Tema 3. Aplicaciones lineales

 Doble Grado en Ingeniería Informática y Matemáticas – Curso 2012/13

Profesor: Rafael López Camino

- 1. (a) Si $f \in L(V, V')$, B es base de V y f(B) es un conjunto de vectores linealmente independiente, i, f es inyectiva?
 - (b) Si $f \in \text{End}(V)$ con M(f, B, B') = I, jes cierto que f = Id?
 - (c) Si $f \in L(V, V')$, probar que $Ker(f) = an(Im(f^t))$.
 - (d) Si $f: V \to V'$ es un isomorfismo y $\lambda \in \mathbb{R} \{0\}$ λf es un isomorfismo?
 - (e) ¿Es cierto siempre que si $f: V \to V'$ es una aplicación lineal inyectiva y B es base de V, entonces f(B) es base de V'?
 - (f) Sea $f: V \to V'$ una aplicación lineal con dim(V) = dim(V'). Probar que f es inyectiva $\Leftrightarrow f$ es biyectiva.
 - (g) Hallar $\omega \in \mathbb{R}^{3^*}$ tal que $\operatorname{Ker}(\omega) = \{(x, y, z) \in \mathbb{R}^3; x + 2y + 3z = 0\}.$
 - (h) Existen endomorfismos en los que el núcleo y la imagen coinciden.
 - (i) Existen epimorfismos de $\mathcal{M}_2(\mathbb{R})$ en \mathbb{R}^4 cuyo núcleo es $A_2(\mathbb{R})$.
- 2. Decidir cuáles de las siguientes aplicaciones son lineales:
 - (a) f(x, y, z) = x 2z de \mathbb{R}^3 a \mathbb{R} ,
 - (b) f(x, y, z) = xy + yz de \mathbb{R}^3 a \mathbb{R} ,
 - (c) f(x,y) = (y x, x y, y x) de \mathbb{R}^2 a \mathbb{R}^3 ,
 - (d) f(x,y) = (x+y, x+2, x-y) de \mathbb{R}^2 a \mathbb{R}^3 .
- 3. Sea considera la aplicación $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por f(x,y,z) = (x,0,z). Probar que f es lineal y calcular una base su núcleo y de su imagen.
- 4. Sea V un espacio vectorial y sea $g \in \text{End}(V)$ tal que $g \circ g = g$. Demostrar que $V = \text{Ker}(g) \oplus \text{Im}(g)$. En \mathbb{R}^2 y en \mathbb{R}^3 , hallar endomorfismos no triviales satisfaciendo la anterior propiedad.
- 5. Sea $f \in \text{End}(V)$ tal que $f \circ f = 1_V$. Demostrar que f es un automorfismo, y que $V = U \oplus W$, siendo

$$U = \{x \in V ; f(x) = x\}, \quad y \quad W = \{x \in V ; f(x) = -x\}.$$

Particularizar al caso $V = \mathbb{R}^2$ y f(a, b) = (a, -b).

6. Sea f un endomorfismo de un espacio vectorial V. Denotemos por

$$Inv(f) = \{x \in V ; f(x) = x\},\$$

llamado el conjunto de los elementos invariantes por f. Demostrar que Inv(f) es un subespacio vectorial de V.

- 7. Sea V un espacio vectorial que admite un endomorfismo f tal que $f \circ f = -1_V$. Probar que si $v \neq 0$, entonces $\{v, f(v)\}$ es linealmente independiente. Como conclusión, demostrar que la dimensión de V es par.
- 8. Encontrar un automorfismo f de \mathbb{R}^3 de manera que f(U) = U', siendo U y U' los subespacios de \mathbb{R}^3 definidos por

$$U = \{(x, y, 0) ; x, y \in \mathbb{R}\}, U' = \{(0, y, z); y, z \in \mathbb{R}\}.$$

¿Es posible encontrar más de uno en estas condiciones?

9. Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ la aplicación lineal dada por f(x, y, z, t) = (x + z - t, y + t, x + y + z). Hallar la expresión matricial de f respecto de las bases

$$B = \{(-1, 0, 0, 0), (1, -1, 0, 0), (1, 1, -1, 0), (1, 1, 1, -1)\}, B' = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}.$$

Encontrar, si es posible, una base \widetilde{B} de \mathbb{R}^4 y otra \widetilde{B}' de \mathbb{R}^3 de forma que

$$M(f, \widetilde{B}, \widetilde{B}') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Calcular el rango de f. ¿Es f un epimorfismo?

10. Sea $f: V \to V'$ una aplicación lineal de rango m. Probar que existen bases B y B' de V y V' respectivamente, tal que

$$M(f, B, B') = \left(\begin{array}{cc} I_m & 0\\ 0 & 0 \end{array}\right).$$

- 11. Dada $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x,2x+y), probar que f es un isomorfismo y calcular su inversa.
- 12. Probar que si f es un endomorfismo de un espacio vectorial V, entonces $f \circ f = 0$ si y sólo si $\text{Im}(f) \subseteq \text{Ker}(f)$. Hallar un endomorfismo no trivial de \mathbb{R}^2 con la anterior propiedad.

13. Sea la expresión matricial respecto de la base usual de \mathbb{R}^3 de un endomorfismo f dada por

$$\left(\begin{array}{ccc} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{array}\right).$$

Según el parámetro a, estudiar la nulidad y el rango de f.

- 14. Sea V un espacio vectorial y $\mathcal{B} = \{e_1, \ldots, e_n\}$ una base de V. Sea $H = \{v_1, \ldots, v_r\}$, $r \leq n$, un subconjunto de V. Probar que H es linealmente independiente si y sólo si existe un automorfismo f de V tal que $f(e_i) = v_i$, $\forall i = 1, \ldots, r$.
- 15. Sea f es un endomorfismo de V con dim $\mathrm{Ker}(f)=\dim \mathrm{Im}(f)$, probar que la dimensión de V es par. ¿Puede ser f un automorfismo? En \mathbb{R}^2 hallar un endomorfismo con la propiedad anterior. Del mismo modo, hallar un endomorfismo de \mathbb{R}^4 tal que $\mathrm{Ker}(f)=\mathrm{Im}(f)$.
- 16. Hallar el núcleo y la imagen de la aplicación lineal $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$ dada por

$$f(\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)) = (2a, b+c, 2d).$$

Consideramos $\psi(x, y, z) = x - y - 2z$. Si $B'_u^* = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ es la base usual de $\mathcal{M}_2(\mathbb{R})^*$, hallar las coordenadas de $f^t(\psi)$ respecto de B'_u^* .

- 17. Hallar un epimorfismo de \mathbb{R}^4 en \mathbb{R}^3 cuyo núcleo sea $U=\{(x,y,z,t)\in\mathbb{R}^4; x=y=z-t=0\}.$
- 18. Hallar un endomorfismo de \mathbb{R}^3 tal que su núcleo e imagen sean, respectivamente, $U = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$ y $W = \{(x, y, z) \in \mathbb{R}^3; x + y z = 0, x y = 0\}$.
- 19. Hallar una aplicación lineal de $P_2[x]$ en $\mathcal{M}_2(\mathbb{R})$ cuya imagen sea a) $\mathcal{S}_2(\mathbb{R})$; b) $A_2(\mathbb{R})$ y c) $\{A \in \mathcal{M}_2(\mathbb{R}); \operatorname{traza}(A) = 0\}.$
- 20. Sea $U=\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$ y $f:\mathcal{M}_2(\mathbb{R})\to\mathbb{R}^2$ dada por

$$f(A) = (traza(A), traza(AU)).$$

Hallar una base del núcleo y de la imagen.

21. Dado $f \in \text{End}(\mathbb{R}^4)$ por f(x, y, z, t) = (x - y, y + z, x - z, x + y + t), hallar su expresión matricial respecto de $B = \{(1, 0, 0, -1), (0, 1, 0, 1), (0, 0, -1, -1), (1, 1, 1, 0)\}$. Hallar una base del núcleo y de la imagen.

22. Probar que las matrices

$$\left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right), \ \left(\begin{array}{cc} 0 & -1 \\ -1 & 1 \end{array}\right), \left(\begin{array}{cc} 4 & 0 \\ 0 & 1 \end{array}\right) \right\}$$

forma una base de $\mathcal{S}_2(\mathbb{R})$ y respecto de ella, hallar la expresión matricial del endomorfismo

$$f(\left(\begin{array}{cc}a&b\\b&c\end{array}\right))=\left(\begin{array}{cc}a+b&a-c\\a-c&c\end{array}\right)$$

- 23. Sea $f: P_n[X] \to P_n[X]$ la aplicación lineal f(p(X)) = p'(X). Hallar una base del núcleo y de la imagen.
- 24. Hallar la expresión de una aplicación lineal $f: P_2[X] \to \mathbb{R}^3$ tal que $f(1+x+x^2) = (2,0,1), f(1+2x^2) = (3,1,0)$ y $f(x+x^2) = (1,-2,3)$.
- 25. Sean V_1 , V_2 dos espacios vectoriales con bases $B_1 = \{e_1, e_2, e_3\}$ y $B_2 = \{e'_1, e'_2\}$ respectivamente. Se consideran las aplicaciones lineales f y g definidas por

Hallar las siguientes matrices:

- (a) $M(f, B_1, B_2)$, $M(g, B_2, B_1)$,
- (b) $M(q \circ f, B_1), M(f \circ q, B_2).$
- 26. Con la misma notación para espacios vectoriales y bases que en el ejercicio anterior, se considera la la aplicación lineal dada por

$$f(e_1) = e'_1 - e'_2$$
, $f(e_2) = e'_1$, $f(e_3) = 2e'_1 - e'_2$.

Hallar $M(f, B_1, B_2)$ y bases del núcleo e imagen de f.

27. Con la notación del ejercicio anterior, sea

$$M(f, B_1, B_2) = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}.$$

Calcular la matriz de f respecto de las bases $B_1' = \{e_2 + e_3, e_1 + e_3, e_1 + e_2\}, B_2' = \{\frac{1}{2}(e_1' + e_2'), \frac{1}{2}(e_1' - e_2')\}.$

- 28. En \mathbb{R}^3 se consideran los subespacios dados por $U = \{(x, y, z) \in \mathbb{R}^3; x + 2y + z = 0, x 2y z = 0\}$ y W = <(1, 0, 1), (1, 1, 0) >. Encontrar un endomorfismo f de \mathbb{R}^3 tal que $f^{-1}(W) = U$ y dim (Ker(f)) = 2.
- 29. Hallar la expresión matricial respecto de la base usual de \mathbb{R}^3 de un endomorfismo f definido por las siguientes condiciones:
 - (a) La aplicación f, restringida al plano de ecuación x + y + z = 0, es la identidad.
 - (b) f(0,0,-1) = (-1,-2,-1).
- 30. Probar que la aplicación $f: P_2[X] \to \mathcal{M}_2(\mathbb{R})$ dada por

$$f(a_0 + a_1X + a_2X^2) = \begin{pmatrix} a_0 & a_1 \\ a_1 & a_2 \end{pmatrix}$$

es lineal y probar que $\operatorname{Im}(f) = \mathcal{S}_2(\mathbb{R})$. Deducir la nulidad y el rango de f.

31. Hallar bases del núcleo e imagen de la aplicación $f: P_3[X] \to \mathcal{M}_2(\mathbb{R})$ dada por

$$f(a_0 + a_1X + a_2X^2 + a_3X^3) = \begin{pmatrix} a_3 & a_2 - a_0 \\ a_1 - a_2 & 0 \end{pmatrix}.$$

Hallar su expresión matricial respecto de las bases usuales.

- 32. En el espacio vectorial \mathbb{R}^3 se definen los subespacios vectoriales U = <(1,1,1) >y $W = \{(x,y,z) \in \mathbb{R}^3; x+y+z=0\}$. Encontrar un endomorfismo f de \mathbb{R}^3 cuyo núcleo sea U y cuya imagen sea W y hallar su matriz de f respecto de la base usual de \mathbb{R}^3 .
- 33. Demostrar que dos matrices semejantes tienen la misma traza, pero que el recíproco es falso; más aún, que si dos matrices tienen el mismo rango y la misma traza no tienen porqué ser semejantes. A partir de esto, definir la traza de un endomorfismo. Calcular la traza del endomorfismo f de \mathbb{R}^2 dado por f(x,y) = (x+y,x-y).
- 34. Sea P una matriz regular de orden n. Probar que la aplicación de $\mathcal{M}_n(\mathbb{R})$ en sí mismo dada por $A \longmapsto P^{-1}AP$ es un automorfismo de $\mathcal{M}_n(\mathbb{R})$.
- 35. Sea V un espacio vectorial de dimensión 2 y $f \in \text{End}(V)$ tal que $f \circ f = 0$. Demostrar que o bien f = 0, o si $f \neq 0$, es posible encontrar una base B de V tal que

$$M(f,B) = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right).$$

(Indicación: Probar que si $f(x) \neq 0$, entonces $\{f(x), x\}$ es linealmente independiente). A partir de esto, encontrar todas las matrices cuadradas reales A de orden 2, tales que $A^2 = 0$.

- 36. En \mathbb{R}^3 y \mathbb{R}^2 se consideran las bases $B = \{(1,2,1), (0,1,2), (0,0,2)\}$ y $B' = \{(1,2), (0,2)\}$ respectivamente, así como las bases usuales B_u y B'_u . Hallar $M(f,B,B_u), M(f,B_u,B'), M(f,B_u,B')$ donde f es la aplicación lineal f(x,y,z) = (x+2y,z).
- 37. En \mathbb{R}^2 , hallar la base dual de $B = \{(1,1), (2,-1)\}$. Hallar las coordenadas respecto de B^* de $\alpha(x,y) = x + y$.
- 38. En $P_3[X]$ hallar la base dual de $\{1, 1 + X, 1 + X + X^2, 1 + X + X^2 + X^3\}$.
- 39. En $P_2[X]$ se consideran las aplicaciones $B = \{\alpha, \beta, \psi\}$ definidas por $\alpha(p(X)) = p''(1)$, $\beta(p(X)) = p(1)$ y $\psi(p(X)) = p'(0)$. Probar que $B \subset P_2[X]^*$ y es una base de dicho espacio.
- 40. En \mathbb{R}^3 se consideran las formas lineales

$$\psi_1(x, y, z) = 2x - y + 3z,$$

 $\psi_2(x, y, z) = 3x - 3y + z,$
 $\psi_3(x, y, z) = 4x + 7y + z.$

Probar que $B' = \{\psi_1, \psi_2, \psi_3\}$ forman base de \mathbb{R}^{3^*} y calcular las coordenadas respecto de B' de $\varphi(x, y, z) = x + y + z$. Encontrar la base B de \mathbb{R}^3 tal que $B' = B^*$.

- 41. En $P_2[x]$ se consideran las siguientes bases $B = \{1, x, x^2\}$ y $B' = \{1, 1+x, 1+x+x^2\}$. Encontrar las ecuaciones de cambio de base entre B^* y B'^* . Si $\varphi \in P_2[x]^*$ viene dada por $\varphi(p(x)) = p(-1)$, encontrar las coordenadas de φ en la base B'^* .
- 42. Sea $\mathcal{M}_2(\mathbb{R})$ y la forma lineal $\varphi(A) = \operatorname{traza}(A)$. Encontrar una base B' de $\mathcal{M}_2(\mathbb{R})^*$ en la que esté φ . Encontrar también la base B de $\mathcal{M}_2(\mathbb{R})$ tal que $B^* = B'$. Hallar una base de an $(\langle \varphi \rangle)$.
- 43. En $\mathcal{M}_2(\mathbb{R})$ se consideran las formas lineales

$$\varphi_1 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d, \ \varphi_2 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = b - c.$$

- (a) Probar que φ_1 y φ_2 son linealmente independientes.
- (b) Ampliar $\{\varphi_1, \varphi_2\}$ a una base de $\mathcal{M}_2(\mathbb{R})^*$ calcular las coordenadas de $\varphi(A) = a + b + c + d$.
- (c) Calcular una base del subespacio anulador de $\{\varphi_1, \varphi_2\}$.

44. En $\mathcal{M}_{2\times 1}(\mathbb{R})$ se considera la base

$$\left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 2\\3 \end{array}\right) \right\}$$

Obtener la correspondiente base dual.

45. Sea V un espacio vectorial, $B_1 = \{e_1, \ldots, e_n\}$ una base de V y $B_1^* = \{\varphi_1, \ldots, \varphi_n\}$. Dados $\lambda_2, \ldots, \lambda_n \in \mathbb{R}$, se definen los conjuntos $B_2 = \{\overline{e_1}, \ldots, \overline{e_n}\}, B_2' = \{\overline{\varphi_1}, \ldots, \overline{\varphi_n}\},$ donde

$$\overline{e_1} = e_1, \quad \overline{e_i} = e_i - \lambda_i e_1, \quad \forall i = 2, \dots, n,$$

$$\overline{\varphi_1} = \varphi_1 + \sum_{i=2}^n \lambda_j \varphi_j, \quad \overline{\varphi_i} = \varphi_i, \quad \forall i = 2, \dots, n.$$

Probar que B_2 es base de V, B_2' de V^* y que $B_2' = B_2^*$.

46. Calcular una base y ecuaciones cartesianes del anulador del subespacio vectorial U de \mathbb{R}^4 dado por

$$U = \{(x, y, z, t) \in \mathbb{R}^4; x + y - z = 0\}.$$

- 47. Para cada matriz $A \in \mathcal{M}_n(\mathbb{R})$, definimos una aplicación $\varphi_A : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ mediante $\varphi_A(X) = \operatorname{traza}(AX)$. Demostrar que $\varphi_A \in \mathcal{M}_n(\mathbb{R})^*$. Recíprocamente, probar que para cada forma lineal φ sobre $\mathcal{M}_n(\mathbb{R})$ existe una matriz $A \in \mathcal{M}_n(\mathbb{R})$ tal que $\varphi_A = \varphi$.
- 48. Se definen las aplicaciones $\varphi(x,y,z)=2x+y-z$ y $\psi(x,y,z)=x+y+z$. Demostrar que φ y ψ son formas lineales sobre \mathbb{R}^3 y que son linealmente independientes. Encontrar una tercera forma lineal $\alpha \in \mathbb{R}^{3^*}$ de modo que $\{\varphi,\psi,\alpha\}$ sea una base de \mathbb{R}^{3^*} . Encontrar también una base de \mathbb{R}^3 cuya base dual sea $\{\varphi,\psi,\alpha\}$.
- 49. Sea V un espacio vectorial y sean $y \in V$, $\varphi \in V^*$. Definimos un endomorfismo f de V mediante $f(x) = \varphi(x)y$, $x \in V$. Demostrar que la traza de f es $\varphi(y)$.
- 50. Se considera la aplicación lineal de \mathbb{R}^3 en \mathbb{R}^2 mediante f(x,y,z)=(x+y,y+z). Calcular una base de an(Ker(f)). Calcular la matriz de la aplicación traspuesta de f respecto de las bases usuales de \mathbb{R}^3 y \mathbb{R}^2 .
- 51. En $P_2[X]$ y $P_2[X]^*$ sean las bases $B = \{1, x, x^2\}$ y $B^* = \{\varphi_1, \varphi_2, \varphi_3\}$. Se definen las siguientes aplicaciones de V en \mathbb{R} :

(a)
$$\psi_1(p(x)) = \int_0^1 p(x)dx$$
, $\psi_2(p(x)) = p'(1)$, $\psi_3(p(x)) = p(0)$,

(b)
$$\alpha_1(p(x)) = \int_0^1 p(x)dx$$
, $\alpha_2(p(x)) = \int_0^1 xp(x)dx$, $\alpha_3(p(x)) = \int_0^1 x^2p(x)dx$.

Demostrar que tanto $\{\psi_1, \psi_2, \psi_3\}$ como $\{\alpha_1, \alpha_2, \alpha_3\}$ son bases de V^* . Calcular las coordenadas de los elementos de tales bases en B^* y hallar las bases de V de las cuales son bases duales.

- 52. Sean V y V' dos espacios vectoriales, $f \in L(V, V')$ y $\varphi \in V^*$. Probar que existe $\varphi' \in V'^*$ tal que $\varphi' \circ f = \varphi$ si y sólo si $\operatorname{Ker}(f) \subset \operatorname{Ker}(\varphi)$.
- 53. Se considera el espacio vectorial $V = P_n[X]$. Probar que para cada forma lineal $\varphi \in V^*$, existe un único polinomio $q(x) \in V$ tal que

$$\varphi(p(x)) = \int_0^1 p(x)q(x)dx, \quad \forall p(x) \in V.$$

54. Sea $f \in \text{End}(V)$ con $f \circ f = f$. Probar que f^t satisface $f^t \circ f^t = f^t$ y que

$$V^* = \operatorname{an}(\operatorname{Ker}(f)) \oplus \operatorname{an}(\operatorname{Im}(f)).$$

- 55. Se considera la aplicación lineal $f: \mathbb{R}^2 \to \mathbb{R}^3$ dado por f(x,y) = (x,y,x+y). Hallar $M(f^t, B'^*, B^*)$ donde $B = \{(1,1), (1,0)\}$ y $B' = \{(1,0,1), (0,1,1), (1,1,0)\}$.
- 56. Hallar un subespacio vectorial de \mathbb{R}^4 cuyo anulador es $\langle \psi_1, \psi_2 \rangle$ con $\psi_1(x, y, z, t) = x y$ y $\psi_2(x, y, z, t) = z t$.
- 57. Si $B = \{e_1, e_2, e_3\}$ es una base de un espacio vectorial V, calcular las coordenadas respecto de B^* de la forma linea α dada por

$$\alpha(e_1 - e_2) = 1$$
, $\alpha(e_1 + e_2) = 0$, $\alpha(e_1 + e_2 + e_3) = 2$.

- 58. Hallar una base y ecuaciones cartesianas del anulador del subespacio de \mathbb{R}^3 dado por $U = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}.$
- 59. Hallar una base y ecuaciones cartesianas del anulador del subespacio de \mathbb{R}^4 dado por $U = \{(x, y, z, t) \in \mathbb{R}^4; x + y + z = 0, x + y t = 0\}.$
- 60. Hallar un endomorfismo g de $(\mathbb{R}^4)^*$ tal que $\operatorname{Ker}(g) = \operatorname{Im}(g) = \operatorname{an}(U)$, donde $U\{(x,y,z,t) \in \mathbb{R}^4; x-y=0, z-t=0\}$. Hallar $f \in \operatorname{End}(\mathbb{R}^4)$ tal que $f^t=g$.

- 61. Se considera $\alpha(x,y,z)=x-y+z$. Hallar el subespacio $U\subset\mathbb{R}^3$ tal que an $(U)=<\alpha>$.
- 62. En $\mathcal{M}_2(\mathbb{R})$ se consideran las formas lineas $\alpha(A) = \operatorname{traza}(A)$ y $\beta(A) = a_{11} + a_{12}$. Hallar una base de an $(\langle \alpha, \beta \rangle)$.