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THE PERIODIC ISOPERIMETRIC PROBLEM

LAURENT HAUSWIRTH, JOAQUÍN PÉREZ, PASCAL ROMON, AND ANTONIO ROS

Abstract. Given a discrete group G of isometries of R3, we study the G-
isoperimetric problem, which consists of minimizing area (modulo G) among
surfaces in R3 which enclose a G-invariant region with a prescribed volume
fraction. If G is a line group, we prove that solutions are either families of
round spheres or right cylinders. In the doubly periodic case we prove that for
most rank two lattices, solutions must be spheres, cylinders or planes. For the
remaining rank two lattices we show, among other results, an isoperimetric
inequality in terms of the topology of the isoperimetric surfaces. Finally, we
study the case where G = Pm3m (the group of symmetries of the integer
rank three lattice Z3) and other crystallographic groups of cubic type. We
prove that isoperimetric solutions must be spheres if the prescribed volume
fraction is less than 1/6, and we give an isoperimetric inequality for G-invariant
regions that, for instance, implies that the area (modulo Z3) of a surface
dividing the three space in two G-invariant regions with equal volume fractions,
is at least 2.19 (the conjectured solution is the classical P Schwarz triply
periodic minimal surface whose area is ∼ 2.34). Another consequence of this
isoperimetric inequality is that Pm3m-symmetric surfaces (other than families
of spheres) cannot be isoperimetric for the lattice group Z3.

1. Introduction

The periodic isoperimetric problem is one of the nicest open questions in classi-
cal differential geometry: given a discrete group G of isometries of the Euclidean
three space, it consists of describing, among G-invariant regions Ω in R3 with pre-
scribed volume (modulo G), those whose boundary has least area (modulo G). The
periodic isoperimetric problem is also the simplest mathematical model to explain
certain shapes appearing in a number of nanostructured interface phenomena in
materials science, where spherical, cylindrical and lamellar configurations alternate
with more sophisticated bicontinuous ones. In these last cases, interfaces are small
perturbations of triply periodic constant mean curvature Gyroids (G = I4132),
Primitive (G = Pm3m) or Diamond (G = Fd3m) Schwarz surfaces and other
conjectural candidates to solving the G-periodic isoperimetric problem for various
crystallographic groups G; see for instance [8], [37], [39] and, in particular, Hyde
[20]. Despite its great interest, both in geometry and crystalline surface science,
the problem remains mostly unsolved.
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If G is a point group (i.e. G is finite), then, as balls solve the (usual) Euclidean
isoperimetric problem, the solutions of the G-isoperimetric problem are balls cen-
tered at the fixed points of G. If G is a line group (i.e. if the orbits of G consist of
infinitely many points lying in a solid cylinder), then it can be showed (see Theorem
6) that any G-isoperimetric region is a G-invariant family of either balls or solid
cylinders. Thus, in the nonperiodic and the singly periodic cases the problem is
well understood. Outside of these two cases we have only partial results, even when
G is a lattice.

If G is neither a point group nor a line group, then the subgroup of translations
Γ = Γ(G) of G is a lattice of rank two or three and G/Γ is a finite group. These
options correspond to the doubly periodic and triply periodic cases. In the first one,
G is a (3-dimensional) plane group and the quotient space R3/Γ is the product
T 2 × R of a flat 2-torus with the real line. If rank (Γ) = 3, then G is a space group
and the action of G can be described in terms of the finite group G/Γ acting on
the flat 3-torus T 3 = R3/Γ. Hence, in all the cases, the G-isoperimetric problem
in R3, G being a discrete group, is equivalent to the G′-isoperimetric problem on a
complete orientable flat three manifold M for a finite group G′. In most parts of
this paper it will be more convenient to formulate our problem in this alternative
way.

In sections 2 and 3 we review several results on the usual isoperimetric problem
on 3-manifolds which can be adapted to the G-invariant context. In particular, we
give a complete solution for singly periodic regions.

In section 4 we study the case M = T (α, β)×R, where T (α, β) is the flat 2-torus
whose lattice is generated by (1, 0) and (α, β), with α2 + β2 ≥ 1 and 0 ≤ α ≤ 1

2
(any flat 2-torus is homothetic to just one of these tori). We prove in Theorem 13
that, given a finite group G ⊂ Sym(M), the area A and the enclosed volume
V of a G-isoperimetric surface of Euler characteristic χ < 0 verify the inequality
9A3 > 64π|χ|V 2. If G = {1}, the natural conjecture says that any isoperimetric
surface is either a sphere, a cylinder or a pair of parallel planar tori. We prove this
conjecture for β ≥ 9π

16 ' 1.767 and we show that spheres are isoperimetric (in their
admissible range) for any (α, β), outside a small neighborhood of (1/2,

√
3/2) (which

corresponds to the hexagonal 2-torus). It is worth noting that for the hexagonal
2-torus, the conjecture is very close to failing: we have constructed alternative
candidates (which approximate constant mean curvature surfaces of genus two)
whose area is bigger than the area of the best among spheres, cylinders and planes
enclosing the same volume only by a factor less than 1.0003.

The triply periodic case is the subject of section 5. We focus on the cubic
torus T 3 = R3/Z3. In this space we give an isoperimetric inequality for G-invariant
regions, G being a group with a fixed point and containing the diagonal rotations
of angle 2π/3 (a typical example is the group G = Pm3m). In particular we prove
that any surface dividing T 3 in two G-invariant regions of the same volume has area
larger than or equal to 2.19. The conjectured minimizing surface for this problem is
the classical Primitive Schwarz minimal surface whose area is approximately 2.34;
see Figure 1. We also show that for volumes between 0 and 1/6, the unique G-
isoperimetric surfaces are round spheres. If we forget the symmetry assumption,
then the solution, in the equal volumes case, is known to be a pair a planar tori with
total area 2; see [6], [15], [34]. Although for other prescribed volumes the problem
remains open (it is conjectured that any isoperimetric surface in T 3 is either a
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Figure 1. P Schwarz minimal surface is conjectured to have least
area among surfaces dividing the 3-space into two Pm3m-invariant
regions with equal volume fractions.

sphere or a cylinder or a pair of planar tori), we prove that the only isoperimetric
regions in T 3 which are invariant under the group G are round balls. This excludes
a very natural family of alternative candidates of Schwarz type and should be useful
to solve the isoperimetric problem in the cubic 3-torus.

The authors would like to thank Brian White for providing a proof of Theorem 3.

2. Isoperimetry and symmetries in flat three manifolds

Among the global properties of constant mean curvature surfaces in Euclidean
geometry, we will need the following ones.

Theorem 1. Let Σ be a connected properly embedded surface with constant mean
curvature in R3.

• (Alexandrov [2]) If Σ is compact, then it must be a round sphere.
• (Korevaar, Kusner & Solomon [21]) If Σ lies inside a cylinder, then it must

be either a cylinder or a Delaunay unduloid.
• (Meeks [27], [21]) If Σ is a topological plane (resp. annulus), then it is a

plane (resp. a cylinder or a Delaunay unduloid).

In particular, we have that a compact surface of genus 1 embedded with constant
mean curvature in a complete flat three-manifold is either planar or a flat cylinder
or an unduloid. The above theorem is proved by using the Alexandrov moving
plane technique. With the same idea we obtain the following standard properties
of doubly periodic constant mean curvature surfaces; see for instance [33]. For
convenience we state the result in the quotient space, i.e. the product of a flat
2-torus and a real line.

Proposition 2. If Σ is a compact connected constant mean curvature surface em-
bedded in T 2×R with genus g ≥ 2, then Σ is symmetric with respect to a horizontal
torus {z = a} and Σ+ = Σ ∩ {z > a} is a graph over a domain D ⊂ T , where
T −D consists of g− 1 closed pairwise disjoint topological disks. In particular, two
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surfaces of this type with the same symmetry torus (but not necessarily with the
same mean curvature) must intersect.

Given a three-dimensional Riemannian manifold M3 and a finite group of sym-
metries G ⊂ Sym(M), we can consider the isoperimetric problem for G-invariant
regions (or simply G-isoperimetric problem): among G-invariant regions with pre-
scribed volume in M , find those whose boundary has least area. This extends the
usual isoperimetric problem (which corresponds to the case G = {1}). In this paper
we will study the situation where G is a finite group of symmetries of a complete
orientable flat 3-manifold M (for details about these groups see for instance [16],
[22]).

The fundamental existence and regularity properties (see Almgren [4], Gonzalez,
Massari and Tamanini [11] and Morgan [28]) work in our setting and we can state
the following result.

Theorem 3. Let G ⊂ Sym(M) be a finite group of isometries of a compact 3-
manifold M . Then for any 0 < v < V (M) there exists a region Ω ⊂ M such
that

1. g(Ω) = Ω for any g ∈ G and V (Ω) = v,
2. Σ = ∂Ω minimizes the area among boundaries of all regions satisfying 1.

Any region Ω satisfying 1 and 2 is compact and has smooth boundary Σ with con-
stant mean curvature.

If M is noncompact, then the assertions above still hold, provided M/Sym(M)
is compact.

Proof. We sketch a proof due to Brian White. Given x ∈ M , we denote by Gx
the group of orthogonal tranformations in R3 (viewed as the tangent space of M
at x) obtained by linearizing the stabilizer group {g ∈ G | g(x) = x} of x. The
existence of Ω and regularity of Σ outside X = {x ∈ Σ : Gx 6= {1}} hold by the
same arguments used in the usual isoperimetric problem; see [28].

To prove that regularity does hold everywhere consider a point x ∈ X (note
that X consists of a finite union of points, curves and surfaces). Observe that the
Monotonicity Theorem and existence of tangent cone holds at x. Indeed, using
geodesic normal coordinates at x, we see that the radial deformations one uses to
prove monotonicity preserve the right symmetries.

The tangent cone C at x is a cone in R3 with vertex at the origin that sepa-
rates the space in two Gx-invariant (not necessarily connected) regions Ωi, i = 1, 2.
MoreoverC is area-minimizing among surfaces that separate R3 in two Gx-invariant
regions. The cone is a finite union of planar pieces which meet along some half-lines
R leaving the origin. If y 6= 0 lies in one of these rays, y ∈ R, then after interchang-
ing Ω1 and Ω2 if necessary, we have that, for ε small enough, each component W of
Bε(y) ∩Ω1 is a wedge with interior angle smaller than π. Clearly, the union of the
two half discs in ∂W can be substituted by a surface in W with the same boundary
curve and less area. By repeating this construction at all the points of the Gx-orbit
of y we obtain a new surface C′ which contradicts the least area property of C.

Therefore the tangent cone C is a plane, which implies that Gx is either a cyclic
or dihedral group which fixes all the points in a geodesic L passing trough x and
is orthogonal to C (if Gx is not of this type, we get that x /∈ Σ). Then Allard’s
regularity theorem [3] says that the surface Σ is smooth at x. More precisely, we
do not know a priori that we can apply Allard regularity at the point x, but we can
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apply it in all small balls near x that do not intersect X . This shows that, near x,
the surface is smooth (which we already knew) and the tangent planes are nearly
perpendicular to L. This means the surface is C1 (or even C1,α) at x and standard
removal of singularities theorems in PDE now gives higher regularity around that
point. �

A region Ω satisfying items 1 and 2 in the theorem above will be called a G-
isoperimetric region and its boundary Σ a G-isoperimetric surface.

If G is a finite group and Ω is a G-isoperimetric region in a complete orientable
flat manifold M , then its boundary Σ must be a closed (not necessarily connected)
orientable surface with constant mean curvature H . Consider on Σ the quadratic
form coming from the second variation formula for the area,

(1) Q(u, u) =
∫

Σ

(
|∇u|2 − |σ|2u2

)
dA,

where u lies in the Sobolev space H1(Σ) and σ is the second fundamental form of
the immersion. As Σ minimizes the area up to second order under symmetry and
volume constraints, we have the following useful stability property.

Proposition 4 ([5]). Q(u, u) ≥ 0 for any G-invariant function u ∈ H1(Σ) such
that

∫
Σ u dA = 0.

The function u corresponds to an infinitesimal G-invariant normal deformation
of the surface, and the zero mean value condition means that the deformation
preserves the volume infinitesimally. The Jacobi operator L = ∆ + |σ|2 is related
to Q by the formula Q(u, v) = −

∫
Σ
uLv dA.

Some of the known properties of the standard isoperimetric problem in 3-mani-
folds can be adapted to the G-invariant setting. In particular we have the following
result.

Theorem 5. Let M be a complete orientable flat 3-manifold, G a finite group
of symmetries of M and Ω ⊂ M a G-isoperimetric region bounded by a closed
surface Σ = ∂Ω. Then, either Σ is planar (but not necessarily connected) or Σ/G
is connected (in particular, the components of Σ are all congruent).

If the connected components of Σ have genus g = 0, then they are round spheres.
If the connected components of Σ have genus g = 1, then they must be flat.

In particular, they are tori obtained as a quotient of either a plane or a circular
cylinder.

Proof. If Σ/G is not connected, then there are on Σ nonzero locally constant G-
invariant functions with zero mean value, and the stability condition in Proposition
4 implies that Σ is totally geodesic.

If the components of Σ are topological spheres, then we can lift them to R3 and
using Theorem 1 we conclude that Σ is a G-invariant family of round spheres.

If the components of Σ are nonflat tori, then Ritoré and Ros [32] find a contra-
diction for the case G = {1}: they give a function u with mean value zero and such
that Q(u, u) < 0. In the symmetric setting the function u has the required extra
symmetries, and so the same argument works. �

As a direct extension of Theorem 9 of Ritoré and Ros [32], using the result above
we can completely describe the solutions of the symmetric isoperimetric problem
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in the singly periodic case. If G is a line group (i.e. the orbits of G in R3 consist
of infinitely many points lying in a solid cylinder), then there is an infinite cyclic
normal subgroup C ⊂ G (the generator of C is either a translation or a screw
motion) such that G/C is a finite group of isometries of the flat manifold R3/C.

Theorem 6. If G is a line group, then the solutions of the G-isoperimetric problem
are spheres (if the prescribed volume V in R3/G is smaller than or equal to a
constant V0 = V0(G)) and cylinders (if V ≥ V0).

Proof. Let Σ ⊂ R3 be a G-isoperimetric surface. As the planar case is clearly
impossible, from Theorem 5 we have that Σ/G must be compact and connected.
In particular the connected components of the pullback image of Σ are properly
embedded constant mean curvature surfaces in R3 which lie inside a cylinder. So
these components are either spheres, unduloids or cylinders by Theorem 1. From the
proof of Theorem 5, we know that unduloids are G-unstable. Finally observe that a
unique cylinder around a closed fixed line of G is always better for the isoperimetric
problem than several cylinders parallel to that line. Thus G-isoperimetric surfaces
are either a G-invariant family of spheres or circular cylinders, and the theorem
follows easily. �

If the group G does not contain orientation reversing symmetries, we have the
following interesting restrictions.

Theorem 7. Let M be a complete orientable flat 3-manifold, G a finite group
of orientation preserving symmetries of M , and Ω ⊂ M a G-isoperimetric region
bounded by a closed surface Σ = ∂Ω with constant mean curvature H. Then either
Σ is a union of parallel planar 2-tori or Σ/G is a connected Riemann surface of
genus g ≤ 4 satisfying the following restrictions:

1. If g = 4, then Σ is a minimal surface.
2. If g = 2 or 3, then A(Σ)H2 ≤ 2π|G|, where |G| denotes the order of G.

The proof depends on an argument first used by Hersch [17] and Yang and
Yau [40]; see [31, 41] and [34]. One can consider a nonconstant meromorphic map
φ : Σ/G → S2 of degree as small as possible. It can be shown that, after compo-
sition with a suitable conformal transformation of the 2-sphere, the (G-invariant)

coordinate functions of the map Σ → Σ/G
φ→ S2(1) ⊂ R3 are L2-orthogonal to 1.

Then, one concludes the proof of the theorem by using these coordinate functions
as test functions in the stability quadratic form (1).

Finally we want to mention some interesting facts (even though we will not use
them in this paper). Ross [35] has proved that the Primitive (resp. Diamond)
Schwarz minimal surface of genus three is stable for the isoperimetric problem (i.e.
its area is a local minimum among surfaces which enclose a fixed volume) in the
primitive (resp. face-centered) cubic 3-torus.

If Γ is a lattice generated by two or three orthogonal vectors, then any isoperi-
metric surface in M = R3/Γ admits three pairwise orthogonal mirror symmetries;
see [18], [30].

Recently, the double bubble problem in flat 2-tori have been solved; see [10]. For
some partial results in the 3-dimensional case see [9].
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3. The isoperimetric profile

The goal of this section is to study a certain differential inequality satisfied by
the isoperimetric profile of a complete orientable flat manifold M with a given finite
symmetry group G.

The isoperimetric profile IG = IM,G : (0, V (M))→ R is defined as

IG(v) = inf {A(∂Ω) : Ω ⊂M is a G-invariant region with V (Ω) = v}.

In the case G = {1} we will denote the profile simply by I = IM . If the volume
of M is finite, then the complementary region of a G-isoperimetric region is a
G-isoperimetric region too, and so we have IG(V (M)− v) = IG(v), for any v.

If Ω is a region in M bounded by a compact surface Σ, then we denote by Ωt
and Σt = ∂Ωt the parallel deformation of Σ and Ω, |t| < ε, defined by Ω0 = Ω,
Ωt = {p ∈M | distM (p,Ω) ≤ t} for t > 0 and Ωt = {p ∈ Ω | distM (p,Σ) ≥ |t|} if t <
0. Note that the regions Ωt are G-invariant. Then with the notation A(t) = A(Σt)
and V (t) = V (Ωt) we have the well-known formulas

(2)

{
V (t) = v + tA(Σ) + t2HA(Σ) + 2π

3 χ(Σ)t3,
A(t) = A(Σ) + 2tHA(Σ) + 2πχ(Σ)t2,

where χ(Σ) = 1
2π

∫
KdA is the Euler characteristic of Σ. Note that (2) implies

V (t) = V (t0) +
∫ t
t0
A(s)ds.

Consider the following family of ordinary differential equations, parametrized by
a constant χ:

(?) I2I ′′ + I(I ′)2 − 4πχ = 0.

Let us look for solutions I(v) of (?) by making a change of variable v = v(t) with
the hypothesis I(v) = dv/dt. Such an assumption leads to a much simplified ODE:
d3v/dt3 = 4πχ. Clearly we deduce that positive solutions of (?) are given by the
graph of the curves γ(t) = (v(t), I(v(t))), with I(v(t)) ≥ 0 and

(3)

{
v(t) = V0 +A0t+H0A0t

2 + 2πχ
3 t3,

I(v(t)) = A0 + 2H0A0t+ 2πχt2,

where V0, A0 and H0 are real parameters. These expressions coincide with the
ones in formula (2). Note that 2H0 = dI/dv at t = 0 gives the initial slope of the
solution.

In the case χ < 0, it follows from (3) that for V0, A0 > 0 the function I(v)
is a concave function which meets the v-axis orthogonally and has just a single
maximum. Moreover I is symmetric with respect to the vertical line through the
maximum; see Figure 2.

Recall that given an ODE of the form F (u′′, u′, u) = 0, with ∂F/∂u′′ > 0, and
a continuous function w(t) defined in an open interval, we say that w satisfies the
differential inequality F (w′′, w′, w) ≤ 0 (in the weak sense) at t = t0 if there is
a solution u(t) of the ODE defined for |t − t0| < ε, such that w(t0) = u(t0) and
w(t) ≤ u(t). We will say that v 7→ J(v), a < v < b, is a supersolution of (?) if it is
continuous and satisfies J2J ′′+ J(J ′)2− 4πχ ≤ 0 (in the weak sense) at each value
of v. Note that if I is a solution of (?) with constant χ′, then I is a supersolution
of (?) for any constant χ ≥ χ′. Several times throughout this paper we will use the
following versions of the maximum principle.
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Figure 2. Positive solutions of (?) for different values of the pa-
rameter χ.

Lemma 8. Let I : [v1, v2] → R be a positive solution of (?) with constant χ and
J : [v1, v2] → R a positive continuous function which is a supersolution of (?) in
]v1, v2[ with constant χ′. Assume χ′ ≤ min {0, χ}.

i) If I−J has a nonnegative maximum at the interior of the interval, then I = J
in the whole interval. In particular, if I−J is positive and monotonically increasing
near v1, then the same holds in [v1, v2].

ii) If I and J coincide at the values v1 and v2, then either I < J on open interval
(v1, v2) or both functions coincide in that interval.

iii) If J ≥ I in [v1, v2] and I(v0) = J(v0), for some v0 with v1 < v0 < v2, then
I = J in [v1, v2].

iv) If I(v1) = J(v1) and J ′+(v1) = lim supv→v+
1

(J(v)−J(v1))/(v− v1) is smaller
than or equal to I ′(v1), then I ≥ J . Moreover I(v0) = J(v0) at some interior value
v0, implies that I = J in [v1, v0].

Proof. To prove i), suppose that I − J attains its maximum at the interior point
v and (I − J)(v) ≥ 0. We can also assume that J is not only a supersolution
but a solution of (?) with constant χ′. Hence, J(v) ≤ I(v), J ′(v) = I ′(v) and
J ′′(v) ≥ I ′′(v). If χ > χ′, then using (?) we obtain

J ′′(v) +
(J ′)2(v)
J(v)

=
4πχ′

J(v)2
<

4πχ
I(v)2

= I ′′(v) +
(I ′)2(v)
I(v)

≤ J ′′(v) +
(J ′)2(v)
J(v)

and this contradiction proves the claim. The same argument works in the case
χ = χ′ < 0 and J(v) < I(v). If χ = χ′ and J(v) = I(v), the result follows from
the uniqueness of solutions of (?) with given initial data. Finally, if χ = χ′ = 0 the
property can be checked directly (note in this case that I and J are functions of
the type v 7→

√
av + b).

Items ii) and iii) follow directly from the first one.
To prove iv) choose another solution I+ of (?) with constant χ, starting at the

same point (v1, I(v1)) as I and with a slightly greater slope, so that for v close to
and greater than v1, I+ lies strictly above J . Item i) says that I+ − J does not
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admit an interior positive local maximum and, therefore, it must be monotonically
increasing, first near v1 and then in the whole (v1, v2]. As I+ can be take abitrarily
close to I, we have that I ≥ J in [v1, v2] and (I−J)(v) ≤ (I−J)(w) for v < w. �

Theorem 9. Let Ω be a G-isoperimetric region with V (Ω) = v in a complete flat
3-manifold M and denote by H the mean curvature of Σ = ∂Ω (with respect to the
inwards pointing unit normal vector field).

a) The isoperimetric profile IG is continuous, has left and right derivatives
I ′G+(v) and I ′G−(v), for any 0 < v < V (M), and

(4) I ′G+(v) ≤ 2H ≤ I ′G−(v).

Moreover there are G-isoperimetric regions Ω+ and Ω− whose mean curvatures are
given by I ′G+(v)/2 and I ′G−(v)/2, respectively. In particular, IG is differentiable at
v provided that there exists a unique isoperimetric surface enclosing a volume v.

b) For 0 < v < V (M), IG satisfies (in the weak sense) the differential inequality

(5) I2
GI
′′
G + IG(I ′G)2 − 4πχ(Σ) ≤ 0,

where χ(Σ) is the Euler characteristic of Σ (in particular, IG is concave). If IG is
twice differentiable in a neighborhood (v1, v2) of v, then I2

GI
′′
G+IG(I ′G)2−4πχ(Σ) = 0

in (v1, v2) if and only if any isoperimetric surface enclosing a volume between v1

and v2 is spherical, cylindrical or planar (this holds, in particular, for Σ itself).
c) Let k be the minimum number of points in the orbits of G. Then, for small v,

any G-isoperimetric region of volume v is a G-invariant family of k metric balls.
In particular

(6) IG(v) = (36kπv2)1/3, for v close to 0.

Proof. The first part of a) is proved as in the nonsymmetric case; see [7]. The exis-
tence of the regions Ω± and the statement c) follow from compactness arguments;
see Theorem 2.2 in Morgan and Johnson [29] and Theorem 18 and Proposition 5
in [34].

The differential inequality (5) is a restatement (working only in the three-dimen-
sional case) of a result of Bavard and Pansu [7]. To prove it, we consider the parallel
deformation Σt of Σ. Using (2) we have that V ′(t) = A(t) and writing area in terms
of volume we get

dA

dV
=
A′(t)
V ′(t)

=
A′(t)
A(t)

and
d2A

dV 2
=
A′′(t)A(t) −A′(t)2

A(t)3
.

Therefore

A2 d
2A

dV 2
+A

(
dA

dV

)2

= A′′(t) = 4πχ(Σ).

Moreover IG(v) = A(v) and, by the minimizing property of the profile, IG(V ) ≤
A(V ) for V near v which proves (5).

The concavity of the profile is clear at the points v where χ(Σ) ≤ 0. At the
points where χ(Σ) > 0, Theorem 5 says that isoperimetric surfaces are spheres and
the concavity can be checked directly.

To prove the remaining part of b), suppose that

(7) I2
GI
′′
G + IG(I ′G)2 − 4πχ(Σ) = 0 in (v1, v2).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Observe that both functions IG(V ) and A(V ) are solutions of (7) with IG(v) = A(v)
and I ′G(v) = A′(v). Therefore, IG and A coincide in a neighborhood of v. Thus the
parallel surfaces Σt to Σ are isoperimetric surfaces, and so they all have constant
mean curvature, which is only possible when Σ is spherical, cylindrical or planar. In
particular, χ(Σ) ≥ 0. Now consider an isoperimetric surface Σ′ enclosing a volume
V ∈ (v1, v2). Then, we have

4πχ(Σ′) ≥ I2
G(V )I ′′G(V ) + IG(V )(I ′G(V ))2 = 4πχ(Σ) ≥ 0.

Therefore the connected components of Σ′ have genus 0 or 1 and we conclude by
using Theorem 5 that these components are spherical, cylindrical or planar.

Finally, since parallel deformation takes spheres to spheres, equality (7) holds in
(v1, v2) whenever spheres are isoperimetric in this range. The same holds cylinders
and planes, and we have proved b). �

A closed constant mean curvature G-invariant surface Σ enclosing a domain in
M is said to be G-stable if the quadratic form (1) verifies Q(u, u) ≥ 0 for any
G-invariant function u with

∫
Σ
u dA = 0. To finish this section, we will prove that

the differential inequality (5) holds for 1-parameter families of G-stable surfaces.

Proposition 10. Let M be a complete orientable flat 3-manifold, G ⊂ Sym(M) a
finite group and {Σv | v1 < v < v2} a smooth family of G-stable surfaces in M , such
that the volume enclosed by Σv is equal to v. Then, the area function A(v) = A(Σv)
satisfies the differential inequality

A2A′′ +A(A′)2 − 4πχ ≤ 0,

where χ is the Euler characteristic of Σv (which does not depend on v).

Proof. For fixed volume v, denote by Σ = Σv, u : Σv → R the infinitesimal normal
variation of the family at Σ, and L the Jacobi operator of Σ. Standard variation
formulae for the volume, area and mean curvature H give

∫
Σ u = −1, A′(v) =

−2H
∫

Σ
u = 2H and A′′(v) = 2H ′(v) = Lu.

Now define a = −1/A. As Σ is G-stable and u−a is a G-invariant function with
zero mean value, we have

0 ≤ Q(u− a, u− a) = Q(u, u)− 2Q(u, a) +Q(a, a)

= −
∫

Σ

uLu+ 2a
∫

Σ

Lu− a2

∫
Σ

|σ|2 =
(
−
∫

Σ

u+ 2aA
)
A′′ − 1

A2

∫
Σ

(4H2 − 2K)

= −A′′ − (A′)2

A
+

4πχ
A2

,

where K denotes the Gauss curvature of Σ and we have used the Gauss-Bonnet
Theorem. �

4. The doubly periodic case

Any flat 2-torus T 2 is homothetic to a torus T (α, β) = R2/Γ(α, β) defined by
the lattice Γ(α, β) spanned by the vectors (1, 0) and (α, β), with α2 + β2 ≥ 1,
0 ≤ α ≤ 1/2 and 0 < β. The area of T (α, β) and the length of its shortest closed
geodesic are given by β and 1, respectively. In particular

(8) A(T (α, β)) ≥
√

3
2
,
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with equality for the hexagonal torus, i.e. the quotient of R2 over the hexagonal
lattice generated by two unit vectors forming an angle of π/3.

The conjectured candidates for isoperimetric surfaces in T (α, β)×R are spheres,
cylinders and pairs of horizontal planes. Namely, for 0 < r < 1/2 the round sphere
of radius r embeds isometrically in T (α, β) × R, and if we write area as function
of volume we have A(V ) = (36πV 2)1/3. Analogously, the best cylinders for the
isoperimetric problem are those constructed around a closed geodesic of length 1.
If the cylinder has radius r, 0 < r <

√
3/4, then its area A(r) = 2πr and volume

V (r) = πr2 are related by the equation A(V ) = 2
√
πV , while the area of a pair of

parallel planar tori equals A(V ) = 2β.
We define the spheres-cylinders-planes profile (scp profile) of T (α, β)×R as the

function Iscp : (0,∞) → R+ which gives the least area among spheres, cylinders
and pairs of parallel planes enclosing a volume V . From the paragraph above we
have that (see Figure 3)

Iscp(V ) =


(36πV 2)1/3 if 0 < V ≤ 4π

81 spherical,
2
√
πV if 4π

81 ≤ V ≤
β2

π cylindrical and
2β if β2

π ≤ V planar range.

Figure 3. The spheres-cylinders-planes profile in T (α, β)× R.

Recall that 2H is the slope of Iscp at its smooth points. The relationship between
area, volume and mean curvature is H = A

3V in the spherical branch, H = A
4V in

the cylindrical range and H = 0 in the planar range.
If we consider the isoperimetric problem in T 2 × R with no extra symmetries,

it is an interesting and natural problem to decide for which tori T (α, β) the scp
profile coincide with isoperimetric profile. Consider the following statement.

Conjecture 1. The unique solutions of the isoperimetric problem in T (α, β)×R
are spheres, cylinders around closed geodesic and parallel pairs of totally geodesic
tori. In particular, the isoperimetric profile of T (α, β) × R coincides with its scp
profile.

Using compactness arguments, Ritoré and Ros [32] proved that the conjecture
holds for β large enough. We will now give an explicit upper bound on β.

Let Σ ⊂ T 2 × R be a compact, connected, embedded surface with Euler char-
acteristic χ, constant mean curvature H , area A and enclosed volume V . Denote
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by N = (N1, N2, N3) the inwards pointing unit normal vector along Σ. We shall
consider a family of deformations of Σ in T 2 × R, obtained by applying the affine
transformation φλ : (x1, x2, x3) 7→ (x1, x2, (1 +λ)x3). Henceforth O(tn) will denote
a function such that O(tn)/tn is bounded when t→ 0.

Lemma 11. If Σ is a compact surface with constant mean curvature embedded in
T 2 × R, then the area of the surface Σλ = φλ(Σ), with |λ| < ε, is

A(Σλ) = A+ λ

∫
Σ

(1−N2
3 ) dA+

λ2

2

∫
Σ

N2
3 (1−N2

3 ) dA+O(λ3),

and the volume enclosed by Σλ is (1 + λ)V .

Proof. In order to compute the variation of the area, it is enough to consider a
piece S of Σ given by the graph of a function (x, y, u(x, y)), with (x, y) ∈ D. For
that surface we have

N3 =
±1√

1 + |∇u|2
, A(λ) = A(Sλ) =

∫
D

√
1 + (1 + λ)2|∇u|2 dxdy,

and therefore

A′(0) =
∫
D

|∇u|2
1 + |∇u|2

√
1 + |∇u|2 dxdy =

∫
S

(1−N2
3 ) dA

and

A′′(0) =
∫
D

|∇u|2
(1 + |∇u|2)3/2

dxdy =
∫
S

N2
3 (1−N2

3 ) dA.

�
LetG be a finite subgroup of Sym(T 2×R). We will assume thatG fixes the planar

torus x3 = 0. By applying the transformation (x1, x2, x3) 7→ (x1, x2, (1 + λ)x3) to
the parallel surface Σt of Σ we have a two-parameter deformation of G-invariant
surfaces (t, λ) 7→ Σt,λ. This deformation allows us to obtain the following useful
information.

Proposition 12. Let Σ ⊂ T 2 × R be a nonplanar G-isoperimetric surface with
Euler characteristic χ, mean curvature H, area A and enclosed volume V . Then,

(9)
∫

Σ

N2
3 dA = A− 2HV

and

(10) 4HV − 12H2V 2

A
+

4V 2

A2
πχ+

∫
Σ

N2
3 (1−N2

3 ) dA ≥ 0,

where N = (N1, N2, N3) is the Gauss map of Σ.

Proof. The area and volume functions of the parallel surfaces t 7→ Σt are

(11) A(t) = A(Σt) = A+ 2tHA+ 2πχt2 , V (t) = V + tA+ t2HA+O(t3).

Therefore, Lemma 11 and the fact that the surfaces Σ and Σt have the same normal
vector, imply that the area and volume functions of (t, λ) 7→ Σt,λ are

A(t, λ) = A(Σt,λ) = A(t) +λ

∫
Σ

(1−N2
3 ) dA(t) +

1
2
λ2

∫
Σ

N2
3 (1−N2

3 ) dA(t) +O(λ3)

and
V (t, λ) = (1 + λ)V (t),
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where dA(t) = (1 + 2tH + t2K)dA stands for the area element of Σt. If we take
t = t(λ), expanding t in a neighborhood of λ = 0 as

(12) t(λ) = t1λ+
t2
2
λ2 +O(λ3),

a straightforward computation gives that the area function of the composed defor-
mation is

A(λ) = A(t(λ), λ) = A+ λ

(
2AHt1 +

∫
Σ

(1−N2
3 ) dA

)
+ λ2

{
2πχt21 +AHt2 + 2Ht1

∫
Σ

(1−N2
3 ) dA+

1
2

∫
Σ

N2
3 (1−N2

3 ) dA
}

+O(λ3).

Analogously, the volume function is

(13) V (λ) = (1+λ)V (t(λ)) = V +λ(V +At1)+λ2

{
AHt21 +At1 +

A

2
t2

}
+O(λ3).

From now on, we choose t(λ) such that the deformation keeps the volume fixed.
By (13), this implies that

t1 = −V
A

and t2 =
2V
A
− 2HV 2

A2
.

Plugging these equalities into the area function it follows that

A(λ) = A+ λ

(
−2HV +

∫
Σ

(1 −N2
3 ) dA

)
+ λ2

{
+2πχ

V 2

A2
+ 2HV

−2H2V 2

A
− 2HV

A

∫
Σ

(1−N2
3 ) dA+

1
2

∫
Σ

N2
3 (1 −N2

3 ) dA
}

+O(λ3).

The constant mean curvature assumption means exactly that the coefficient of λ
vanishes, which gives the first formula in the statement. The stability of Σ under
G-invariant volume preserving deformations implies that A′′(0) ≥ 0, and the second
formula in the proposition follows after substitution of

∫
Σ

(1−N2
3 ) dA by 2HV . �

Theorem 13. Let G be a finite group of symmetries of T 2×R and Σ a nonplanar
G-isoperimetric surface with Euler characteristic χ < 0, mean curvature H, area
A and enclosed volume V . Then,

64π
9
|χ| < A3

V 2
and

3A
16V

(
1−

√
1 + χ

64πV 2

9A3

)
< H <

3A
16V

(
1 +

√
1 + χ

64πV 2

9A3

)
.

Proof. Using the Cauchy-Schwarz inequality and the equality in Proposition 12, we
can estimate∫

Σ

N2
3 (1−N2

3 ) dA =
∫

Σ

N2
3 dA−

∫
Σ

N4
3 dA

≤
∫

Σ

N2
3 dA−

1
A

(∫
Σ

N2
3 dA

)2

= 2HV − 4H2V 2

A
.

Clearly, the inequality above must be strict, otherwise N3 would be constant, which
contradicts the hypothesis.
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Joining the above inequality with the one in Proposition 12 we obtain

(14) 0 < 3H − 8H2V

A
+

2V
A2

πχ.

The right-hand-side of (14) can be considered as a parabola in H with negative
main coefficient, thus its discriminant must be positive, i.e. 9A3 + 64πV 2χ > 0.
Moreover, H must be trapped between the two roots of 3H − 8H2V

A + 2V
A2 πχ = 0.

Now the theorem is proved. �

Corollary 14. In T 2×R, any G-isoperimetric surface with genus greater than one
encloses a volume strictly less than 3

4
√
π
A(T )3/2.

Proof. Use the isoperimetric inequality in Theorem 13 together with A ≤ 2A(T ).
�

As a consequence of Theorem 13, we can solve Conjecture 1 for a large family of
spaces of the form T 2 × R. Let us consider the set

A = {(α, β)| T (α, β)× R does not satisfy Conjecture 1}.

Corollary 15. If β ≥ 9π
16 ' 1.767, then T (α, β)×R satisfies Conjecture 1, i.e. the

unique isoperimetric surfaces in T (α, β)× R are spheres, cylinders and planes.

Proof. As Conjecture 1 is true for large β (see [32]) to prove the proposition it is
enough to see that any pair (α, β) in ∂A satisfies β < 9π/16. The compactness of the
space of isoperimetric surfaces implies that for (α, β) ∈ ∂A the isoperimetric profile
I of T (α, β) × R coincides with its scp profile, but there exists an isoperimetric
surface Σ ⊂ T (α, β) × R other than spheres, cylinders and planar tori. From
Theorem 5 we know that Σ has Euler characteristic χ ≤ −2. In particular, if A
and V denote the area of Σ and the volume it encloses, then we have A = I(V ).
On the other hand, Theorem 9 implies

(15) I2I ′′ + I(I ′)2 − 4πχ ≤ 0 at V,

which is impossible if V lies at the interior of either the spherical range or the
cylindrical or the planar one by item b) of Theorem 9. Thus V lies at one of the
transition points of I, that is, either (V,A) = (4π/81, 4π/9) or (V,A) = (β2/π, 2β).

In the first case V separates the spherical and the cylindrical branches, and the
mean curvature H of Σ must be greater than or equal to the one of the cylinder
with the same area (and enclosing the same volume): to see that, observe that,
otherwise, for ε > 0 sufficiently small, the equidistant surfaces Σt, 0 < t < ε, would
have less area than the cylinders enclosing the same volume. Hence

H2A ≥ (
A

4V
)2A =

9π
4
> 2π,

which contradicts Theorem 7. Therefore Σ has area A = 2β and encloses a volume
V = β2/π. Plugging these values in the first inequality of Theorem 13 we obtain
β < 9π/16. �

Remark 1. From arguments in the proof of the last corollary one deduces that if
(α, β) ∈ ∂A and Σ ⊂ T (α, β)×R is an isoperimetric surface with Euler characteristic
χ ≤ −2, then the volume enclosed by Σ separates the spherical and cylindrical
branches of the profile. After substitution of the values V = β2

π , A = 2β in the
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second inequality of Theorem 13, we obtain the following additional information
about the nonstandard isoperimetric surface Σ:

3π
8β

(
1−

√
1 + χ

8β
9π

)
< H <

3π
8β

(
1 +

√
1 + χ

8β
9π

)
.

Proposition 16. If A 6= ∅, then the boundary ∂A is a graph over its horizontal
projection (α, β) 7→ α on [0, 1/2], and A lies below this graph.

Proof. Consider (α, β) ∈ ∂A and suppose that β >
√

1− α2. As A is compact, to
prove the proposition it is enough to see that, for some δ < β, {(α, β′) | δ < β′ < β}
is contained in the interior of A.

The isoperimetric profile of T (α, β)×R coincides with its scp profile, and there
exists an isoperimetric surface Σ ⊂ T (α, β) × R with genus g ≥ 2. By the proof of
Corollary 15 we know that Σ encloses a volume V = β2

π and has area A = 2β. We
shall consider a deformation of Σ, composed of the deformation through parallel
surfaces Σ 7→ Σt ⊂ T (α, β)×R (t close to zero), followed by the affine deformation
(which changes the ambient space!)

ϕλ : T (α, β)× R→ T (α, (1 + λ)β) × R | ϕλ(x, y, z) = (x, (1 + λ)y, z),

where λ is close to zero.
The area and volume functions A(t, λ), V (t, λ) of (t, λ) 7→ Σt,λ = ϕλ(Σt) are

given by expressions similar to those in the proof of Proposition 12 after replacing
N3 with N2 for obvious reasons. Taking t = t(λ) = t1λ+O(λ2), we find

A(λ) = A(Σt(λ),λ) = A+ λ

(
2AHt1 +

∫
Σ

(1 −N2
2 ) dA

)
+O(λ2),

while

V (λ) = V (t(λ), λ) = (1 + λ)V (Ωt(λ)) = V + λ(V +At1) +O(λ2).

We shall determine the function t(λ) by using the condition that the volume func-
tion V (λ) of the composed deformation coincides with the volume separating the
cylindrical zone and the planar zone in the scp profile Iscp,λ for the new ambient
space T (α, (1 + λ)β) × R, which is given by (1 + λ)2V = (1 + λ)2β2/π.

This condition is easily seen to be equivalent (at the first order) to the equation
t1 = V/A which gives the area function

A(λ) = A+ λ

(
2HV +

∫
Σ

(1 −N2
2 ) dA

)
+O(λ2)

= A+ λ

(∫
Σ

(1−N2
3 ) dA+

∫
Σ

(1−N2
2 ) dA

)
+O(λ2)

= A+ λ

∫
Σ

(1 +N2
1 ) dA+O(λ2),

where we have used Proposition 12 in the second equality. Let us compare the area
of Σt(λ),λ and the scp profile (whose value at (1+λ)2V is just 2(1+λ)β = (1+λ)A).
Order one information is sufficient, and we have

A(λ) − Iscp,λ((1 + λ)2V ) = λ

(∫
Σ

(1 +N2
1 ) dA−A

)
+O(λ2)

= λ

∫
Σ

N2
1 dA+O(λ2).
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We point out that the last integral,
∫

Σ
N2

1 dA, cannot be zero, otherwiseN1 vanishes
identically on Σ. Thus Σ must be flat, which contradicts our assumption on the
genus of Σ. We conclude by choosing λ < 0 close to 0 so that (α, (1 + λ)β) lies in
the interior of A. �

4.1. Isoperimetry of spheres. Our next goal is to prove that except for a very
small range in the moduli space of tori, the only isoperimetric surfaces in T 2 × R
(no symmetries are imposed, i.e. G = {1}) on the whole spherical range of the
scp profile (volumes less than or equal to 4π/81) are spheres. In particular, this
property will be true for any rectangular torus. To obtain such a result we will
need the following inequality.

Proposition 17. Let Σ be a compact, connected surface with genus g ≥ 2 in T 2×R
with constant mean curvature H, area A and enclosing a volume V . Then,

AH2(A− 2HV ) + 2π
√
A(A− 2HV ) ≥ 4πA(T 2).

Proof. From Proposition 2 we know that Σ is symmetric with respect to a horizontal
plane (which can be supposed to be x3 = 0) and that Σ+ = Σ ∩ {x3 ≥ 0} is the
graph of a function defined on a domain D ⊂ T , whose boundary ∂D consists
of g − 1 Jordan curves. As these Jordan curves bound disks in T , the euclidean
isoperimetric inequality applied in T −D gives

(16) L(∂D)2 ≥ 4π(A(T )−A(D)),

where as usual, A, L denote area and length of the corresponding objects. The
Jacobian of the projection of Σ+ onto D is given by −N3, N3 being the third
component of the inwards pointing unit normal vector along Σ. Hence A(D) =
−
∫

Σ+ N3 dA. On the other hand, applying the divergence theorem to the vector
field X = tangent part of e3 on Σ+ (whose divergence is 2HN3), we obtain

−2HA(D) = 2H
∫

Σ+
N3 dA =

∫
∂Σ+
〈X,−e3〉 ds = −L(∂D),

which combined with (16) implies

(17) H2A(D)2 + πA(D)− πA(T ) ≥ 0.

From the Schwarz inequality one has

(18) A(D)2 =
(∫

Σ+
N3 dA

)2

≤ A

2

∫
Σ+

N2
3 dA =

A

4
(A− 2HV ),

where we have used Proposition 12 in the last equality. Combining (17) and (18)
the proposition follows. �

Theorem 18. Let β0 = 2π
27

(
3−
√

2 +
√

9− 3
√

2
)

. For any β > β0, the unique

isoperimetric surfaces Σ ⊂ T (α, β) × R with enclosed volume 0 < V ≤ 4π
81 are

spheres and cylinders (the last ones only for V = 4π
81 ).

Remark 2. To give an idea of how restrictive the condition β > β0 is, note that
β0 ' 0.876603 and the minimum value of β representing tori T (α, β) is β =

√
3

2 '
0.866025. In particular, Theorem 18 applies to all rectangular tori (i.e. α = 0 and
β ≥ 1).
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Proof. Suppose that for a given T = T (α, β), there exists an isoperimetric surface
in T × R with genus g ≥ 2 enclosing a volume V ∈ (0, 4π

81 ]. If β1 is the largest β
among tori satisfying this property (Corollary 15 implies that β1 ≤ 9π/16), then
from the maximum principle in Lemma 8 and the compactness of the space of
isoperimetric surfaces it follows that, for some α, there must exist an isoperimetric
surface Σ ⊂ T (α, β1) × R with genus g ≥ 2, area A = 4π

9 and enclosed volume
V = 4π

81 . Using Proposition 17 with these area and volume we get

(19)
2π
729

(
18H2 − 4H3 + 27

√
9− 2H

)
≥ A(T1) = β1,

where H is the mean curvature of Σ and T1 = T (α, β1). On the other hand, the
inequality AH2 ≤ 2π of Theorem 7 ensures that H ≤ 3√

2
.

Define f(h) = 2π
729 (18h2 − 4h3 + 27

√
9− 2h), with h ∈ [0, 3√

2
]. Equation (19)

implies that β1 ≤ f(H) ≤ max[0,3/
√

2] f . A direct computation shows that f ′

has the same sign as the polynomial P (h) = (36h − 12h2)2(9 − 2h) − 272. By
the intermediate value theorem it can be checked that P has five real roots, one
in each interval (−1, 0), (0, 1), (5

2 , 3), (3, 4), (4, 5). In particular, there exists h0,
0 < h0 < 3√

2
, such that P (h0) = 0, P < 0 in [0, h0) and P > 0 in (h0,

3√
2
]

(in fact, h0 ' 0.285499). This implies that f is decreasing in [0, h0), increasing
in (h0,

3√
2
] and has a local minimum at h0. As f(0) < f( 3√

2
), we deduce that

max[0,3/
√

2] f = f( 3√
2
) = β0, which finishes the proof. �

After Remark 1 it is likely that, in order to prove Conjecture 1 for T (α, β)×R,
the hardest situation holds for the hexagonal torus T (1

2 ,
√

3
2 )×R and, in this space,

for the volume V = 3
4π which separates the cylindrical and the planar branches.

The cylinder (and the pair of planar tori) enclosing this volume have area equal to√
3. The most serious alternative candidates to solve the isoperimetric problem in

that case are constant mean curvature surfaces Σ of genus two which are symmetric
with respect to the planar torus z = 0 and such that Σ∩{z = 0} is a convex curve;
see Figure 4 (these surfaces are called meshes or lamellar catenoids in materials
science). The first surfaces of this type were obtained by Lawson [23] by using
the conjugate Plateau problem construction; see also Grosse-Brauckmann [12], [13]
and Ritoré [30]. By suitably gluing a piece of nodoid and pieces of planes we have
constructed a lamellar catenoid shaped surface, with Euler characteristic −2, in
T (1

2 ,
√

3
2 )× R, enclosing a volume V = 3

4π and whose area lies between Iscp( 3
4π ) =√

3 and 1.0003×
√

3. This surface looks like the ones in Figure 4.

5. Isoperimetric inequalities for triply periodic regions

The purpose of this section is to give an isoperimetric inequality for G-symmetric
surfaces in the cubic torus T = R3/Z3, where G is any finite group of isometries of
the torus fixing the origin of T and containing the diagonal rotations through the
origin. These are rotations of angle ±2π/3 around the axes of directions (±1,±1, 1).
We will eventually show that the isoperimetric profile IG for this problem lies
above the spheres-cylinders-planes profile Iscp, which in particular implies that G-
symmetric surfaces in T other than spheres cannot be isoperimetric in T (for the
nonsymmetric problem).
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Figure 4. Left, center: Genus two surfaces with constant mean
curvature in the product of the hexagonal torus and the real line.
Right: Fundamental pieces which, after either reflexions or trans-
lations, fill up the whole surface. Computer graphics by Karsten
Grosse-Brauckmann, [13].

It can be checked that the groups G satisfying the restrictions above are (taking
pullback groups in R3 and using crystallographic notation; see [22], [16]) P23, P432,
P43m, Pm3 and Pm3m. They leave two points fixed, (0, 0, 0) and (1

2 ,
1
2 ,

1
2 ), and

the first (resp. the last) one is a subgroup (resp. supergroup) of the others. We
conjecture that all these groups have the same isoperimetric surfaces which (when
viewed in the torus) consist of either a single sphere (for small volumes) or a genus
three surface of Schwarz type (for volumes close to 1/2). In particular, among
surfaces dividing the torus in two equal volume G-invariant regions, the classical
Schwarz minimal surface should be the one with smaller area; see Figure 1. We will
prove in Theorem 20 that this area must be at least 2.19 (the actual area of Schwarz
minimal surface is ' 2.34). We will also prove that spheres are G-isoperimetric for
volume smaller than 1/6 ' 0.17. According to the numerical computations in [1],
spheres should be optimal up to volume ' 0.29.

Proposition 19. Any solution Σ of the isoperimetric problem for G-symmetric
surfaces in the cubic torus T is either a single sphere (centered at a fixed point of
G) or has Euler characteristic at most −4.

Proof. The key property to prove the proposition is that G contains rotations of
angle 2π/3 with axes in three independent directions. We can assume that the
volume V of the region Ω enclosed by Σ satisfies 0 < V ≤ 1/2. From the concavity
of the profile IG (see Theorem 9) we have that Ω is mean convex, i.e. the mean
curvature of Σ (with respect to the inwards pointing normal) is ≥ 0.

It ought to be noted that either Σ is a union of (quotients of) planes or the
quotient surface Σ/G is connected (see Theorem 5) and so the components of Σ are
all congruent (via symmetries of G) and consist of closed orientable surfaces. In
the first case, embeddedness forces the planes to be parallel to a single fixed plane,
which is impossible under the action of G.

If these components then have genus zero, by Theorem 1, they must be round
spheres of the same radius r > 0. As there exists a single sphere centered at a fixed
point of G (hence G-invariant) enclosing any volume between 0 and 1/2, it is clear
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that this sphere will do better than any other nonconnected G-invariant family of
spheres.

Suppose now that the components of Σ have genus one. These surfaces consist of
a union of n (quotients of) cylinders. The orbit under G of a cylinder may yield an
embedded disconnected surface, however it turns out to be nonoptimal: to see this,
note that such a cylinder is the tubular neighborhood of radius r > 0 of a closed
geodesic of T of length `, so that the total area of Σ is A = 2πn`r and the enclosed
volume V = πn`r2. Since we assume that this surface is isoperimetric, it has to
do better than the competitor sphere of the same volume. Using the isoperimetric
profile for spheres, this condition amounts to

36π ≥ A3

V 2
=

8π3n3`3r3

π2n2`2r4
=

8πn`
r

.

However ` is certainly greater than or equal to 1, while the property of G mentioned
above forces n ≥ 3. We infer that r ≥ 2/3, which gives a volume V ≥ 4π/3 which
is much more than the limit 1/2.

Next consider the case where Σ is a connected surface with genus two. We discard
this possibility by considering the full lift Σ̃ of Σ to R3. As the mean convex region
enclosed by Σ is a solid donut (see Meeks [26]) it follows that the components of
Σ̃ are at most doubly periodic. If they were nonperiodic (resp. singly periodic),
then, by Theorem 1, they should be spheres (resp. Delaunay surfaces or cylinders).
As both options contradict the genus assumption, we conclude that Σ̃ consists of
translated images of a certain doubly periodic constant mean curvature surface in
R3. In particular, each connected component of Σ̃ lies in a slab bounded by two
parallel planes to a fixed plane in R3, which is impossible as Σ̃ is invariant under
the pullback group G̃ of G. Hence the contradiction.

As a conclusion we have shown that either Σ is a (single) sphere or it is a
connected surface of genus at least three or it has at least two genus two components,
the latter cases giving χ(Σ) ≤ −4, as we claimed. �

The profile of spheres is given by the function Isph(v) = (36πv2)1/3. We now
define a function J : [0, 1]→ R by J(v) = Isph(v) if v ≤ 1

6 , and J is the solution of

(20) J2J ′′ + J(J ′)2 + 16π = 0

with J(1
6 ) = Isph(1

6 ) and J ′(1
6 ) = I ′sph(1

6 ) if 1
6 ≤ v ≤ 5

6 , and J(v) = Isph(1 − v) if
5
6 ≤ v ≤ 1. Note that (20) is the ODE which appears in Theorem 3 corresponding
to Euler characteristic −4. The function J is symmetric with respect to v = 1/2,
and using (3) we deduce that for 1

6 ≤ v ≤ 5
6 , the graph of J can be parametrized

by

v(t) =
1
6

+ π1/3t+ 2π2/3t2 − 8π
3
t3 , a(t) = π1/3 + 4π2/3t− 8πt2 .

Theorem 20. The G-isoperimetric profile IG for a group of symmetries G of
the cubic torus T = R3/Z3 fixing a point and containing the diagonal rotations
(of angle 2π/3) through this point, is bounded below by the function J , IG ≥ J .
In particular, any G-symmetric surface dividing T in two equal volumes has area
larger than J(1

2 ) ≥ 2.19 and any G-isoperimetric surface enclosing a volume less
than or equal to 1

6 is a sphere.
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Proof. As both IG and J are symmetric with respect to the vertical line through
v = 1

2 , we will consider only volumes between 0 and 1/2. As the area of the sphere
enclosing a volume 1/2 is larger than the one of the P minimal surface (which is
∼ 2.34), we rule out the case that the entire profile IG comes from spheres. From
Proposition 19, the maximum principle in Lemma 8 and item c) in Theorem 9, we
deduce that there exists v1 < 1

2 such that IG(v) = Isph(v) for 0 ≤ v ≤ v1, and
at the point q = (v1, IG(v1)) the spheres stop being isoperimetric and the higher
topology branch starts. The end point of this branch is (1

2 , IG(1
2 )).

Figure 5. G-isoperimetric profile and supersolutions.

Consider a small volume v = 4
3πr

3 in the range where the symmetric profile
IG agrees with the spherical one. Let γr be the solution of (20) starting at pr =
(v, Isph(v)) = (4

3πr
3, 4πr2) and tangent to the spherical profile at that point; see

Figure 5. According to (3) the graph of γr can be parameterized, for t ≥ 0, as

(21) vr(t) =
4π
3
r3 + 4πr2t+ 4πrt2 − 8π

3
t3 , γr(vr(t)) = 4πr2 + 8πrt− 8πt2.

Since the spherical profile satisfies I2I ′′ + I(I ′)2 − 8π = 0 and γr is a solution of
the equation (20), we have from item iv) in Lemma 8 that γr(t) lies stricly below
Isph(v(t)) for t > 0.

For r small enough, the curve {(v, γr(v))|γr(v) ≥ 0} lies below IG (in fact this
curve converges to the origin when r goes to zero) and the highest point of γr is
pmax(r) = (4πr3, 6πr2). Let

r0 = sup {r | 0 < r < r1 and γr(v) < IG(v) for all v ≤ 1
2

such that γr(v) is defined},

where r1 is the radius of the last isoperimetric sphere (occurring at the branching
point q). So, there will be a first contact of γr0 with IG (outside the spherical
part of the profile IG). This will occur either at q, or tangentially along the higher
topology branch, or at the end point (1

2 , IG(1
2 )). We include the possibility of γr0

coinciding with IG in the third case. The (strict) tangential contact cannot occur
again because of the maximal principle, applied with the same constant χ = −4,
with IG being a supersolution of (?), and item b) in Theorem 9.

Contact at the branching point q is also impossible by the maximum principle
in item iv) of Lemma 8 applied to the solution γr0 and the supersolution IG. Note
that, IG being trapped between two smooth curves whith are tangent at q, we have
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that I ′G+ and γ′r0 coincide at this point. Moreover, item b) in Theorem 9 prevents
γr0 and IG coincide in an open interval.

We are left with the third case, where γr0 hits the isoperimetric profile for the
half-volume (the two curves being possibly identical). Obviously the slope of γr0
at v = 1

2 is nonnegative, otherwise the curve would have points above the profile
IG. Therefore, the maximum of γr0 is reached for a value of v not less than 1/2.
As the maximum of γr is attained at v = 4πr3, there exists a special r2 ≤ r0 for
which γ′r2(1

2 ) = 0, i.e. γr2 has its maximum at v = 1
2 . Furthermore γr2 lies under

IG, as in Figure 5.
Using (21) we can find that

r2 =
1

2π1/3
' 0.341392,

so that the initial volume for γr2 is 1
6 and, therefore, γr2 is just the nonspherical

branch of J . This proves that IG ≥ J . Moreover J(1
6 ) = π1/3 ' 1.46459, while the

value at the maximum of J is J(1
2 ) = 6πr2

2 = 3
2π

1/3 ' 2.19689. �

In T = R3/Z3, we conjecture that the isoperimetric profile (for the nonsymmetric
problem) coincides with the scp profile. From the theorem above we can now
conclude a property supporting this conjecture: a natural family of symmetric
candidates can be excluded (namely, a one-parameter deformation of the classical
Schwarz minimal surface by genus three symmetric surfaces with constant mean
curvature; see [1]).

Corollary 21. The symmetric isoperimetric profile IG is not less than the spheres-
cylinders-planes profile Iscp, and is strictly greater when the volume is greater than
4π
81 , i.e. in the cylindrical or planar range of Iscp. As a consequence, isoperi-
metric surfaces in the cubic torus (without prescribed extra symmetries) are not
G-invariant, except for the spheres.

Proof. Using the maximum principle in Lemma 8, it suffices to check that IG lies
above Iscp at the transition points. At the transition point between spheres and
cylinders, IG = Isph = Iscp because v = 4π/81 < 1

6 . At the other transition
point, between cylinders and planar tori, we have from Theorem 20 that IG(1/π) ≥
J(1/π) > Iscp(1/π) = 2. The strict inequality can be easily computed numerically,
but also proved by a slightly simpler argument, using the monotonicity of J : indeed
J reaches height 2 before Iscp. To see this fact, note that solving J(v(t)) = 2 yields

t =
π2/3 −

√
3π4/3 − 4π
4π

,

which corresponds to a volume

v(t) =
1
2
−
√

3π1/3 − 4
12
√
π

(2 + 3π1/3) ' 0.311,

which is strictly less than 1/π ' 0.318 . �
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[14] M. Grüter, Boundary regularity for solutions of a partitioning problem, Arch. Rat. Mech.

Anal. 97 (1987) 261-270. MR 87k:49050
[15] H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972)

410-418. MR 48:2902
[16] T. Hahn, editor, International Tables for Crystallography, vol. A, fifth edition, Kluwer Aca-

demic Publishers, 2002.
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Université de Marne-la-Vallée, Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2,

France

E-mail address: hauswirth@univ-mlv.fr
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