is possible
to do the network emulation manually without the help of Mininet, it would
be immensely cumbersome, and thus we opt to use it for its convenience.

Also, Mininet provides a powerful and easy to use Python API. With
this API we can customize the network to our liking, allowing us to control
a multitude of variables such as the bandwidth and delay between links,
number of hosts, number of switches, number of links between each device,
IP addresses, physical addresses and many more.
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Figure 2.3: Default Mininet topology.

The power of Mininet resides within some useful features of the Linux
kernel such as process groups, CPU bandwidth isolation and network names-
paces. These features allow Mininet to produce a lightweight emulation of a
small-to-medium size network within a single Linux kernel. In consequence,
this is also a limitation, not allowing the hosts to be based on Windows,
BSD or any other operating system [5].

Additionally, as mentioned in section 2.4, by default Mininet makes use
of Open vSwitch to virtualize the switches. This means that we can take
advantage of the Open vSwitch command line interface for debugging and
testing purposes.

Although Mininet offers a good amount of features, it does not implement
an OpenFlow controller beyond its basic reference controller, meaning we
have to implement it ourselves. Thankfully there are several libraries to ease
this task like POX (Python) or Beacon (Java), so that it does not become
an obstacle when deploying the network.

Lastly, as an example, Figure 2.3 shows the default topology created
by Mininet, which is two hosts (h1 and h2) connected to one switch (s1)
which in turn is connected to the reference controller (c0). The reference
controller, albeit very basic, can manage ICMP traffic between the two hosts.
This topology happens to be the same as the one shown in Figure 2.1.
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Figure 2.4: Simplified example of a message transaction using MQTT.

2.6 MQTT

MQTT[6] was invented in 1999 by Dr Andy Stanford-Clark and can be de-
fined as subscription based connectivity protocol. One of its main strengths
is the small bandwidth requirement, it is a very lightweight protocol. Con-
sequently, it makes for an ideal candidate for communications within the
IoT environment.

Broadly speaking, the main idea behind MQTT consists on client A
subscribing to one ore more topics. When a different client B publishes
information under the same topic, it is forwarded to that client A as well
as to every other client that is subscribed to that particular topic. In order
for this system to work, a third element called broker is placed in between
both clients, see Figure 2.4. The broker relays each published message to
the correspondent subscribers of that topic.

Finally, MQTT spans over different versions, but versions 5.0 and 3.1.1
are of particular importance, as they are OASIS standards.
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2.7 LoRa

LoRa[7], currently being developed by Semtech, is a physical layer wireless
communication protocol. It is quite a recent technology and it has been
growing as a result of the current trend of the Internet of Things.

LoRa is quite a complex technology and it could have its own chapter.
Nevertheless, here are, in a very over-simplified way, the main attributes of
LoRa.

• It relies on the unlicensed Industrial, Scientific and Medical (ISM)
band. For example, in Europe it uses the 868 MHz band while in Asia
and USA it uses 433 MHz and 915 MHz respectively.

• Uses a spread spectrum technique based on chirp signals.

• Adaptable bandwidth with SNR trade off.

• Low power consumption.

• Long range communications, emphasized on rural areas.

• Low cost and fairly straightforward to implement.

Due to its low power consumption and long range qualities, LoRa fits
perfectly as the data communication protocol for IoT devices, especially in
rural areas.

2.7.1 LoRaWAN

Tightly tied to LoRa lies LoRaWAN[8], a Wide Area Network specification
based on LoRa. Consequently, LoRaWAN is also widely used in IoT envi-
ronments. In a LoRaWAN network, there are typically four key components,
see Figure 2.5.

• LoRa endpoints, e.g., sensors. They send data to the network wire-
lessly through LoRa.

• Gateway. Receives the data from the sensors and forwards it, via con-
ventional means (WiFi/Ethernet/Cell network), to the network server.

• Network server. Performs some authentication checks and traffic
management operations. Eventually sends the data to the application.

• Application. Receives the data originally sent by the LoRa endpoint
and forwards it to the client that requested it. Typically, this data
forwarding is done using MQTT or a REST API.
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Figure 2.5: LoRaWAN example network.

Additionally, LoRaWAN also takes care of Media Access Control (MAC)
as well as network security, e.g., authentication and integrity.



Chapter 3

State of the Art

There are several hypervisors that have been developed in the last few years,
as well as SDN controllers. We will now consider the benefits and drawbacks
of each alternative and, at the end of the chapter, explain the rationale
behind the ones we will end up using.

Regarding the hypervisors, some, if not most, of them are not really
usable in the present day, i.e., they are only a prototype or a proof of concept.
They will be mentioned regardless for the sake of completeness.

3.1 Hypervisor Candidates

For each entry, we will avoid the implementation and technical details. The
point of this section is to offer a fairly simple overview for each hypervisor,
with just enough details so that we can make a decision on whether to use
it or not.

3.1.1 CoVisor

CoVisor is defined as ”A new kind of network hypervisor that enables, in
a single network, the deployment of multiple control applications written
in different programming languages and operating on different controller
platforms”[9].

CoVisor’s main selling point is its flexibility, it is intended to allow dif-
ferent technologies to work together in order to create a ”best of breed”
network, as its authors call it. They also have a strong consideration for
efficiency, as they mention how to exploit new efficient algorithms.

While CoVisor seems like a valid choice, it presents two problems for
this project in particular.

15
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• Adds unnecessary complexity. We are looking for a simple hypervisor
that will allow us to slice a network. CoVisor does this, but it is
designed for handling many different controllers at once, which gets
very complex very fast.

• It is nothing more than a proof of concept. There is no code available
that we can use to test it, at least not at the time of writing this
document.

3.1.2 FlowVisor

Flowvisor is a hypervisor developed at Standford University. It is also fairly
simple. It creates different slices which correspond to different controllers
and relays the packets accordingly. Flowvisor is also open source and there
are some good examples about network slicing available online.

Flowvisor looks like a good candidate for the project, but it has a few
drawbacks.

• Despite being open source, it has not been updated since 2013.

• It only works with OpenFlow 1.0.

• It definitely lacks some proper documentation about its features and
implementation details.

• The slices are restricted to a subset of the physical topology.

The fact that FlowVisor has not been updated in years and the lack of
documentation seem to be linked, as the code itself seems to work for the
most part. It looks like FlowVisor is just lacking a cleaner API due to the
absence of updates, aside from the OpenFlow version compatibility issue.

Regardless of these issues, FlowVisor is very widespread and is commonly
used, probably due to the fact that is open source. This ensures that it
has been tested thoroughly in many different topologies, thus improving its
stability and minimizing possible bugs.

3.1.3 VeRTIGO

VeRTIGO stands for ViRtual TopologIes Generalization in Openflow net-
works [10]. It is presented as an extension to FlowVisor, aiming to overcome
its limitations. One of these limitations, as mentioned by the authors of VeR-
TIGO, is the fact that the virtual topologies created by FlowVisor are just
a subset of the physical topology.
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The authors’ idea is based on enhancing FlowVisor’s ”intelligence” in
order to circumvent its limitations in slice creation and management, as
well as increasing its robustness to network congestion and link failures.
They also mention to have performed some testing in a real production
environment.

Since VeRTIGO is presented as an extension to FlowVisor, it looks like
a good choice. However, it seems like VeRTIGO never made it out of the
prototype phase and it is not available for public use.

3.1.4 RadioVisor

As its name indicates, RadioVisor[11] is a hypervisor designed around Radio
Access Networks. The authors point out the current difficulties and cost of
deploying basetations. They mention SoftRAN[12], which is SDN technology
applied to Radio Access Network, as an improvement over the situation.
However, they argue that a better solution would be to extend SoftRAN
and use RadioVisor to dynamically slice the network based on traffic and
congestion. Unlike conventional hypervisors, RadioVisor also has to take
into account the possible interferences between the different slices. Now,
there are a few issues with this hypervisor.

• Too specialized. We are looking for a more general purpose hypervisor
that supports a broader array of networks.

• As with many other hypervisors in this chapter, we have been unable
to find the source code or a functional version of it.

3.1.5 AutoSlice

AutoSlice[13] is slightly different from the rest of the hypervisors discussed
in this chapter. It not only aims to provide slicing capabilities, its main goal
is to automate such process. By relaying on automation, it would be possible
to rent an SDN to different tenants while minimizing the need for manual
intervention. This is made possible by giving each tenant the means to lease
”programmable network slices”, according to the authors. An overview of
this architecture is shown in Figure 3.1.

One issue that arises when reading the article about AutoSlice, is that
it has only been tested with OpenFlow 1.0. Ideally we would like to use a
hypervisor that is capable of handling the latest version of OpenFlow, i.e,
OpenFlow 1.5.

Regarding the viability of this hypervisor, it is too complex for what we
are trying to do. But even if we wanted to use it, there is no code in sight.
It seems like it was just a proof of concept.
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Figure 3.1: AutoSlice architecture[13].

3.1.6 ADVisor

The authors of ADVisor[14] refer to FlowVisor as a recent approach towards
network virtualization. However, they also acknowledge its limitations when
it comes to flowspace sharing and traffic interferences. They propose AD-
Visor (ADvanced Flowvisor) as a way to overcome those limitations.

ADVisor is designed to extend FlowVisor in order to provide two addi-
tional virtualization functions: Virtual link management, and Virtual ports
management. As a result, ADVisor is able to work with FlowVisor in a
nested way, as shown in Figure 3.2.

As for the possible drawbacks, ADVisor seems to slightly surpass the
scope of this project. And, again, it appears to be just a proof of concept
with no source code or binary files available for us to test it.

3.2 OpenFlow Controllers

This section will go through a quick overview of the most popular OpenFlow
controllers, hoping to find the most suitable one for the project.
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Figure 3.2: ADVisor architecture[14].

3.2.1 NOX

NOX was the first OpenFlow controller. Originally developed by Nicira Net-
works and then released to the research community back in 2008. According
to its archived website[15], NOX had the following features:

• C++ OpenFlow 1.0 API.

• Fast, asynchronous IO.

• Targeted at Ubuntu 11.10 and 12.04.

• Includes sample components: Topology discovery, learning switch and
network-wide switch.

It is evident that NOX is heavily outdated and its use is not recom-
mended. Nonetheless, it is featured in this chapter as it is the predecessor
to another popular SDN controller, POX.

3.2.2 POX

While the last time POX was updated was two years ago, it is still much
more recent than NOX. Although POX is considered the successor to NOX,
POX’s features differ considerably from NOX’s.

• Python 2.7 OpenFlow API.
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Figure 3.3: OpenDaylight Neon architecture overview[16].

• Supports pretty much anything that can run Python 2.7 (Windows,
Mac OS, Linux, Android, FreeBSD, etc).

• Support for PyPy JIT compiler for a performance boost.

• It can only handle OpenFlow 1.0.

• Includes a wide variety of sample components.

Moreover, POX comes already bundled with the Mininet virtual ma-
chine, so it does not require any additional installation.

3.2.3 OpenDaylight Controller

Founded in 2013, the OpenDaylight foundation develops a very popular
open source SDN controller platform. They are also a member of the Linux
Foundation Networking. They like to name each release after an element
from the periodic table, the most recent one being Neon, which is their
tenth release (Neon’s atomic number is 10). OpenDaylight Neon is the most
complex SDN controller featured in this section. For an overview of its
architecture, see Figure 3.3.

The OpenDaylight controller platform offers this list of advantages:

• Thoroughly tested and production ready. Used by a lot of companies
all over the world.

• Supported by big companies such as AT&T, Cisco and Ericsson among
others.

• Plenty of features from more than 100.000 commits, e.g., cloud network
virtualization.
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• Modular. Only install features you need.

• Graphical interface. Makes it more user friendly than terminal-only
controllers.

• Good documentation.

OpenDaylight is a great controller. However, and despite being modular,
it is quite heavier memory wise than the rest of alternatives. It is also written
in Java, so a JRE is needed in order to run the OpenDaylight controller.

3.2.4 Beacon

Developed at the Standford University in 2010, Beacon[17] is an open source
OpenFlow controller written in Java. Beacon was mostly designed with three
goals in mind.

• Developer productivity.

• Runtime modularity. The goal is to be able to start and stop applica-
tions while the controller itself is running.

• Performance. Multi thread implementation.

Beacon, like NOX, is quite outdated with its last update happening
on May of 2011. Nevertheless, Beacon is an OpenFlow controller worth
mentioning, as it is the base for another controller, Floodlight.

3.2.5 Floodlight

Floodlight started as fork of Beacon in 2011, therefore it is also open source.
Unlike Beacon, Floodlight’s last update, at the time of writing this docu-
ment, was released on May of 2019. Floodlight’s main strengths are:

• Well tested.

• Good documentation.

• Includes sample components.

• Graphical interface.

• Supports OpenFlow from version 1.0 to 1.5.

• Modular.

• Multi threaded.
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• Can handle mix-OpenFlow and non OpenFlow networks.

In addition, despite Floodlight being written in Java, it can be extended
using its REST API. In fact, its sample components use Python to access
the REST API.

3.3 Conclusions

It is now time to make a decision and choose from the several options pre-
sented in this chapter. In regards to the OpenFlow controller, we could
choose more than one since we intend to use multiple controllers. Because
of the added complexity that using different controllers entails, we will just
choose one.

3.3.1 Hypervisor

Given that only one of the previous entries is a valid candidate, i.e., it is
publicly available, it is trivial to make the choice, we will use FlowVisor.
It has a few inconveniences, e.g., lack of proper documentation and limited
version compatibility with OpenFlow. Nonetheless, FlowVisor should be
sufficient to carry out the project.

There are some more hypervisors that have not been mentioned, yet
none of them are publicly available at the time of writing this document.

It seems like the development of hypervisors for network slicing/virtu-
alization was a hot topic a few years ago, but either almost none of them
made it past the proof of concept or they were completely privatized and
used internally within the industry. Furthermore, the only one that made
it to open source, i.e., FlowVisor, was pretty much abandoned for unknown
reasons as its three contributors moved on to different projects.

3.3.2 OpenFlow Controller

The OpenFlow controller section is much more competitive than the hyper-
visor section. There are multiple good choices, each one with its pros and
cons. In order to make the best decision, let us establish the baselines for
what we want from a controller.

• Simple and lightweight. The whole point of using a hypervisor is to
simplify the logic of the controller.

• Python based. This is mainly a preference, as Python is the language
we are most proficient at.
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• No need to support OpenFlow higher than 1.0, since FlowVisor itself
only supports OpenFlow 1.0.

• High performance is not a concern. The logic of the controller will be
very simple.

• Well documented or includes sample components.

• A graphical interface is not necessary.

• Not extremely outdated.

Given these requirements, the controller that fits the most is the POX
controller. POX is simple enough for what we need, lightweight, comes
with sample modules, extendable with Python and, on top of that, it comes
already installed with the Mininet Virtual Machine.





Chapter 4

Time Management and Cost
Estimate

We now briefly describe the multiple stages of this project, along with their
corespondent time constraints and associated cost. By the end of this chap-
ter, we will have a rough idea of the total time needed to carry out the
project as well as an estimate for its total monetary cost.

The chapter will be broken down into two main sections. The first one
will focus on the time aspect of the project, while the second one will address
the cost.

In regard to estimating the cost, it will be broken down into two groups.

• Human resources. Very rough estimate of the amount of work hours
needed for each person involved, along with the total cost when com-
puting in the value for each hour and for each person.

• Hardware and software. Cost of the equipment needed as well as
any non-free software used.

4.1 Time Management

In this section, we will attempt to calculate how long this project will take.
Afterwards, a Gantt chart, Figure 4.1, visualizes the time cost for each
development stage. For the begin and end date of each stage, refer to Table
4.1.

Moreover, this estimation is done prior to starting the project. It may or
may not correspond to the actual amount time the project actually requires.
The main goal of this section is to have a point of reference we can fall back
during the production of the project.
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Figure 4.1: Gantt Chart.

Table 4.1: Duration, begin date and end date for each development stage.

Development stage Duration Start End

State of the art revision 25 days 10/10/2018 22/11/2018

Environment Setup 45 days 23/11/2018 29/01/2019

Implementation 60 days 30/01/2019 25/04/2019

Testing 21 days 26/04/2019 27/05/2019

Documentation 183 days 10/10/2018 28/06/2019

With that in mind, here we enumerate every development stage with a
significant time cost.

• State of the Art revision. A study of the already existing solutions
is necessary in order to choose the most suitable one.

• Testing Environment Setup. Since we lack a physical network for
testing, we need to set up a robust virtual environment.

• Implementation. Once the testing environment is ready, we can
begin to configure FlowVisor.

• Testing. We make sure the hypervisor works as expected and the
configuration is correct.

• Documentation. It spans the entire duration of the project. It is
also not tied to any other stage in particular, so it can be done in
parallel.

From this data, we estimate this project’s length to span over 183 days.
This is the duration of the documentation stage, as we consider it to be the
bottleneck.
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4.2 Cost Estimate

This section will cover the estimation of the budget necessary to carry out
the present project. Moreover, it is not the intent of this section to provide a
very accurate answer. On the contrary, the actual purpose is just to obtain
an approximate cost that would be within the same order of magnitude of
the actual cost if it were possible to compute.

Furthermore, to make the estimate geographically agnostic, prices will
not include VAT nor shipping cost when applicable.

4.2.1 Human Resources

The following people have worked or contributed to this project in one way
or another:

• Jorge Navarro-Ortiz. Associate professor of the Department of
Signal Theory, Telematics and Communications of the University of
Granada, as thesis supervisor.

• Angel Guzman-Martinez. Student of the School of Informatics
and Telecommunications Engineering of the University of Granada, as
author.

Currently in Spain, disclosing a salary/price of reference for any pro-
fession or service is forbidden by law [18]. Therefore, this category will be
based on the assumption that a telecommunication engineer, usually earns
no less than 20e per hour and no more than 50e per hour. From there,
we have decided to assign 25e/h to Angel Guzman-Martinez and 50e/h to
Jorge Navarro-Ortiz.

In order to compute the actual cost for each person, we also need to
estimate the amount of hours contributed towards the project. Again, this
will be just an approximation.

• Angel Guzman-Martinez: 3 hours a day during 9 months excluding
weekends. This yields, approximately, 594 hours.

• Jorge Navarro-Ortiz: 8 hours in total of tutorship.

Taking everything into account, the total cost for human resources amounts
to 15,250e. Refer to Table 4.2 for a quick summary.
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Table 4.2: Human resources cost.

Concept Cost/time Quantity Total

Project work 25e/h 594 hours 14,850e
Tutorship 50e/h 8 hours 400e
Total 15,250e

4.2.2 Mandatory Hardware and Software

It is important to note that, in this section, we will only list the hardware
and software strictly necessary for the project to work. Whatever was used
exclusively for the testing phase will be addressed later in this chapter. With
that said, here is the list of critical components:

• Laptop. The physical platform that will host the Mininet virtual
machine. Any laptop that is able to run virtualization software will
do. In our case we use HP 250 G6 Notebook with an Intel i5-7200U
CPU, an Intel HD Graphics 620 integrated GPU and 8GB of RAM.

• GNU/Linux. Our operative system of choice and it is free. In partic-
ular, we use the Arch Linux distribution with the Linux kernel version
5.1.3. There are many others free distributions, as well as a paid al-
ternative, i.e., Windows. Any of them would work just fine as long as
they are able to run some kind of operative system virtualization.

• Virtual Box. Software used for operative system virtualization. Vir-
tualbox is what we used for this project in order to deploy the Mininet
virtual machine, but there are a few alternatives, e.g., QEMU or
VMware.

We could also use Mininet natively if we already have a GNU/Linux in-
stallation, yet it is still beneficial to use the standalone virtual machine
as it provides a custom kernel optimized towards network virtualiza-
tion.

• Mininet. Framework that allows us to create a virtual network within
a single device. Ideally, in an real scenario, a physical network would
be used. However, we did not have that possibility, so the budget
estimate will be based on what we have actually used.

• FlowVisor. Open source SDN hypervisor used for network slicing.

Thankfully, all of the software needed is open source and free for personal
use, see Table 4.4. In the case of Virtual Box, a license is required for
commercial use, which is not our case.

As for the hardware, see Table 4.3.
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Table 4.3: Mandatory hardware cost.

Concept Unit cost Units Average lifespan Time used Total

Laptop 700e 1 3 years 183 days 117e
Total 117e

Table 4.4: Mandatory software cost.

Software Open source Free for personal use License cost

Virtual Box Yes Yes 0e
Mininet Yes Yes 0e
FlowVisor Yes Yes 0e
Total 0e

4.2.3 Hardware and Software Used for Testing

This section is included for completeness, and it will list everything that
was used exclusively for testing. It is worth noting that there are plenty
of alternatives as to how we have performed the testing, so that it is not
necessary to use the same elements that are shown here.

• Raspberry Pi. Used as external physical host. To be more specific,
we will use a model 3B running the Raspbian operative system and
kernel Linux 4.9.69-v7+.

• LoRa mote. It will be tasked to periodically send LoRa packets. The
exact model is TTGO LoRa32 V2.1 1.6.

• LoRa gateway. Its purpose is to receive the LoRa packets and for-
ward them through our Mininet network and towards a physical exter-
nal host. The model we will use is called LoRa Lite Gateway, developed
by IMST.

Note how there is no specific software used exclusively for testing, so
everything will be summarized in Table 4.5.

Table 4.5: Testing hardware cost.

Concept Unit cost Units Total

Raspberry Pi 33.94e 1 33.94e
LoRa mote 18.84e 1 18.84e
LoRa gateway 199e 1 199e
Total 251.78e
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4.2.4 Total Cost

Lastly, we present two different budget estimates.

• Only mandatory components. A cheaper alternative that dis-
misses anything that is not strictly necessary for the project to work,
Table 4.6.

• Complete budget. Includes the mandatory components as well as
the hardware and software that was used exclusively for testing, Table
4.7.

Table 4.6: Mandatory budget.

Concept Cost

Human resources 15,250e
Hardware 117e
Software 0e
Total 15,367e

Table 4.7: Complete budget.

Concept Cost

Human resources 15,250e
Mandatory Hardware 117e
Testing Hardware 251.78e
Software 0e
Total 15,618.78e

If we only take into account the mandatory assets, this project will need,
approximately, a budget of 15,367e.

On the other hand, if we include everything then we have an approximate
cost of 15,618.78e.



Chapter 5

Environment Setup

As we have mentioned before, ideally the project’s environment would be
a physical network with OpenFlow switches. Since that is not possible for
us, we will set up a virtual environment using a Mininet virtual machine.
Consequently, this chapter will walk us through the process of setting up
the virtual machine as well as the creating the network topology.

5.1 Mininet Virtual Machine

As a reminder, a virtual machine is not strictly necessary, as it can be
installed natively in an already existing GNU/Linux system. Nonetheless,
virtualization has a few advantages:

• Custom Linux kernel. The Mininet virtual machine includes a cus-
tom Linux kernel optimized towards network virtualization.

• Isolation. It allows us to work on an isolated environment, so that
the host system does not interfere. In essence, we have a simplified
system that is easier to troubleshoot in the event that something goes
wrong.

• Repeatability. We can reproduce the environment in different a
machine without having to reconfigure everything from scratch.

On the other hand, using a virtual machine also comes with some disad-
vantages such as extra overhead and networking becomes slightly trickier.

With that said, the very first thing we need to do is download the im-
age file, which can be found here https://github.com/mininet/mininet/

wiki/Mininet-VM-Images. There are several images to choose from, al-
though most of them are deprecated old versions. Since we are running
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GNU/Linux as the host system, we have chosen ”Mininet 2.2.2 on Ubuntu
14.04 LTS - 64 bit”, which is the latest version at the time of writing this
document.

Next up, after the download and decompressing the file, we are left with
two files with the extensions ”.ovf” and ”.vmdk”. The easiest way to proceed
is to import the image using the ”.ovf” file. If, for some reason, the import
fails, we can manually create a new virtual machine and use the ”.vmdk”
file as hard disk.

After importing the image, we can now launch it and log in. The default
credentials for username and password are mininet and mininet respectively.
When we log in, we will notice that the system’s image does not include a
display renderer, i.e., we do not have a graphical environment. From here
we have three options.

1. Work without a graphical environment and within the native Virtual
Box terminal. The easiest option, does not require any extra configu-
ration but it is also very limited and cumbersome. This option would
not allow us to use graphical applications such as Wireshark.

2. Install a display renderer and desktop environment or window man-
ager. This requires quite a lot of extra memory usage within the virtual
machine as well as overhead. In spite of having a worse performance,
it is the most user friendly option.

3. SSH into the virtual machine and work from the host machine using X
forwarding. Very little overhead but it requires some configuration for
it to work properly. This option is only possible if the host machine is
running a Xorg server (display renderer).

We will stick to option three since it is the one we feel the most com-
fortable with and our host meets the requirements. In order to do it this
way, we have to do the following.

1. In the virtual machine, make sure at least one network adapter enabled
either in host-only or bridge mode. For the latter, ensure the host is
already connected to a network.

2. Find out the IP address of the network adapter we just enabled. If
there are several network adapters enabled, it is possible that the one
we are interested on does not have an IP address assigned to it. If
that is the case, use the dhclient command manually.

3. Connect to the virtual machine using the following command.

1 ssh -Y mininet@ <IP Address >
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The -Y flag stands for trusted X forwarding. Regular X forwarding
has a 20 minutes timeout and causes some issues when using Xterm
within Mininet. Note that trusted X forwarding should not be used
lightly and could have security implications.

4. (Optional). Generate a private and public key pair on the host and
transfer the public key to the virtual machine under
/home/mininet/.ssh/authorized keys. This will allow us to log into
the machine without having to type the password every time.

Finally, in preparation for the testing phase, we need to enable two
additional network adapters on bridge mode. We will use these adapters
to connect two external physical hosts to the Mininet network. After all of
this, we are done configuring the virtual machine itself. We are ready to
start setting up the Mininet topology.

5.2 Mininet

First off, we need to know what topology we want to create and then im-
plement it in Mininet. For this, Mininet offers two different ways: through
the CLI or using its Python1API. While the CLI is easy to use, it has some
limitations, so we will use the Python API instead. The main reason for
using the API is that it is only the way to connect external interfaces to the
Mininet network, which we will need to do for the testing phase.

5.2.1 Topology

As it has been mentioned in a previous chapter, we want to avoid an overly
complex topology. The goal is to just demonstrate the use of network slicing
within an SDN. For that, we have chosen the topology shown in Figure 5.12.
Based on that topology, the goal will be to create two network slices, one
for the 1 Mbit/s path and a second slice for the 10 Mbit/s path.

Once we know what topology we want to create, we will use Mininet’s
Python API to build it. Alternatively, there is a GUI application called
MiniEdit used to create a Mininet network in a visual way. Despite MiniEdit
being the easier option, we will opt for the Python API because we would
like to take a lower level approach. The code can be found in Appendix A.

1The API uses Python version 2.7, although the Mininet contributors are slowly adding
compatibility for Python 3.6.

2This topology is mainly based on the one shown here https://github.com/

onstutorial/onstutorial/wiki/Flowvisor-Exercise.

https://github.com/onstutorial/onstutorial/wiki/Flowvisor-Exercise
https://github.com/onstutorial/onstutorial/wiki/Flowvisor-Exercise
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Figure 5.1: Base Mininet topology.

To simplify the CLI command used to invoke the topology, we will place
the Python file under /home/mininet/mininet/custom/.

Lastly, to build the network we use the command:

1 $ sudo mn --custom ~/ onstutorial/flowvisor_scripts/<python

filename > --topo <topology name > --link tc --controller remote

--mac

Some of the flags used on the command above are not required to build
our custom network, but they will be necessary for the testing process.

1. - -link tc. Enables link bandwidth customization.

2. - -controller remote. Will allow us to, later on, connect the network
to FlowVisor.

3. - -mac. (Optional). Disables MAC randomization for each host and
makes it easier to associate each MAC to its correspondent host. This
is very helpful for debugging.

5.2.2 Enabling External Hosts

To prepare the topology for the coming tests, we have to adjust the network
so that it can handle two external interfaces, Figure 5.2. This is where the
Mininet CLI falls short. These external interfaces have to be added after
the topology is created, which is not possible through the CLI. Therefore,
we have to use the Python API for both creating the topology and running
it.

Once the logic for running the network is added to the Python file, we
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Figure 5.2: Mininet topology with added external hosts.

Table 5.1: IP and MAC Addresses for the virtual hosts.

Virtual Host IPv4 Address Network Mask MAC Address

Host 1 10.0.0.1 255.255.0.0 00:00:00:00:00:01

Host 2 192.168.0.2 255.255.0.0 00:00:00:00:00:02

Host 3 10.0.0.3 255.255.0.0 00:00:00:00:00:03

Host 4 192.168.0.4 255.255.0.0 00:00:00:00:00:04

no longer need to use the command line. We can launch the network by
calling the Python file directly.

1 $ sudo python <python filename >

With the external interfaces added, our topology is almost ready to start
handling some traffic. We are only lacking one element, although a very
important one, a controller. An SDN becomes almost useless without a
controller. The set up for the controller is explained on the next chapter.

5.2.3 IP Address Assignment

Finally, it is important to assign IP addresses correctly for the network to
work properly. We will not implement router functionality and as a result,
hosts that want to communicate with each other must be assigned to the
same sub network. IP assignments are shown in Tables 5.1 and 5.2 for virtual
and physical hosts respectively. Since each host only has one available port,
we will omit it.

Regarding the virtual switches, we need some kind of identifier to refer
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Table 5.2: IP and MAC addresses for the physical hosts.

Physical Host IPv4 Address Network Mask MAC Address

Host 1 192.168.100.1 255.255.0.0 00:00:00:00:00:01

Host 2 192.168.100.101 255.255.0.0 00:00:00:00:00:02

Table 5.3: DPID for each virtual switch.

Virtual Switch DPID

Switch 1 00:00:00:00:00:01

Switch 2 00:00:00:00:00:02

Switch 3 00:00:00:00:00:03

Switch 4 00:00:00:00:00:04

to them when configuring FlowVisor. This identifier is called DPID. To
make it easier to identify each virtual switch, we have assigned the DPID
manually during the creation of the network, Table 5.3.

We are now ready to implement FlowVisor on top of our network and
commence the slicing.
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Implementation

It is now time to set up FlowVisor. In this chapter we will show two different
setups.

1. TCP Port Slicing. A simple configuration to start things off.

2. IP Address Slicing. A more complex example with more applica-
tions on a real production environment.

FlowVisor is only configurable through the command line, so the im-
plementations for each scenario will consist of shell scripts. Apparently
FlowVisor’s team of developers wanted to add a more user friendly inter-
face, but it never came to fruition as the development had a sudden stop in
2013.

6.1 First Time FlowVisor Setup

Before we can implement any scenario, we must go through the installation
and initial configuration process.

6.1.1 Installation

Right now, after going through Chapter 5, we have a virtual machine with
Mininet. We do not even have FlowVisor installed. So first things first, we
need to install FlowVisor. There is no FlowVisor package on the Ubuntu
repository, so we have to run some extra commands in order to install it.
Thankfully, this process is explained in the FlowVisor’s Github wiki [19].

1. Download the public GPG key for their own repository.
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1 $ wget http :// updates.onlab.us/GPG -KEY -ONLAB

2. Install the GPG key.

1 $ sudo apt -key add GPG -KEY -ONLAB

3. Add their repository, deb http://updates.onlab.us/debian stable/, to
the /etc/sources.list file.

4. It is now possible to install the FlowVisor package from the repository
using the package manager.

1 $ sudo apt -get update && sudo apt -get install flowvisor

Alternatively, it is also possible to install FlowVisor directly from the
GitHub repository. Note that, in this case, it is necessary to have the git
package installed.

1 $ git clone git :// github.com/OPENNETWORKINGLAB/flowvisor.git

While this last method may look simpler, it is far more cumbersome
than the first alternative. When installing directly from GitHub we have to
take care of some additional nuances, like FlowVisor requiring its own user,
which makes it much more prone to error and misconfiguration.

6.1.2 Configuration

The main utility for configuring FlowVisor is called fvconfig, and it is in-
stalled along the FlowVisor binary. To see every command available check
the manual. While the manual is very useful, it is all we got when it comes
to the documentation of fvconfig.

1 $ man fvconfig

The first thing we have to do is to generate a template configuration,
which is almost good enough by itself. It is important to know that fvconfig
needs be run as the flowvisor user.

1 $ sudo -u flowvisor fvconfig generate /etc/flowvisor/config.json
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To make the implementation more manageable, we will set a blank pass-
word when asked for one. This is, after logging into sudo, whose default
password is mininet.

Next up, we can initialize FlowVisor.

1 $ sudo /etc/init.d/flowvisor start

Alternatively, we can also use service.

1 $ sudo service flowvisor start

Another utility that comes packaged with the FlowVisor binary is fvctl,
which is used to interact with the hypervisor itself once it is running. With
this utility, the first thing we do is enable the topology controller.

1 $ fvctl -n set -config --enable -topo -ctrl

The -n flag is used when a password has not been set for FlowVisor. If
a password has been set, then it is necessary to type it after running the
command or pass a file that contains the password using the -f flag. After
running this command we have to restart FlowVisor.

1 $ sudo /etc/init.d/flowvisor restart

At this point, FlowVisor should be up and running, ready to connect to
our Mininet network. By default, FlowVisor listens to incoming connections
on port 6633. Technically, we should specify this port on the remote con-
troller when creating the Mininet network, but Mininet tries to connect by
default to localhost on port 6653 and then falls back to port 6633 if 6653 is
not available. So, in practice, we do not have to specify the remote controller
port on Mininet.

6.2 FlowVisor Syntax Overview

When using FlowVisor, there are two main elements we have to work with:
slices and flowspaces.

6.2.1 Slices

A slice is a subset of the physical underlying network. Effectively, a slice is a
virtual network. Each slice is assigned to a different controller, this is what
enables the possibility of offering different services with different constraints
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within the same physical network. To create a slice we use the add-slice
command.

1 $ fvctl -n add -slice example tcp:localhost :6666 admin@example

Where:

• example. Name of the slice.

• tcp. Transport protocol.

• localhost. IP address where the controller lives. In this case it is in
the same machine as FlowVisor.

• 6666. The port where the controller is listening.

• admin@example. Contact information of the person responsible for
that slice.

When running the command, the user is prompted to enter a password.
Again, to avoid extra complexity, we will leave it blank.

To remove a slice, the appropriate command is remove-slice.

1 $ fvctl -n remove -slice example

To list the existing slices, list-slices. Note that there is always a main
slice called admin.

1 $ fvctl -n list -slices

There are more commands related to slices. To see all of them, check
the manual for fvctl.

6.2.2 Flowspaces

Once a slice is created, it is virtually useless unless the hypervisor, i.e.,
Flowvisor, decides to send packets to the slice. Flowspaces allow the hyper-
visor to know to which controller a certain packet belongs to. A flowspace
is nothing more than a set of rules for a packet to be matched against. De-
pending on those matches, the hypervisor determines the appropriate slice.
To create a flowspace, we use the add-flowspace command.

1 $ fvctl -n add -flowspace example -flowspace 1 10 in_port=3,nw_proto

=6 example =7
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Where:

• example-flowspace. Name of the flowspace.

• 1. DPID of the switch this flowspace applies to.

• 10. Priority of the flowspace.

• in port=3,nw proto=6. Set of rules the packet will be match against.

• example. Slice the packet will be forwarded to if it matches the rules.

• 7. Slice permissions. In this case, 7 equals permission to read, write
and delegate. For more information about slice permissions, consult
the manual.

To remove a flowspace, we use remove-flowspace. Note that, when delet-
ing a slice, all of its associated flowspaces are deleted as well automatically.

1 $ fvctl -n remove -flowspace example -flowspace

To see the existing flowspaces, list-flowspace.

1 $ fvctl -n list -flowspace

For more information about flowspaces, refer to the fvctl manual.

6.3 OpenFlow Controllers

Unless we manually introduce the OpenFlow rules for each switch, no sce-
nario is going to work without a controller. In Chapter 3, we decided that
we would use POX as the OpenFlow controller. Normally, we would have
to extend POX ourselves using Python. Thankfully, we only need a very
simple controller and POX comes with some sample components ready to
be used. These sample components are:

• Hub.

• Layer 2 learning switch which installs exact-match rules for each flow.

• Shortest path. It learns the Ethernet addresses across the network and
picks short paths between them.

• Learning switch for Open vSwitch. Forwards packets based on Ether-
net source and destination addresses.



42 6.4. TCP Port Slicing

• Learning switch that installs rules for each pair of layer 2 addresses.

• Simple layer 3 switch.

• A modification of the pairs layer 2 switch to work with FlowVisor on
looped topologies.

There are few more obscure components but they are not relevant to us.

Taking into consideration the two scenarios we want to implement and
that FlowVisor handles most of the networking logic, we can use the simple
layer 2 learning switch that installs exact-match rules. To start the controller
we run the subsequent command.

1 $ /home/mininet/pox.py log.level --DEBUG forwarding.l2_learning

openflow.of_01 --port =10001

Where:

• (Optional) log.level - - DEBUG. Verbosity of the command.

• forwarding.l2 learning. Relative path to the component we wish to
run. Relative from the pox.py file.

• (Optional) openflow.of 01 - -port=10001. TCP port the controller
will be listening on. We cannot use the default value, as we will need
more than one controller running and they need to be listening on
different ports.

Once the controller is up and running, all we need to do is connect it to
FlowVisor through the appropriate slice.

6.4 TCP Port Slicing

This scenario is based on an example from FlowVisor’s GitHub repository[20].
It aims to get us started with network slicing.

The goal is, given the Mininet topology we have previously built, to route
packets through different paths depending on their source or destination
TCP port. To be precise, any packet with source or destination port 9999
will be routed through the path with higher bandwidth, see Figure 6.1. Any
other packet will take the slower path.

To fully understand the implementation of this scenario, we need to know
how the switch ports are numbered. Every port number is shown in Table
6.1.
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Figure 6.1: TCP port based slices.

Table 6.1: Port numbering.

Link (A - B) Port number (A - B)

Switch 1 - Host 1 3 - 1

Switch 1 - Host 2 4 - 1

Switch 1 - External Host 1 5 - 1

Switch 2 - Switch 1 1 - 1

Switch 3 - Switch 1 1 - 2

Switch 4 - Switch 3 2 - 2

Switch 4 - Switch 2 1 - 2

Switch 4 - Host 3 3 - 1

Switch 4 - Host 4 4 - 1

Switch 4 - External Host 2 5 - 1
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We will now go through a brief overview of the necessary commands. To
see the full code refer to Appendix B. First of all, we have to create two
slices.

1 fvctl -n add -slice fast_slice tcp:localhost :10001 admin@fastSlice

2 fvctl -n add -slice slow_slice tcp:localhost :10002 admin@slowSlice

Next, we add the flowspaces. As an example, we will show the flowspaces
for switch 1.

1 fvctl -n add -flowspace dpid1_port3_fast_src 1 100 in_port=3,

tcp_src =9999 fast=7

2 fvctl -n add -flowspace dpid1_port3_fast_dst 1 100 in_port=3,

tcp_dst =9999 fast=7

3 fvctl -n add -flowspace dpid1_port3_slow 1 1 in_port =3 slow=7

4 fvctl -n add -flowspace dpid1_port4_fast_src 1 100 in_port=4,

tcp_src =9999 fast=7

5 fvctl -n add -flowspace dpid1_port4_fast_dst 1 100 in_port=4,

tcp_dst =9999 fast=7

6 fvctl -n add -flowspace dpid1_port4_slow 1 1 in_port =4 slow=7

7 fvctl -n add -flowspace dpid1_port2 1 100 in_port =2 fast=7

8 fvctl -n add -flowspace dpid1_port1 1 1 in_port =1 slow=7

When it comes to the priorities for each flow, any priority can be used as
long as the relativity between them is maintained, i.e., the higher priorities
are kept higher than the lower ones.

After configuring every slice and flowspace, we just need to launch FlowVi-
sor and two POX controllers, one listening on port 10001 and the other one
on 10002. And that would be it for TCP port slicing.

Lastly, this is just simple example to get familiar with Mininet, POX,
FlowVisor and its syntax. In the next section we will tackle a more complex
and involved example now that we know the very basics of network slicing.

6.5 IP Address Slicing

Now, for a more complex scenario, we are going to slice the network depend-
ing on the source and destination IP address, see Figure 6.2. Notice that,
before we implement a new scenario, we need to remove the slices created
on the previous one. Otherwise the flowspaces and slices will overlap and
result on unpredictable behaviour.

Similarly to what we did in the previous example, we start by creating
the slices. We want to test this scenario later using LoRa packets, thus we
name the slices LoRa and Regular. Furthermore, given that FlowVisor does
not have the option to intentionally drop packets, we will create a third slice
for this purpose, DevNull. This way, whenever we want to intentionally drop
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Figure 6.2: IP address based slices.

packets, we will send them to the DevNull slice.

1 fvctl -n add -slice LoRa tcp:localhost :10001 admin@LoRaSlice

2 fvctl -n add -slice Regular tcp:localhost :10002 admin@RegularSlice

3 fvctl -n add -slice DevNull tcp:localhost :666 admin@DevNull

In addition, we also want to isolate both subnets, e.g., host 1 cannot
communicate with host 4. This is already the case by default because we
are using switches. Yet, it is possible to manually add entries to the ARP
table so that the switch can route between both subnets. To prevent this,
we will actively drop packets that try to leave their original subnet.

Similarly to what we did in the previous example, we will show the flows-
paces for switch 1. For the full script, refer to Appendix C. Also remember
that Table 6.1 holds the information for the ports of switch 1.

1 fvctl -n add -flowspace dpid1_LoRa 1 100 nw_src =10.0.0.0/16 LoRa=6

2 fvctl -n add -flowspace dpid1_DevNull_LoRa2Regular 1 200 nw_src

=10.0.0.0/16 , nw_dst =192.168.0.0/16 DevNull =2

3 fvctl -n add -flowspace dpid1_DevNull_Regular2LoRa 1 200 nw_dst

=192.168.0.0/16 , nw_src =10.0.0.0/16 DevNull =2

4 fvctl -n add -flowspace dpid1_default 1 1 any Regular =6

5 fvctl -n add -flowspace dpid1_DevNull_port1_ARP 1 300 in_port=1,

nw_src =10.0.0.0/16 , dl_type =0 x0806 DevNull =6

6 fvctl -n add -flowspace dpid1_Regular_port1 1 1 in_port =1 Regular =6
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7 fvctl -n add -flowspace dpid1_LoRa_port2_LoRa 1 200 in_port=2,

nw_src =10.0.0.0/16 LoRa=6

8 fvctl -n add -flowspace dpid1_DevNull_port2 1 1 in_port =2 DevNull =2

The main ideas behind the flowspaces are:

• Drop packets that try to travel between subnets.

• Assign packets with nw src=10.0.0.0/16 to LoRa.

• Assign ARP packets with nw src=10.0.0.0/16 to LoRa. Technically
an ARP packet does not have a network source field, but FlowVisor,
due to how it is implemented internally, is able to distinguish between
ARP packets based on its source.

• Send the rest of the packets to the regular slice.

Like we did previously, we now run two POX controllers on ports 10001
and 10002. We do not run a third controller on port 666 because the point
of that slice is to drop the packets.

One could think that it should be possible to just send all ARP packets
through the same path. The problem with that approach is that, since we
are using a learning switch controller, the switches will learn the path to the
different hosts through the ARP packets. As a result, the path that is not
used for ARP will be completely neglected.

Moreover, we cannot allow the ARP packets to just roam freely through
the network because we are using a looped topology. If we do not take care
of this loop, the ARP packets will just clog the network and render it useless.

In conclusion, the flowspaces shown above are the result of many itera-
tions. Mainly due to learning about the different nuances of the topology,
as well as the behaviour of the different packets and protocols.
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Testing

We can now proceed into testing both scenarios and see how they perform
when traffic is injected into the network.

7.1 TCP Port Slicing

For the tests regarding this type of slicing, we have not used real traffic
as we just wanted to see if the slicing itself works, instead we have used a
tool called Iperf. It allows us to generate either TCP or UDP traffic and
it reports back with the bandwidth of the connection. The basic usage of
Iperf goes as follows:

1. On the end point, call Iperf to listen to a port.

1 iperf -s -p <TCP_port_number >

2. Now, on a different host, send traffic to the end point.

1 iperf -c <ip_address_endpoint > -p <TCP_port_number > -i 1

By default, Iperf sends a stream of small TCP packets for 10 seconds.
To have a little more granularity, we add the switch -i 1. This way we can
see the bandwidth of the connection each second, instead of the average of
a 10 seconds transmission.

Essentially, by looking at Iperf’s bandwidth report, we can tell if the
stream of packets is taking the slow or the fast path of the network. This
is exactly what we have done, and by looking at Figures 7.1 and 7.2 we can
confirm that the slicing is working as intended:
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Figure 7.1: Iperf’s bandwidth report of a TCP connection to port 9999,
from host 1 to host 3.

• When the TCP connection is on port 9999, the bandwidth reported
is 7 Mbit/s to 17 Mbit/s, which means the packets are taking the fast
path.

• Likewise, if the port is different from 9999, e.g, port 8000, the packets
take the slow route and we see a bandwidth of 1 Mbit/s to 3 Mbit/s.

7.1.1 Analysis of the Results

While the bandwidth measurements are not entirely accurate, the margin
between the tests is clear enough to warrant the correct slicing implemen-
tation, i.e., the packets take the intended path.

Regarding network slicing itself, is not a concept exclusive to SDN. Net-
work slicing has been traditionally accomplished with the use of VLANs,
which have been widely used for many years. Despite its broad usage,
VLANs are very limited in the sense that they can only slice based on
switch ports.

With this small and simple example, we have overcome the major limita-
tion of VLANs. Nevertheless, this example is just a stepping stone towards
learning the basics of network slicing and getting familiar with its various
concepts.
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Figure 7.2: Iperf’s bandwidth report of a TCP connection to port 8000,
from host 1 to host 3.

7.2 IP Address Slicing

7.2.1 Preparation

In this scenario, we have performed a more advanced and complex test
involving external hosts. While Iperf would have sufficed, we have opted for
a test that closer resembles a real production environment, illustrated by
Figured 7.3. The physical setup is shown in Figure 7.4. The main elements
for this test are:

• LoRa mote. It will broadcast packets over air using the LoRa pro-
tocol.

• LoRa gateway. Responsible for capturing the LoRa packets trans-
mitted over air and forwarding them to the LoRaWAN network and
application servers through the virtual Mininet network, which publish
the messages using MQTT.

• MQTT client. If everything works correctly, it should receive the
packets originally sent by the LoRa mote. In addition, these packets
should traverse the Mininet network through the slow path.

As for the MQTT client, we will use Mosquitto.

1 mosquitto_sub -h localhost -t "gateway /#" -v
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Figure 7.3: Testing scenario for IP address slicing.

Where:

• localhost. Host where the messages are stored.

• gateway/#. Topic we wish to subscribe to.

In addition, due to using Mininet within a virtual machine, the MQTT
client must go through the physical Ethernet interface of the Mininet net-
work host, which is not possible if said Ethernet interface does not belong
to the same subnet, i.e., 192.168.0.0/16. There are several ways to accom-
plish this. We have opted to edit the configuration file at /etc/dhcpcd.conf,
adding the following lines at the end of the file:

1 interface eno1

2 static ip_address =192.168.100.50/16

Where:

• eno1. Name of our Ethernet interface on the Mininet network host.

• 192.168.100.50/16. IP assigned to the interface. It can be any valid
IP within the subnet as long as it is not already taken.
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Figure 7.4: Setup of the physical test components.

Lastly, for the test to be considered successful, every LoRa packet must
be received at the MQTT client and packets must go through the slow path.
To verify that this is the case, we will use the tool Tshark, which is a terminal
based packet sniffer.

7.2.2 Analysis of the Results

Judging by Figure 7.5, it looks like everything is working as expected. The
LoRa packages are being forwarded correctly by the LoRa gateway and
arriving at the MQTT client. Nevertheless, we still need to ensure that
they are taking the correct path, as that is the actual point of this test.
Thankfully, Figure 7.6 shows that the packets are going through switch 2,
which is the correct path, so everything is working correctly.

In this particular case, the slices help us isolate IoT traffic and send it
through a slower path of the network. This way, we leave the faster path
available for other types of traffic that require a higher bandwidth.

But, if we look past our example, there are many other ways in which
it could benefit a real production network: providing traffic engineering for
QoS, isolating traffic between different services or enabling a production net-
work to be used as testbed for a different service among others possibilities.
All in all, there is definitely a plethora of use-cases.
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Figure 7.5: Packets shown on the MQTT client.

Figure 7.6: Packets sniffed by Tshark on switch 2.
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Conclusions

First off, software defined networks are extremely useful by themselves.
They provide us with much better scalability, they deal with the issue of
heterogeneous hardware and compatibility across the same network and of-
fer a broader network view to perform traffic engineering.

Furthermore, an SDN hypervisor that sits between the physical devices
and the OpenFlow controllers proves to be a very powerful tool as well. It
simplifies the deployment of OpenFlow controllers while, at the same time,
dealing with the problem of adaptability in complex networks and enabling a
feasible and maintainable way to perform network virtualization or network
slicing.

Speaking of network virtualization, its real world applications are end-
less, as pointed out at the end of the previous chapter. It is definitely
something to consider when designing a network because, when used cor-
rectly, it provides the network with great flexibility, scalability, adaptability
and efficiency.

On the other hand, the development of open source hypervisors seems to
have reached a full stop. FlowVisor is the only one available at the time of
writing this document and it has not seen an update to its code base since
August 2013. However, the technique itself is very much still in use, as it is
a prevalent feature of the up and coming 5G cellular networks.

In summary, network slicing is a very powerful technique and definitely
has a bright future in the coming generation of cellular networks. Yet, it
looks like said future lies in the private industry, as opposed to open source.
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8.1 Future Work

If this project were to be continued, the first thing we would do would be
to test both implementations in a real network with physical OpenFlow
devices. Testing using a virtual network is acceptable, but there might be
problems that only arise once deployed in a physical one.

On a different note, exploring different ways of slicing the network would
also be interesting. So far we have tried TCP port and IP address slicing,
but FlowVisor offers a few more parameters to choose from.

• MAC address.

• Ethernet protocol.

• Physical switch port.

• Network protocol.

• ToS/DSCP IPv4 header.

Overall, this project can definitely be extended and improved upon, al-
though it has managed to address the main points that we aimed to cover.
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Appendix A

Mininet Topology

The is the Python code used to generate the Mininet topology. It includes:

• Four virtual switches.

• Four virtual hosts.

• Two external interfaces.

1 #!/usr/bin/python

2

3 # Add mininet ’s directory to path.

4 import sys

5 sys.path.append(’/home/mininet/mininet ’)

6

7 from mininet.topo import Topo

8 from mininet.net import Mininet

9 from mininet.link import Intf , TCLink

10 from mininet.node import RemoteController

11 from mininet.cli import CLI

12 from mininet.log import setLogLevel , info

13

14

15 class FVTopo(Topo):

16 """ Based on:

17 https :// github.com/onstutorial/onstutorial/blob/master/

flowvisor_scripts/flowvisor_topo.py"""

18

19 def __init__(self):

20 # Initialize topology.

21 Topo.__init__(self)

22

23 N_switches = 4

24 N_hosts = 4

25

26 # Create template host , switch , and link.

27 normal_link_config = {’bw’: 1}

28 LoRa_link_config = {’bw’: 10}

29 host_link_config = {}

30

59



60

31 # Create switch nodes.

32 for i in range(1, N_switches + 1):

33 sconfig = {’dpid’: "%016x" % (i)}

34 self.addSwitch(’s%d’ % (i), ** sconfig)

35

36 # Create host nodes.

37 for i in range(1, N_hosts + 1):

38 if i%2 == 0:

39 hconfig = {’inNamesapce ’:True , ’ip’: "

192.168.0.%d" % (i)}

40 self.addHost(’h%d’ % (i), ** hconfig)

41 if i%2 != 0:

42 hconfig = {’inNamesapce ’:True , ’ip’: "

10.0.0.%d" % (i)}

43 self.addHost(’h%d’ % (i), ** hconfig)

44

45 # Add switch links.

46 self.addLink(’s1’, ’s2’, ** normal_link_config)

47 self.addLink(’s2’, ’s4’, ** normal_link_config)

48 self.addLink(’s1’, ’s3’, ** LoRa_link_config)

49 self.addLink(’s3’, ’s4’, ** LoRa_link_config)

50

51 # Add host links.

52 self.addLink(’h1’, ’s1’, ** host_link_config)

53 self.addLink(’h2’, ’s1’, ** host_link_config)

54 self.addLink(’h3’, ’s4’, ** host_link_config)

55 self.addLink(’h4’, ’s4’, ** host_link_config)

56

57

58 def run_fvtopo ():

59 # Create topology.

60 net = Mininet(topo = FVTopo (), controller = RemoteController ,

autoSetMacs = True , autoStaticArp = False , link = TCLink)

61

62 # Add external interface.

63 intfName0= ’eth0’

64 intfName1= ’eth1’

65

66 switch1 = net.switches [0]

67 info(’*** Adding hardware interface ’, intfName0 , ’to switch ’,

switch1.name , ’\n’)

68 _intf = Intf(intfName0 , node=switch1)

69

70 switch4 = net.switches [-1]

71 info(’*** Adding hardware interface ’, intfName1 , ’to switch ’,

switch4.name , ’\n’)

72 _intf = Intf(intfName1 , node=switch4)

73

74 # Run it.

75 net.start()

76 CLI(net)

77 net.stop()

78

79

80 if __name__ == ’__main__ ’:

81 setLogLevel(’info’)

82 run_fvtopo ()

83

84

85 # Preserve the --custom functionality.

86 topos = {’fvtopo ’: FVTopo}



Appendix B

TCP Port Slicing

Bash script to quickly set up TCP port based slicing.

1 # This script creates two slices: fast and slow traffic.

2

3

4 # Create both slices.

5 fvctl -n add -slice fast tcp:localhost :10001 admin@fastSlice

6 fvctl -n add -slice slow tcp:localhost :10002 admin@slowSlice

7

8 # Add flowspaces for switch 1.

9 fvctl -n add -flowspace dpid1_port3 -fast_src 1 100 in_port=3,dl_type =0

x0800 ,nw_proto=6,tp_src =9999 fast=7 # Priority 100.

10 fvctl -n add -flowspace dpid1_port3 -fast_dst 1 100 in_port=3,dl_type =0

x0800 ,nw_proto=6,tp_dst =9999 fast=7

11 fvctl -n add -flowspace dpid1_port3 -slow 1 1 in_port =3 slow=7

12 fvctl -n add -flowspace dpid1_port4 -fast_src 1 100 in_port=4,dl_type =0

x0800 ,nw_proto=6,tp_src =9999 fast=7

13 fvctl -n add -flowspace dpid1_port4 -fast_dst 1 100 in_port=4,dl_type =0

x0800 ,nw_proto=6,tp_dst =9999 fast=7

14 fvctl -n add -flowspace dpid1_port4 -slow 1 1 in_port =4 slow=7

15 fvctl -n add -flowspace dpid1_port2 -fast 1 100 in_port =2 fast=7

16 fvctl -n add -flowspace dpid1_port1 -fast 1 1 in_port =1 slow=7

17

18 # Add flowspaces for switch 2.

19 fvctl -n add -flowspace dpid2 2 1 any slow=7

20

21 # Add flowspaces for switch 3.

22 fvctl -n add -flowspace dpid3 3 100 any fast=7

23

24 # Add flowspaces for switch 4.

25 fvctl -n add -flowspace dpid4_port3 -fast_src 4 100 in_port=3,dl_type =0

x0800 ,nw_proto=6,tp_src =9999 fast=7

26 fvctl -n add -flowspace dpid4_port3 -fast_dst 4 100 in_port=3,dl_type =0

x0800 ,nw_proto=6,tp_dst =9999 fast=7

27 fvctl -n add -flowspace dpid4_port3 -slow 4 1 in_port =3 slow=7

28 fvctl -n add -flowspace dpid4_port4 -fast_src 4 100 in_port=4,dl_type =0

x0800 ,nw_proto=6,tp_src =9999 fast=7

29 fvctl -n add -flowspace dpid4_port4 -fast_dst 4 100 in_port=4,dl_type =0

x0800 ,nw_proto=6,tp_dst =9999 fast=7

30 fvctl -n add -flowspace dpid4_port4 -slow 4 1 in_port =4 slow=7

31 fvctl -n add -flowspace dpid4_port2 -fast 4 100 in_port =2 fast=7

61



62

32 fvctl -n add -flowspace dpid4_port4 -fast 4 1 in_port =1 slow=7



Appendix C

IP Address Slicing

Bash script to quickly set up network slicing based on IP address.

1 # This script creates three slices: LoRa , Regular traffic and a

DevNull slice to drop packets.

2

3 # Create both slices.

4 fvctl -n add -slice LoRa tcp:localhost :10001 admin@LoRaSlice

5 fvctl -n add -slice Regular tcp:localhost :10002 admin@RegularSlice

6 fvctl -n add -slice DevNull tcp:localhost :666 admin@DevNull

7

8

9 # Add flowspaces for switch 1.

10 fvctl -n add -flowspace dpid1_LoRa 1 100 nw_src =10.0.0.0/16 LoRa=6

11

12 fvctl -n add -flowspace dpid1_DevNull_LoRa2Regular 1 200 nw_src

=10.0.0.0/16 , nw_dst =192.168.0.0/16 DevNull =2

13 fvctl -n add -flowspace dpid1_DevNull_Regular2LoRa 1 200 nw_dst

=192.168.0.0/16 , nw_src =10.0.0.0/16 DevNull =2

14

15 fvctl -n add -flowspace dpid1_default 1 1 any Regular =6

16

17 fvctl -n add -flowspace dpid1_DevNull_port1_ARP 1 300 in_port=1,nw_src

=10.0.0.0/16 , dl_type =0x0806 DevNull =6

18 fvctl -n add -flowspace dpid1_Regular_port1 1 1 in_port =1 Regular =6

19

20 fvctl -n add -flowspace dpid1_LoRa_port2_LoRa 1 200 in_port=2,nw_src

=10.0.0.0/16 LoRa=6

21 fvctl -n add -flowspace dpid1_DevNull_port2 1 1 in_port =2 DevNull =2

22

23

24 # Add flowspaces for switch 2.

25 fvctl -n add -flowspace dpid2_DevNull_ARP 2 300 nw_src =10.0.0.0/16 ,

dl_type =0 x0806 DevNull =6

26 fvctl -n add -flowspace dpid2 2 1 any Regular =6

27

28

29 # Add flowspaces for switch 3.

30 fvctl -n add -flowspace dpid3_DevNull_ARP 3 300 nw_src =192.168.0.0/16 ,

dl_type =0 x0806 DevNull =6

31 fvctl -n add -flowspace dpid3 3 100 nw_src =10.0.0.0/16 LoRa=6

32 fvctl -n add -flowspace dpid3_DevNull 3 1 any DevNull =2

63



64

33

34

35 # Add flowspaces for switch 4.

36 fvctl -n add -flowspace dpid4_LoRa 4 100 nw_src =10.0.0.0/16 LoRa=6

37

38 fvctl -n add -flowspace dpid4_DevNull_LoRa2Regular 4 200 nw_src

=10.0.0.0/16 , nw_dst =192.168.0.0/16 DevNull =2

39 fvctl -n add -flowspace dpid4_DevNull_Regular2LoRa 4 200 nw_dst

=192.168.0.0/16 , nw_src =10.0.0.0/16 DevNull =2

40

41 fvctl -n add -flowspace dpid4_default 4 1 any Regular =6

42

43 fvctl -n add -flowspace dpid4_DevNull_port1_ARP 4 300 in_port=1,nw_src

=10.0.0.0/16 , dl_type =0x0806 DevNull =6

44 fvctl -n add -flowspace dpid4_Regular_port4 4 1 in_port =1 Regular =6

45

46 fvctl -n add -flowspace dpid4_LoRa_port2_LoRa 4 200 in_port=2,nw_src

=10.0.0.0/16 LoRa=6

47 fvctl -n add -flowspace dpid4_DevNull_port2 4 1 in_port =2 DevNull =2
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