A NEW GOLDEN AGE OF MINIMAL SURFACES

JOAQUIN PEREZ

ABSTRACT. We give a brief tour on some of the recent developments
in classical minimal surface theory, specially those where the work of
Colding and Minicozzi on compactness properties of embedded minimal
disks in Euclidean three-space has been instrumental. Along this tour,
we will discuss some of the main open problems in this theory.

1. INTRODUCTION

A minimal surface, like the soap film of Figure 1, has the property that
small pieces minimize area for given boundary, even though the whole surface
may be unstable. At first, there were few explicit examples (see Figure 2):
the plane, the catenoid of Euler (1741), and the helicoid of Meusnier (1776).

Many of the greatest mathematicians in history have been challenged by
minimal surfaces; some of them made spectacular advances in a relatively

2000 Mathematics Subject Classification. Primary 53A10; Secondary 49Q05, 53C42.

Key words and phrases. Minimal surface, curvature estimates, minimal lamination,
minimal parking garage structure, Colding-Minicozzi theory.

Joaquin Pérez is professor of Geometry and Topology at the University of Granada
and director of the Research Mathematics Institute IEMath-GR. His email address is
jperez@ugr.es.

Research partially supported by the Spanish MEC/FEDER Grant no. MTM2014-
52368-P.

FIGURE 1. A minimal surface, like this soap film, is
characterized by the property that small pieces min-
imize area for given boundary. Image taken from
http://soft-matter.seas.harvard.edu/index.php/Soap_films
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FiGURE 2. The first explicit examples of minimal surfaces
were the plane, the catenoid (Euler, 1740), and the helicoid
(Meusnier, 1776).

definite period, producing golden ages of this theory: The first one oc-
curred approximately in the period 1830-1890, when renowned mathemati-
cians such as Enneper, Scherk, Schwarz, Riemann, and Weierstrass made
major advances on minimal surfaces through the application of the newly
created field of complex analysis by providing analytic formulas for a general
minimal surface. Also in this period, fundamental research by Plateau on
surface tension gave a physical interpretation to the problem of minimizing
area with a given contour, which allowed to spread this minimization prob-
lem beyond mathematics, to the point that since then it is customary to
refer to it as the Plateau problem.

A second golden age of minimal surfaces took place from about 1914 to
1950, with the incipient theory of partial differential equations: in this re-
spect, we highlight the contributions of Bernstein, Courant, Douglas (who
in 1936 won the first Fields medal® for his solution of the Plateau prob-
lem), Morrey, Morse, Radd, and Shiffman. A third golden age started in
the 1960s, when giants of the stature of Almgren, Alt, Calabi, do Carmo,
Chern, Federer, Finn, Fleming, Gackstatter, Gulliver, Hardt, Hildebrandt,
Jenkins, Lawson, Nitsche, Osserman, Serrin, Simon, and Simons opened
new routes through the use of multiple techniques, from Riemann surfaces
to geometric measure theory, passing through integrable systems, conformal
geometry, and functional analysis. The appearance of computers was cru-
cial for the discovery in the eighties of new examples of complete minimal
surfaces without self-intersections. The abundance of these newly discov-
ered examples led to new problems and conjectures about the classification
and structure of families of surfaces with prescribed topology. More recent
major contributors are too numerous to list here.

In this article we hope to convince the reader that as with the previous
milestones, we are currently witnessing a new golden age of minimal surfaces,
mostly favored by a new tool discovered in 2004: the so-called Colding-
Minicozzi theory. This work, published in an impressive series of four articles
in the same issue of Annals of Mathematics [2], analyzes the convergence

'Shared with Ahlfors for his work on Riemann surfaces.
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of sequences of embedded minimal disks without imposing a priori uniform
bounds on area or curvature. We will sketch how this theory has helped to
solve open problems that were considered inaccessible until recently. And
we will venture, with all the reservations that predictions deserve, to expose
some of the most interesting open problems in this field.

In order to develop these objectives in a limited number of pages, we must
pay the price of not going into details. There are many articles, books and
chapters of books where interested readers can satisfy their curiosity, such
as the volume by Colding and Minicozzi [1] or the survey by Meeks and
me [3].

This article is a translated and revised version of an expository paper to
appear in the Gaceta de la Real Sociedad Matemdtica Espanola.

2. BASIC RESULTS

The theory of minimal surfaces is a confluence of many branches of math-
ematics. We can define minimality in at least eight different but equivalent
ways, based on the theory that we are most passionate about.

Let X: M — R3 be an isometric immersion of a Riemannian surface in
three-dimensional Euclidean space, and let N: M — S?(1) C R3 be its unit
normal or Gauss map (here S?(1) denotes the sphere of radius 1 and center
the origin of R3). If we perturb X in a relatively compact domain €2 C M by
a compactly supported differentiable function f € C§°(£2), then X +tfN is
again an immersion for |t| < £ and € > 0 small enough. The mean curvature
H e C>®(M) of X (arithmetic mean of the principal curvatures) is related
to the area functional A(t) = Area((X + tfN)(Q)), by means of the first
variation of area formula:

(2.1) A'(0) = —Q/QfHdA,

where dA is the area element of M. Now we can state the first two equivalent
definitions of minimality.

Definition 2.1. A surface M C R? is minimal if it is a critical point of the
area functional for all variations with compact support.

Definition 2.2. A surface M C R3 is minimal when its mean curvature
vanishes identically.

Locally and after a rotation, every surface M C R3 can be written as the
graph of a differentiable function u = u(z,y). In 1762, Lagrange wrote the
foundations of the calculus of variations by finding the PDE associated to a
critical point of the area functional when the surface is a graph:

Definition 2.3. A surface M C R3 is minimal if around any point, it can be
written as the graph of a function u = u(x, y) that satisfies the second-order,
quasi-linear elliptic partial differential equation

(2.2) (1+ “i)uyy — 2ugtyUzy + (1 + uz)um =0.
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The above PDE can also be written in divergence form:

. Vu B
(2.3) div <m> =0

Neglecting the gradient in the denominator of (2.3) leads to the celebrated
Laplace equation. This means that on a small scale (where u is close to a
constant), minimal surfaces inherit properties of harmonic functions, such as
the maximum principle, Harnack’s inequality and others. On a large scale,
dramatic changes appear in the way that global solutions to the Laplace
and minimal surface equations behave; perhaps the paradigmatic example
of this dichotomy is Bernstein’s theorem: the only solutions of (2.3) defined
in the whole of R? are the affine functions, while of course there are many
global harmonic functions.

A consequence of the second variation of area formula (i.e., the expression
for A”(0)) shows that every minimal surface minimizes area locally. This
property justifies the word minimal for these surfaces (not to be confused
with being a global area minimizer, which is a much more restrictive prop-
erty: the unique complete surfaces in R? that minimize area globally are the
affine planes).

Definition 2.4. A surface M C R3 is minimal if every point p € M ad-
mits a neighborhood that minimizes area among all surfaces with the same
boundary.

Definitions 2.1 and 2.4 place minimal surfaces as 2-dimensional analogues
of geodesics in Riemannian geometry and connect them with the calculus of
variations. Another functional of great importance is the energy,

E:/ IVX|?dA,
Q

where again X: M — R3 is an isometric immersion and  C M is a rel-
atively compact domain. Area and energy are related by the inequality
E > 2A, with equality occurring exactly when X is conformal. The fact
that every Riemannian surface admits local conformal (isothermal) coordi-
nates allows us to give other two equivalent definitions of minimality.

Definition 2.5. A conformal immersion X: M — R3 is minimal if it is a
critical point of the energy functional for every compactly supported varia-
tion, or equivalently, when every point on the surface admits a neighborhood
that minimizes energy among all surfaces with the same boundary.

The classical formula AX = 2H N that links the Laplacian of an isometric
immersion X : M — R3 with its mean curvature function H and Gauss map
N leads us to the next definition.

Definition 2.6. An isometric immersion X = (x1,22,23): M — R3 of
a Riemannian surface in three-dimensional Euclidean space is said to be
minimal if its coordinate functions are harmonic: Ax; =0, 7=1,2,3.
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From a physical point of view, the so-called Young’s equation shows that
the mean curvature of a surface separating two media expresses the dif-
ference of pressures between the media. When both media are under the
same pressure, the surface that separates them is minimal. This happens
after dipping a wire frame (mathematically, a non-necessarily planar Jor-
dan curve) in soapy water. However, soap bubbles that we all have blown
have non-zero constant mean curvature, because they enclose a volume of
air whose pressure is greater than the atmospheric pressure.

Definition 2.7. A surface M C R? is minimal if each point p € M has a
neighborhood that matches the soap film spanned by the boundary of this
neighborhood.

To give the last definition of minimality, remember that the differential
dN, at each point p € M of the Gauss map N is a self-adjoint endomorphism
of the tangent plane T, M. Therefore, there exists an orthonormal basis of
T,M where dN,, diagonalizes (principal directions at p), being the opposite
of the eigenvalues of dN, the so called principal curvatures of M at p. As
the mean curvature H is the arithmetic mean of the principal curvatures,
the minimality of M is equivalent to the vanishing of the trace of dN,, or
equivalently, to the property that the matrix of dN, in any orthonormal
basis of T,,M is of the form

a b
- (30,

After identifying N with its stereographic projection onto the extended com-
plex plane, the Cauchy-Riemann equations allow us to enunciate the eighth
equivalent version of minimality.

Definition 2.8. A surface M C R? is minimal when its stereographically
projected Gauss map g: M — C U {oco} is a meromorphic function.

In fact, for a minimal surface M C R3, not only the Gauss map is mero-
morphic, but also the whole immersion can be expressed by means of holo-
morphic data: as the third coordinate function x3 of M is a harmonic func-
tion, then it admits locally a conjugate harmonic function 3. Thus, the
height differential dh := dx3 + idz3 is a well-defined holomorphic 1-form on
M and the surface can be conformally parameterized by the explicit formula

(24)  X:M —R3, X(p)z?R/p: <; (;—g>,;<;+g>,l)dh,

where R stands for real part and pg is the point of M that we choose to be
sent by X to the origin in R? (i.e., formula (2.4) defines X up to an ambient
translation). The pair (g, dh) is usually called the Weierstrass data of M.
Minimal surfaces appear frequently in nature, not only in soap films or
more generally, interfaces separating immiscible fluids at the same pressure,
but also for example in diblock copolymers, smectic liquid crystals (materials
that have uniformly spaced layers with fluid-like order within each layer),
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FIGURE 3. Left: The gyroid (A. Schoen, 1970) has been
observed in diblock copolymer systems. Right: Na-
ture often seeks optimal forms in terms of perimeter
and area such as minimal surfaces, image taken from
http://hyperbolic-crochet.blogspot.com.es/
2012_07_01_archive.html

FiGURE 4. Otto Frei modeled the Olympic stadium
in Munich on minimal surfaces. Image taken from
http://www.archdaily.com/109136/ad-classics-munich
—olympic-stadium-frei-otto-gunther-behnisch

crystallography, semiconductor technology, ... even in the cuticular structure
in the wing scales of certain insects! See Figure 3.

Minimization properties for this class of surfaces have motivated renowned
architects such as Frei Otto used them to design optimal structures such as
the cover of the Olympic Stadium in Munich (Figure 4). The beauty of
their balanced forms have awakened the interest of sculptors such as Robert
Engman or Robert Longhurst. From a purely mathematical viewpoint, min-
imal surfaces have been studied in other ambient spaces besides Euclidean
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space, giving rise to applications in such diverse problems as the positive
mass and the Penrose conjectures in mathematical physics, the Smith con-
jecture on diffeomorphisms of finite order of the three-dimensional sphere,
and Thurston’s geometrization conjecture in 3-manifold theory.

3. CLASSICAL MINIMAL SURFACE THEORY

By classical theory we will mean the study of connected, orientable, em-
bedded minimal surfaces in R3. We will also impose global hypotheses as
completeness. Let M be the class of complete embedded minimal surfaces
M C R3 with finite genus. In order to understand this last word, recall
that the maximum principle for harmonic functions implies that there are
no compact minimal surfaces without boundary in R?; therefore, complete
minimal surfaces must have topological ends (ways go to infinity intrinsi-
cally on the surface). After compactifying topologically a minimal surface
M by adding a point to each end, we define the genus of M as the genus
of its compactification. If ¢ € NU {0} U {oo} and k € N U {oo}, we let
M (g, k) be the subset of M¢ that consists of those surfaces with genus g
and k topological ends. When both ¢ and k are finite, we will say that the
surface has finite topology.

A surface M C R3 is called proper if every intrinsically divergent sequence
of points of M also diverges in R3. Roughly speaking, a complete surface
is proper when its topological ends are placed at infinity in R?® (an infinite
roll of paper that wraps infinitely often and limits to an infinite cylinder
from its inside or outside is an example of a complete surface which is not
proper). We will denote by Mp the subset of M formed by the proper
minimal surfaces, and we let Mp(g,k) = Mp N Mc(g, k).

Our goal in this section is to describe the main examples of minimal
surfaces in these families, attending to their topology, conformal structure,
asymptotic behavior, and the main results of classification. As we go through
this description, we will discuss some of the most interesting open problems.

3.1. Complete minimal surfaces with finite topology. The trivial ex-
ample in this class is the plane. The first non-trivial examples of minimal
surfaces (Figure 2) belong to this class: the catenoid discovered by Euler
in 1741 (genus zero and two ends) and the helicoid found by Meusnier in
1776 (genus zero, one end). Both surfaces support multiple characteriza-
tions; among the most classic ones, we will mention that the catenoid is
the unique minimal surface of revolution together with the plane (Euler)
and that the helicoid and the plane are the unique ruled minimal surfaces
(Catalan). A special mention among examples in this family is deserved by
the Costa torus, the first complete minimal surface of finite topology dis-
covered after the aforementioned ones (after 206 years!), which has genus 1
and 3 ends, and its generalization to any finite genus g > 1 by Hoffman and
Meeks, also with three ends, see Figure 5.
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FIGURE 5. Left: the Costa torus. Right: a Hoffman-Meeks
minimal surface. Figures courtesy of Matthias Weber.

Regarding the relationship between Mo and Mp in the case of finite
topology, we should highlight a deep result of Colding and Minicozzi, which
asserts that every complete embedded minimal surface with finite topology
is proper. Its proof is an application of the famous theory by Colding and
Minicozzi, a topic which we will talk about a little later.

For our discussion of the case of finite topology, we will distinguish two
sub-cases, depending on whether the number of ends of the minimal surface
is one or greater.

SURFACES WITH FINITE GENUS AND ONE END. In 2005, Meeks and Rosen-
berg applied Colding-Minicozzi theory to show that the plane and the he-
licoid are the only possible examples in Mp(0,1) (i.e., they gave the full
classification of the simply connected properly embedded minimal surfaces).
By the above properness result of Colding and Minicozzi, the same unique-
ness result holds in M(0,1). As for the asymptotic behavior of surfaces
in Mp(g,1) = Mc(g,1) with 1 < g < oo, Bernstein and Breiner proved in
2011 that every surface in Mp(g, 1) is asymptotic to a helicoid and confor-
mally parabolic?. For this reason, surfaces in Mp(g,1) are usually called
helicoids of genus g. On existence results in this line, it is worth mentioning
that Hoffman, Weber, and Wolf discovered in 2009 a helicoid of genus one
with the conformal structure of a rhombic torus minus one point, and that
Hoffman, Traizet, and White have recently proven the existence of examples
in Mp(g,1) for each finite g > 1 (arXiv 2015). An important open problem
about Mp(g,1) is the possible uniqueness of examples with a given genus:
this uniqueness is known in the case g = 0, and it is conjectured that there
exists a unique helicoid of genus g for each g > 1, but even the local version
of this result is not known.

SURFACES WITH FINITE GENUS AND k ENDS, 2 < k < oo. The main
structural result in this case is due to Collin, who proved in 1997 that if
M € Mp(g,k) has g,k finite and k& > 2, then M lies in a particularly well-
studied family: surfaces with finite total curvature, i.e., those where the

2M is conformally parabolic if it does not admit any non-constant, non-positive sub-
harmonic function.
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Gausssian curvature K is integrable:

(3.1) / KdA:—/ |K|dA > —oo.
M M

(Note that since the mean curvature, the sum of the principal curvatures,
is zero, the Gauss curvature, the product of the principal curvatures, is
nonpositive). By previous work of Huber and Osserman, condition (3.1)
implies that M is conformally equivalent to a compact Riemann surface M of
genus g to which we have removed k points (in particular, M is conformally
parabolic), and both the Gauss map g: M — C U {oco} and the height
differential dh of M extend to holomorphic objects defined on M. This
allows the application of powerful tools of complex analysis and algebraic
geometry of compact Riemann surfaces; in some way, and given the lack
of compactness of a complete minimal surface in R3, those with finite total
curvature are the closest ones to being compact. The asymptotic behavior
of these minimal surfaces is also well known: every end is asymptotic to
a plane or half-catenoid. On uniqueness results, we highlight the following
ones:

1. Schoen proved in 1983 that if M € M(g,2) has finite total curvature,
then M is a catenoid. This is an application of the famous reflection
method of moving planes of Alexandrov, which is based on the maximum
principle for the equation (2.2).

2. In 1991, Loépez and Ros characterized the catenoid as the only surface
in M¢(0, k) with finite total curvature together with the plane. Again
the idea is based on the maximum principle, but now applied to what
it is called since then the Ldpez-Ros deformation, a 1-parameter family
of minimal surfaces defined in terms of the Weierstrass data (g,dh) of a
given minimal surface M. The Lépez-Ros deformation only exists under
a certain hypothesis on the flux map of the original surface®.

3. In 1984, Costa classified the surfaces in M (1, 3) with finite total curva-
ture. These surfaces reduce to the Costa torus and a 1-parametric family
of thrice-punctured tori discovered by Hoffman and Meeks by deforming
the Costa torus (and studied later by Hoffman and Karcher).

The previous result by Costa was the first complete description of a moduli
space Mc(g, k) which does not reduce to a single surface: M(1,3) has
the structure of a non-compact 1-dimensional manifold, identifiable with an
open interval. Generalizing this result, in 1996 Pérez and Ros endowed the
moduli spaces Mc(g,k) (0 < g < o0, 2 < k < oo) with a differentiable
structure of dimension k£ — 2 around each minimal surface M € Mc(g, k)
with an additional non-degeneracy assumption that affects the linear space

3The flux of a minimal surface M C R? is the linear map F: Hy(M) — R? that
associates to each 1-dimensional homology class [c] € H1(M) the integral along a repre-
sentative ¢ € [c] of the unit vector field along ¢ that is tangent to M and orthogonal to c.
The condition for the Lopez-Ros deformation to be well defined on M is that the range
of F'is at most 1.
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FIGURE 6. From left to right: a Riemann minimal example,
singly an doubly periodic Scherk surfaces, and the triply pe-
riodic Schwarz P-surface. Figures courtesy of Matthias We-
ber.

of Jacobi functions on M, which are the solutions u: M — R to the second-
order, linear elliptic PDE

Au—2Ku=0 on M,

where K is the Gaussian curvature of M. Until now, all known examples
in Mc(g, k) satisfy this non-degeneracy hypothesis. We highlight that the
dimension of the space of non-degenerate surfaces in M¢(g, k) does not
depend on the genus g, but only on the number of ends k.

A major open problem is the Hoffman-Meeks conjecture: If M € Mc(g, k),
then k£ < g+2. The best known result to date in this regard is due to Meeks,
Pérez and Ros (arXiv 2016), who proved the existence of an upper bound
for k depending only on g, again by application of the Colding-Minicozzi
theory.

Another important open problem consists of deciding if there exist sur-
faces in some moduli space M (g, k) that do not satisfy the non-degeneracy
condition mentioned above, and if they exist, provide of any “reasonable”
structure to the space M¢(g, k) around such a singular surface (as an orb-

ifold?).

3.2. Minimal surfaces with infinite topology. Next we enter the world
of classical minimal surfaces with infinite topology, i.e., those that have
either infinitely many ends or infinite genus. The most basic examples in this
family were discovered by Riemann in the 19th century (and posthumously
published by his disciple Hattendorf) and consist of a 1-parametric family
of properly embedded minimal surfaces, invariant by a translation, with
genus zero and infinitely many ends asymptotic to equally spaced parallel
planes. The Riemann minimal examples admit the following fascinating
characterization: together with the plane, the helicoid and the catenoid,
they are the unique properly embedded minimal surfaces in R3 that can be
foliated by circles and lines in parallel planes (indeed, Riemann discovered
these examples by imposing this property), see Figure 6 left.
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The Riemann minimal examples show how the periodicity of a surface
can be regarded as a method to produce examples of infinite topology: if
the quotient surface by the group of isometries is not simply connected, then
the lifted surface in R? has infinite topology. The same thing happens with
other examples of minimal surfaces discovered in the 19th century, such as
those shown in Figure 6:

1. The singly periodic Scherk minimal surface (second from the left in Fig-
ure 6) is invariant by a cyclic group of translations. The quotient surface
by the cyclic group has genus zero and four ends (asymptotic to half-
planes; these ends are called Scherk type ends); viewed in R?, this surface
has infinite genus and one end. We can see this example as a desin-
gularization of two orthogonal planes by introducing infinitely many al-
ternating holes forming a 45°-angle with the planes along their line of
intersection. As in the case of the Riemann minimal examples, the singly
periodic Scherk minimal surface can be deformed by a 1-parametric fam-
ily of singly periodic, properly embedded minimal surfaces, obtained by
desingularization of planes that intersect with an angle 6 € (0, 7).

2. The doubly periodic Scherk minimal surface (third by the left in Fig-
ure 6) is invariant by an infinite group generated by two translations of
linearly independent vectors. Again, the quotient surface has genus zero
and four ends (of Scherk type); viewed in R3, this surface has infinite
genus and one end. It can be considered as the desingularization of two
infinite families of equally spaced vertical half-planes, one family inside
{(z,y,2z) | z > 0} and the other one in {(z,y,z) | z < 0}, in such a
way that half-planes in different families cut at right angles. This surface
also lies in a l-parameter family of properly embedded, doubly periodic
minimal surfaces, each of which desingularizes two infinite families of ver-
tical half-planes in the open upper and lower half-spaces of R3, where the
parameter is the angle 6 € (0, 7) that the half-planes in the two families
form. There is a direct relationship between the Scherk singly and dou-
bly minimal surfaces, which reflects the fact that every harmonic function
admits (locally) a conjugate harmonic function.

3. The triply periodic Schwarz P-surface (Figure 6, right) is invariant by
the group generated by three translations of linearly independent vec-
tors. The quotient surface by this lattice of translations is compact with
genus three, and lives in a three-dimensional cubic torus. Viewed in R3,
this surface has infinite genus and one end. The Schwarz P-surface is
one of the most famous triply periodic minimal surfaces, a class of sur-
faces with multiple applications to crystallography and material science:
the isometry group of each triply periodic minimal surface M C R3 is
a crystallographic group, and the quotient surface M over the lattice
I' of translations of rank 3 that leaves M invariant divides the three-
dimensional torus R3/T" in two regions of equal volume called labyrinths.
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FiGURE 7. From left to right: schematic representations of
a Hauswirth-Pacard minimal surface with genus 1 and of the
example of infinite genus by Traizet, two non-periodic, com-
plete embedded minimal surfaces with infinite topology.

The gyroid (Figure 3, left) is another famous triply periodic minimal sur-
face with compact quotient of genus three. The classification of triply
periodic embedded minimal surfaces with quotient of genus three (the
lowest possible non-trivial value) is another major open problem.

In view of the above examples, we could ask ourselves if the only method
to produce minimal surfaces with infinite topology is by imposing period-
icity. The answer is no, as shown in 2007 by Hauswirth and Pacard, who
used gluing techniques* to merge a Hoffman-Meeks minimal surface (we men-
tioned these surfaces when describing examples in M (g, 3) in Section 3.1)
with two halves of a Riemann minimal surface R. In Figure 7 left we can see
a schematic representation of one of the examples by Hauswirth and Pacard,
when the central surface to be merged is the Costa torus (i.e., g = 1). Also
by gluing techniques, but using Riemann surfaces with nodes, Traizet was
able to prove in 2012 the existence of a complete, non-periodic minimal sur-
face with infinite genus and infinite many ends asymptotic to half-catenoids
(Figure 7 right). In summary, there are lots of examples in the case of
infinite topology.

As for uniqueness results for minimal surfaces of infinite topology, it is
clear in the light of the previous paragraph that we must distinguish in some
way the families that we have found: a reasonable starting point could be
imposing some kind of periodicity. In this line, it is worth mentioning the
following classification results for moduli spaces of periodic minimal surfaces
with prescribed topology:

1. The Riemann minimal examples are the unique properly embedded mini-
mal tori with finitely many planar ends in a quotient of R? by a translation
(Meeks, Pérez and Ros 1998). The number of ends must be even, and
when we fix this number the corresponding moduli space is a non-compact
manifold of dimension 1.

2. The Scherk doubly periodic minimal surfaces are the unique properly
embedded minimal surfaces with genus zero and finitely many ends in a

4 This technique consists of a sophisticated application of the implicit function theorem
to the mean curvature operator defined between certain Banach spaces.
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quotient of R? by two independent translations (Lazard-Holly and Meeks
2001). Again the number of ends is necessarily even and for a fixed
number of ends, the moduli space is diffeomorphic to an open interval.

3. The moduli spaces of properly embedded minimal tori with any fixed
finite number of parallel planar ends in a quotient of R? by two linearly
independent translations were described in 2005 by Pérez, Rodriguez and
Traizet. Each of these moduli spaces (for any fixed even number of ends)
is a non-compact manifold of dimension 3 whose surfaces are called KMR
examples (in honor of Karcher, Meeks, and Rosenberg, who previously
found 1-parameter families of these surfaces in this moduli space).

4. The moduli spaces of properly embedded minimal surfaces with genus
zero and finitely many ends of Scherk type in a quotient of R® by a
translation were classified in 2007 by Pérez and Traizet. In this case,
these moduli spaces are non-compact manifolds of dimension 2k — 3 (here
2k is the number of ends), whose surfaces were discovered by Karcher in
1988 as a generalization of the Scherk simply periodic minimal surfaces.

The four uniqueness results listed above have a common flavor. First,
periodicity is used in a strong way since it allows working in the quotient
of R? by the corresponding group of isometries, and the quotient minimal
surfaces always have finite total curvature in the sense of equation (3.1);
in this setting, one can control the asymptotic geometry and the conformal
representation of the minimal surfaces under study. Second, the desired
uniqueness follows from a continuity argument: one starts by proving that
any surface M in each of these moduli spaces can be deformed within the
moduli space (openness part) until arriving at a point My, in the boundary
of the moduli space, which turns out to be a properly embedded mini-
mal surface with simpler topology or periodicity than those in the original
moduli space (compactness part); this compactness requires a rather com-
plete understanding of the possible limits of sequences of minimal surfaces
in the original moduli space. Once we have arrived at My, the desired
global uniqueness follows from an inverse function theorem argument (local
uniqueness around M) that needs the previous classification of the moduli
space of minimal surfaces which M., belongs to. This last aspect reveals
a stratified structure in the moduli spaces of embedded minimal surfaces
with prescribed topology and periodicity: the boundary of a given moduli
space is the union of other moduli spaces of minimal surfaces with simpler
topology or periodicity. For instance, the description of the moduli space in
item 3 above requires solving the classification problem in item 4.

The strategy sketched in the preceding paragraph fails badly if we seek
classification results for minimal surfaces with infinite topology without im-
posing periodicity, but in this case the Colding-Minicozzi theory is of great
help, as will explain next.
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4. COLDING-MINICOZZI THEORY
Consider the following question:

Problem 4.1. What are the properly embedded minimal surfaces in R3 with
genus zero?

Suppose that M C R? is a surface in the conditions of Problem 4.1. As
explained above, in the case that M has only one end we know that M
is a plane or a helicoid (Meeks and Rosenberg). If M has k ends with
2 < k < oo, then M is a catenoid by the theorems of Collin and Lépez-Ros.
It remains to study the case that M infinitely many ends. If we knew that
such an M were invariant by a translation 7', then it would not be difficult
to check that the quotient surface of M by the cyclic group generated by
T is a torus with finitely many ends, and hence, M is a Riemann minimal
example by the 1998 result of Meeks, Pérez and Ros. Therefore, a way of
solving Problem 4.1 is to prove that if the number of ends of M is infinite,
then M is periodic.

Often we face the problem of understanding the possible limits of a se-
quence of embedded minimal surfaces. As a trivial example, let us think of a
surface M C R3 that is invariant by a translation of vector v € R*—{0}. The
constant sequence {M,, := M — nv = M },cn has as trivial limit M itself.
This naive example suggests a possible way to solve Problem 4.1: suppose
that a properly embedded minimal surface M C R?® with infinitely many
ends is a solution to this problem. As the number of ends of M is infinite,
one can deduce that M has infinite total curvature, whence we can find a
divergent sequence of points p, € M where the unit normal to M takes the
same value. It is reasonable to try to conclude that {M, = M — p,}, has
(at least) a convergent subsequence, as a step to demonstrate the desired
periodicity of M. We have thus transformed Problem 4.1 in another one,
perhaps more ambitious:

Problem 4.2. Under what conditions we can extract a convergent subse-
quence from a given sequence of embedded minimal surfaces?

Suppose that {M,}, is a sequence of embedded minimal surfaces in an
open set A C R3, where we allow compact boundary dM,,. Also assume
that {M,,},, has at least one accumulation point, since we do not want the
M,, to completely escape and have nothing to analyze in the limit. Each
surface M,, can be locally written as the graph of a function u,, defined in
an open subset of the tangent plane of M,, at a given point, and the size
of the domain of u, can be uniformly controlled if we have uniform local
bounds for the Gaussian curvatures (equivalently, for the second fundamen-
tal forms) of the surfaces. If in addition we have uniform local area bounds
for the M,,, then we will control the number of graphs that lie in a given
region of A. Therefore, working in a very small (but uniform) scale, we will
deduce that every surface M, gives rise to a single graphing function u,,.
Thus we have transformed Problem 4.2 about convergence of surfaces into
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another problem, the convergence of graphs. In this setting, the uniform
local curvature bounds for the M, produce equicontinuity of the wu,, and
the fact that we are working locally produces uniform boundedness for the
Uy. Therefore, the Arzeld-Ascoli Theorem insures that a subsequence of the
Uy, converges uniformly to a limit function u, that can be proven to satisfy
the same PDE (2.2) as the u,. A prolongation argument now implies that
a subsequence of {M,}, converges to an embedded minimal surface in A,
and thus our Problem 4.2 is solved in this case.

If we do not have local area bounds for the M, but still assume local uni-
form curvature bounds, a similar reasoning as above leads to the conclusion
that a subsequence of {M,}, converges to a natural generalization of the
notion of minimal surface: a lamination whose leaves are minimal surfaces.
Without going into details, a lamination £ of A is a closed union (in the
induced topology on A) of surfaces embedded in A, called leaves of L, with
a certain local product structure. This means that we can take local coordi-
nates in A that transform the leaves into the product of a two-dimensional
disk with a closed subset of R, that we can think of as the heights of disjoint
copies of that disk placed horizontally (see Figure 8). This local product

FIGURE 8. The open set A is covered by images Ug of lo-
cal charts ¢g, each one transforming a collection of disks at
heights lying in a closed subset Cjp of [0, 1] into portions of
the leaves of L.

structure endows the leaves of £ with the structure of smooth, pairwise
disjoint surfaces. A lamination is said to be minimal if its leaves are all
minimal surfaces. For example, if Z is a non-empty closed subset of R, then
the collection of horizontal planes Lz = {P, = R? x {2z} | 2 € Z} is a
minimal lamination of A = R® whose leaves are the planes P,. In the case
that a lamination £ of A does not leave any empty spaces in A, we call it a
foliation of A (Ly is a foliation of R® when Z = R). The theory of minimal
laminations is a natural extension of the one of minimal surfaces. However,
we still have not provided any examples of a non-trivial minimal lamination
of R? that does not consist of a single embedded minimal surface other than
a collection of planes Lz as above.

Coming back to our Problem 4.2, what can we say about the limit of the
M, if these embedded minimal surfaces do not have uniform local bounds
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FicURE 9. Homothetic images of the same vertical helicoid
H, with ratio A, = 1/2™.

for their second fundamental forms? Here is where the theory of Colding-
Minicozzi comes to our help. Following the previous notation, the lack of
uniform local curvature bounds implies that the Gaussian curvature of the
M, blows up at some point of A, i.e., the following set is non-empty:

(4.1) S= {x € A| sup ’KMnr@(m,r)’ — 00, Vr > O} )

where Ky, denotes the Gaussian curvature of a surface ¥ and B(x,r) is the
closed ball centered at x € R? with radius » > 0. The Colding-Minicozzi
theory describes the limit of (a subsequence of) the M, in the above sce-
nario, under an additional hypothesis: each M, must be topologically a
compact disk that is contained in a ball of radius R,, > 0, say centered at
the origin, with boundary dM,, contained in the boundary sphere of that
ball. The description of this limit is very different depending upon whether
the sequence of radii R,, diverges or stays bounded.

Theorem 4.3 (Colding-Minicozzi). Given n € N, let M, be an embedded
minimal disk in a closed ball B(R,) = B(0, R,) with M, C OB(R,). If
R, — oo and SN B(1) # O, then a subsequence of the M, converges to
a foliation of R by parallel planes, away from a straight line® (called the
singular set of convergence ), along which the curvature of M, blows up when
n — oo.

To understand better the last result, we will use the following example.
Consider the standard vertical helicoid H = {(x,y,z) | zsinz = ycosz}.
Take a sequence of positive numbers A, tending to zero, and consider for
each n € N the homothetic copy M, = A\, H of H by ratio \,, that is
again minimal and simply connected. As n increases, M, can be thought
as a new view of H from a viewpoint that becomes further and further
away, as in Figure 9. The farther away we look at the helicoid H, the

SIn fact, Colding and Minicozzi proved that the singular set of convergence is a Lipschitz
arc transverse to the limit foliation. Using the uniqueness of the helicoid as the only non-
flat surface in Mp(0, 1), Meeks deduced in 2004 that this Lipschitz arc is indeed a line.
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FIGURE 10. A minimal lamination of the punctured unit
ball, with three leaves and a singularity at the origin.

more it looks like a collection of horizontal planes separated by smaller
and smaller distances, and so in the limit we obtain the foliation of R? by
horizontal planes. Observe that each leaf of this limit foliation is flat (its
Gaussian curvature is identically zero) and the Gaussian curvatures of the
M,, converge to zero away from the z-axis. However, since the Gaussian
curvature of H along the z-axis is constant —1, the Gaussian curvature of
M,, along the same axis is —1/A2, which tends to infinity. In other words,
the singular set S defined in (4.1) is the z-axis in this example. Also note
that the limit foliation is perfectly regular along S ; it is only the convergence
of the M, to the limit what fails along S. This limit object limit is known
as a limiting parking garage structure with one column: away from the z-
axis, the structure becomes arbitrarily flat and horizontal (this is where cars
park), and to travel from one parking floor to another one, cars have to go
up the ramp (around the column at the z-axis). Well, Theorem 4.3 tells us
that the general behavior of the limit of the embedded minimal disks M,
when the radii R, tend to infinity is essentially the same as this example.

The description when the radii R,, remain bounded can also be visualized
with an example. In 2003, Colding and Minicozzi produced a sequence of
minimal disks M,, embedded in the closed unit ball B(1) and of helicoidal
appearance, such that the number of turns that the boundary curve OM,
makes around the z-axis tends to infinity as n — oo, and the limit of the M,
is a minimal lamination £ of B(1) — {0} that consists of three leaves: one is
the horizontal punctured unit disk D* = {(z,v,0) | 0 < 22 +4? < 1}, and
the other two are non-proper minimal surfaces L™, L™ that rotate infinitely
many times from above and below D*, accumulating on D* as in Figure 10.
In this case, the Gaussian curvature of the M, blows up at the origin, but
this time 0 is a genuine singularity of the limit lamination £, which does not
admit a smooth extension across 0.



18

JOAQUIN PEREZ

FIGURE 11. Left: schematic representation of an isolated
singularity p of a singular minimal lamination £ obtained as
a limit of embedded minimal disks M,,, with a non-proper
leaf L* at one side of the disk leaf D that passes through
p. Locally around p and outside a solid cone of vertex p and
axis p + (T,D)*, Lt is a multivalued graph. The other side
of D is foliated by leaves of £. The convergence is singular
along a C1! arc T'. Right: at a non-isolated singularity p,
the disk leaf D = D(p) passing through p is also the limit of
the corresponding disk leaves D(py,) associated to isolated
singularities p,, that converge to p.

The theoretical description by Colding and Minicozzi for the limit of a
sequence of compact, embedded minimal disks M, C B(R,) with OM,, C
OB(R,) and bounded radii R, is very technical and we will omit it here.
Instead, we will simply mention that after extracting a subsequence, the

My,

converge to a minimal lamination with singularities. The singularities

of such a limit singular minimal lamination form a closed set, and each
singularity is of one of the following two types:

(a)

Isolated singularities, in which case Figure 10 shows essentially the be-
havior of the limit object: there is a leaf D* of the lamination which
limits to the singularity p (in fact, D* extends smoothly across p to an
embedded minimal disk D), and one or two non-proper leaves, which
rotate infinitely many times and accumulate at D*. Furthermore, por-
tions of the M, outside a solid cone of axis p+ (7,D)* can be written as
multivalued graphs over annular regions of T),D, and as n — oo, these
annular regions converge to a punctured disk, at same time that the
number of turns of the multivalued graphs inside the M,, becomes arbi-
trarily large and the multivalued graphs collapse into D* as in Figure 11
left.

Non-isolated singularities, each of which is the limit of at least one se-
quence of isolated singularities, as in Figure 11 right.
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It should also be noted that in the above description, the set S where the
Gaussian curvatures of the disks M,, blow up consists of not only the singu-
larities of the limit lamination £, but also possibly embedded arcs of class
CY1 around which £ is a local foliation as in Figure 11 left. In particular,
these arcs are not singularities of £ except for their end points, as in the
convergence of the M,, to £ in Theorem 4.3.

The previous description leads us directly to the study of the singularities
of a minimal lamination of an open subset of R3. Does this set have any
reasonable structure? This question is another open central problem in
minimal surface theory. Along this line, it is worth mentioning two recent
results of Meeks, Pérez and Ros (2016):

Theorem 4.4 (Local Removable Singularity Theorem). Let £ C
B(1) — {0} be a minimal lamination. Then L extends to a minimal lam-
ination of B(1) (i.e., the singularity at 0 is removable) if and only if the
Gaussian curvature function Kp of the lamination does not blow up at the
origin faster than the square of the extrinsic distance to 0 , i.e., |Kz|(z)-||z|?
s bounded in L.

It follows from Theorem 4.4 that if the function |K|(z)-||z||? is bounded
in a minimal lamination £ C B(1) — {0}, then |K |(z) - |z||? extends across
the origin with value zero. Another consequence of this theorem is that in
the example of Figure 10, the Gaussian curvature of the disks M,, blows up
faster than the square of the distance to the origin as n — oo.

Another result about singularities of minimal laminations is a global ver-
sion of Theorem 4.4 that classifies the minimal laminations of R3 — {6} with
quadratic decay of curvature:

Theorem 4.5. Let £ C R? — {0} be a non-flat minimal lamination such
that |K|(z)- ||z||? is bounded. Then L extends across the origin to a minimal
lamination of R? that consists of a single leaf M, which is a properly em-
bedded minimal surface with finite total curvature. In particular, | K| decays
much faster than quadratically with the distance to the origin: |K|(z) - ||z||*
is bounded in M.

We have said that in order to apply the theory of Colding-Minicozzi to a
sequence M,, of embedded minimal surfaces, we need to assume that the M,
are compact disks with boundaries in ambient spheres. This condition is not
really a restriction as it can be naturally obtained by a rescaling argument
so that the injectivity radius function of the rescaled minimal surfaces is
uniformly bounded away from zero (Meeks, Pérez and Ros [4]).

5. CLASSIFICATION OF THE PROPERLY EMBEDDED MINIMAL SURFACES IN
R? WITH GENUS ZERO

To finish our brief tour through the current state of the classical minimal
surface theory, we return to Problem 4.1 on the properly embedded minimal
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surfaces M in R? with genus zero. In the first paragraph of Section 4 we
explained that the problem reduces to proving that if M has infinitely many
ends, then M is periodic. This strategy, which uses Colding-Minicozzi theory
as we have mentioned above, was the one used by Meeks, Pérez and Ros [5]
to prove the following result:

Theorem 5.1. Every properly embedded minimal surface M C R3 with
genus zero is either a plane, a helicoid, a catenoid, or one of the Riemann
minimal examples. In particular, M 1is foliated by circles or straight lines in
parallel planes.

A final remark about the proof of Theorem 5.1 is in order. The theory
of Colding and Minicozzi yields only the quasi-periodicity of M (this means
that if {p,}, is a divergent sequence of points in M, then a subsequence of
{M — p,}, converges to a properly embedded minimal surface in R? with
genus zero and infinitely many ends). The key to proving the desired peri-
odicity of M once we know it is quasi-periodic is a fascinating application
of the theory of integrable systems and more precisely of the holomorphic
Korteweg-de Vries equation, a third-order PDE which models mathemati-
cally the behavior of waves on shallow water surfaces.
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