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1 Introduction

These notes originated from a series of lectures given by Harold Rosenberg at IMPA, found on
youtube:
https://www.youtube.com/playlist?list=PLDf7S31yZaYxaM1IsSUI34Dxdz4oTLMM9

These lectures have been complemented with the recent solution by Brendle of the isoperimetric
inequality for minimal surfaces (Section 9) and the Alexandrov theorem based on the moving
plane technique (Section 21).

There are many texts on minimum surfaces; we recommend the ones by Nitsche [14] and
Osserman [15] among the most classics. A more current treatment can be found in the book of
Colding and Minicozzi [3], where the focus is via global analysis on Riemannian manifolds.

On the cover image: It is taken from Pinterest. It can be seen at
https://www.pinterest.es/pin/560135272387443211/

Notation.
L(γ) : length of a curve γ.
A(Σ) : area of a surface Σ (n-dimensional volume if Σ has dimension n).
Gr(f): Graph of a function f .
D(z0, r) = {z ∈ R2 | |z − z0| < r}, z0 ∈ R2, r > 0.
D(r) = D(0, r), D = D(1), S1 = ∂D.
B(p, r) = {q ∈ R3 | |p− q| < r}, p ∈ R3, S2(p, r) = ∂B(p, r), r > 0. S2(r) = S2(⃗0, r), S2 = S2(1).
A(p0, s, t) = B(p0, t)− B(p0, s) with 0 < s < t.
BM (p, r) = {q ∈M | dM (p, q) < r}, p ∈M in a complete Riemannian manifold, r > 0.
|AΣ|: norm of the second fundamental form of a hypersurface Σ.

2 Minimal graphs

In his 1762 work Essai d’une nouvelle méthode pour déterminer les maxima et minima des
formules intégrales indefinies [11], Lagrange considered the following problem: Let Ω ⊂ R2 be a
relatively compact open set with smooth boundary, and φ ∈ C0(∂Ω) \ C0(∂Ω,R). Consider all
possible extensions f ∈ C2(Ω) of φ to Ω,

A(φ) = {f ∈ C2(Ω) ∩ C0(Ω) | f |∂Ω = φ},

What can we say about a function f ∈ A(φ) that minimizes area among all functions
in A(φ)? (there existence, uniqueness, regularity...)

To answer this question, Lagrange introduced the Euler-Lagrange technique, which was the
starting point of the Calculus of Variations (a technique that can be applied to other functionals
besides area), that we explain next. Suppose that f ∈ A(φ) is a critical point for the above
problem.
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Take ξ ∈ C2(Ω) with ξ|∂Ω = 0. Given t ∈ R, the function ft = f + tξ lies in A(φ), hence

d

dt

∣∣∣∣
t=0

A(Gr(ft)) = 0.

But A(Gr(ft)) =
∫
Ω

√
1 + ∥∇ft∥2 (gradient computed with respect to the standard metric in

R2) and ∥∇ft∥2 = ∥∇f + t∇ξ∥2 = ∥∇f∥2 + 2t⟨∇f,∇ξ⟩+ t2∥∇ξ∥2, thus

d

dt

∣∣∣∣
t=0

A(Gr(ft)) =

∫

Ω

d

dt

∣∣∣∣
t=0

√
1 + ∥∇ft∥2 =

∫

Ω

d
dt

∣∣
t=0

∥∇ft∥2

2
√

1 + ∥∇f∥2
=

∫

Ω

⟨∇f,∇ξ⟩√
1 + ∥∇f∥2

=

∫

Ω
⟨ ∇f√

1 + ∥∇f∥2
,∇ξ⟩ (Stokes)

= −
∫

Ω
ξ div

(
∇f√

1 + ∥∇f∥2

)
.

Since the last expression vanishes for all ξ ∈ C2(Ω) with ξ|∂Ω = 0, we conclude that a necessary
and sufficient condition for f ∈ A(φ) to be a critical point of the area functional in A(φ) is that

div

(
∇f√

1 + ∥∇f∥2

)
= 0 (1)

The second order PDE (1) is the Euler-Lagrange equation for the area functional area for graphs,
and it is quasilinear and elliptic.

Let us look at some natural questions about the above equation. Given φ ∈ C2(∂Ω),

1. If f ∈ A(φ) satisfies (1), Is the graphical surface Gr(f) necessarily a global minimum of
the area functional among surfaces with the same boundary?

2. Is the minimum area surface among all surfaces with boundary Gr(φ) necessarily a graph
over Ω?

If Ω = D is the open unit disk and we take φ as the constant zero, the global minimum for area
among all surfaces with the same boundary Gr(φ) is given by f ≡ 0. Nevertheless, in general the
answer to the two above questions is no; for example, if we consider the domain Ω = D\D(−1, ε)
with ε > 0 small, the contour given in Figure 1(b) is the graph of a C2 function but the surface
of least area with that boundary is not a graph over Ω (it is not even contained in Ω× R).

However, in the situation of question (1) above, Gr(f) minimizes area among all surfaces
contained in Ω× R, as follows from the following calibration argument:

Let Ω ⊂ R2 be a relatively compact open set, φ ∈ C0(∂Ω) and f ∈ C2(Ω)∩C0(Ω) a solution
of the Dirichlet problem 




div

(
∇f√

1+∥∇f∥2

)
= 0 in Ω,

f = φ in ∂Ω.
(2)
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Ω

Figure 1: From left to right: (a) the domain Ω = D \D(−1, ε). (b): Graphical contour over ∂Ω.
(c): Graph over Ω with the above contour, not being a minimum for area with that boundary.
(d): A non-graphical surface with the same boundary, whose area is strictly smaller than the
area of (c).

Let X(x, y) = (x, y, f(x, y)), (x, y) ∈ Ω, be a parameterization of Gr(f) with Gauss map N =
1
W (−fx,−fy, 1), where

W =
√
1 + ∥∇f∥2. (3)

Extend N to Ω× R by N(x, y, z) = N(x, y). Thus, we can view N as a smooth vector field on
Ω× R. Consider the 2-form over Ω× R given by

ω(U, V ) = det(U, V,N).

Geometrically, ωp(u, v) measures the volume of the parallelepiped with edges u, v ∈ R3 and
NX(π(p)), where p = (x, y, z) ∈ Ω× R and π(p) = (x, y). Hence:

(i) ωp(u, v) ≤ 1 for all p ∈ Ω× R and u, v ∈ R3 orthogonal and unitary.

(ii) ωp(u, v) = 1 for all p ∈ Gr(f) when {u, v} is a positive orthonormal basis of TpGr(f).

Analytically, ω(∂x, ∂y) = N3 =
1
W , ω(∂x, ∂z) = −N2 =

fy
W , ω(∂y, ∂z) = N1 =

−fx
W , hence

ω =
1

W
(dx ∧ dy + fydx ∧ dz − fxdy ∧ dz) .

and
dω = d

(
1
W dx ∧ dy

)
+ d

(
fy
W dx ∧ dz

)
− d

(
fx
W dy ∧ dz

)

=
(

1
W

)
z
dz ∧ dx ∧ dy +

(
fy
W

)
y
dy ∧ dx ∧ dz −

(
fx
W

)
x
dx ∧ dy ∧ dz

= −
[(

fx
W

)
x
+
(
fy
W

)
y

]
dx ∧ dy ∧ dz

= −div
(
∇f
W

)
dx ∧ dy ∧ dz

= 0,

that is, ω is closed. ω is what’s known as a calibration, and Gr(f) is a calibrated surface for ω.
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Proposition 2.1 In the above situation, if Σ ⊂ Ω×R is a compact, immersed orientable surface
with ∂Σ = ∂Gr(f), then A(Σ) ≥ A(Gr(f)), and equality holds if and only if Σ = Gr(f).

Proof. Take Σ as in the statement (possibly with non-trivial topology). Let Σf = Gr(f). As
∂Σ = ∂Σf , we can view Σ\Σf as a 2-chain in Ω×R with boundary ∂(Σ\Σf ) = 0. As the second
homology group H2(Ω × R,Z) vanishes, there exists a 3-chain Λ in Ω × R with ∂Λ = Σ \ Σf .
Using Stokes’ theorem,

0 =

∫

Λ
dω =

∫

Σ
ω −

∫

Σf

ω

By (ii), ω|Σf
coincides with the area element of Σf , hence

∫
Σf
ω = A(Σf ). Analogously, (i)

implies that
∫
Σ ω ≤ A(Σ), whence A(Σf ) ≤ A(Σ).

If A(Σf ) = A(Σ), then
∫
Σ ω = A(Σ) and (i) implies that ω|Σ is the area element of Σ.

Therefore, TpΣ is parallel to TX(π(p))Σf for every p ∈ Σ. From here it is not difficult to check
that Σ is a vertical translation of Σf , and since both surfaces have the same boundary we
conclude that Σ = Σf . 2

Proposition 2.1 can be generalized to graphs over relatively compact open subsets of Rn,
but does not ensure that a graph satisfying (2) must be a least ‘area’ (n-dimensional volume)
hypersurface among hypersurfaces with the same boundary. If we impose convexity to Omega,
this minimization property is true.

Theorem 2.2 Let Ω ⊂ Rn be a convex, relatively open set, and f ∈ C2(Ω) ∩ C0(Ω) a solution
of (2) for φ ∈ C0(∂Ω). Then, Gr(f) minimizes n-dimensional volume among all compact
hypersurfaces of Rn+1 with the same boundary as Gr(f).

Proof. As Ω is convex in Rn, we have that Ω×R is also convex. Consider the canonical projection
Π: Rn+1 → Ω× R mapping each p ∈ Rn+1 on the unique point Π(p) ∈ Ω× R such that

dist(p,Π(p)) = dist(p,Ω× R).

P i does not increase distances:

∥Π(p)−Π(q)∥ ≤ ∥p− q∥, ∀p, q ∈ Rn+1. (4)

Take a compact hypersurface Σ ⊂ Rn+1 with ∂Σ = ∂Σf , where Σf = Gr(f). Then, the
property that Π does not increase distances implies that

A(Σ) ≥ Hn(Π(Σ))
(∗)
≥ A(Σf ),

where Hn denotes n-dimensional Hausdorff measure (Π(Σ) might not be a hypersurface) and in
(∗) we have used Proposition 2.1 generalized to our current setting after approximation of Π(Σ)
by compact hypersurfaces contained in Ω× R. 2

How can we generalize the above discussion to a Riemannian manifold?
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Theorem 2.3 Let (Mn, g) be a Riemannian manifold, Ω ⊂M a relatively compact open subset
and φ ∈ C0(∂Ω). Then:

1. If f ∈ C2(Ω) ∩ C0(Ω) satisfies f |∂Ω = φ and Gr(f) minimizes ‘area’ (n-dimensional
volume) among all graphs over Ω with boundary Gr(φ) (in Ω×R we consider the product
metric g × dt2), then divM (∇fW ) = 0 in Ω, where W =

√
1 + ∥∇Mf∥2.

2. If f ∈ C2(Ω) ∩ C0(Ω) is a solution of (2) for φ ∈ C0(∂Ω), then ω(U1, . . . , Un) =
dvg(U1, . . . , Un, N) is a calibration over Ω × R and Gr(f) is a calibrated hypersurface for
Ω, where dvg stands for the volume element of (M × R, g × dt2). Furthermore, Gr(f)
minimizes ‘area’ among all compact hypersurfaces inside Ω × R with the same boundary
as Gr(f).

Proof. Exercise. 2

Nevertheless, Theorem 2.2 does not extend to arbitrary Riemannian manifolds, because we do
not dispose of a projection Π not increasing distances.

A central problem in the conditions of Theorem 2.3 is the following:

When there is a solution f ∈ C2(Ω) ∩ C0(Ω) of (2)?

We shall see about this problem later. Now let us go back to graphs over open subsets of the
plane. Lagrange essentially only gave an example of graph satisfying (1): the affine functions
f(x, y) = ax + by + c, whose graphs are affine planes of R3. In 1786, Meusnier gave two other
examples: the helicoid

f(x, y) = arctan(y/x) (5)

and the catenoid
f(x, y) = arg cosh

√
x2 + y2

(these are non-global graphs). In 1836, Scherk [20, 21] produced more sophisticated examples.
It we develop (1), we will obtain the elliptic quasilinear PDE

(1 + f2x)fyy − 2fxfyfxy + (1 + f2y )fxx = 0, (6)

known as the minimal graph equation.

Examples and exercises.

1. Show that equation (6) is equivalent to the vanishing of the mean curvature of the graph
of f (Gr(f) is a minimal surface).

2. The helicoid is the image of the embedding ψ(s, t) = s(cos t, sin t, 0)+ (0, 0, at), (s, t) ∈ R2

(a is a non-zero constant). Prove that the helicoid is ruled surface. Use the rotation of
angle π around each straight line contained in the helicoid to show that the helicoid is a
minimal surface. See Figure 2 left.
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Figure 2: Left: helicoid. Right: catenoid. Figures courtesy of M. Weber.

3. Prove that the surface C = {(x, y, z) ∈ R3 | x2 + y2 − cosh2 z = 0} obtained after rotation
of the catenary y = cosh z around the lz-axis is an embedded minimal surface, called
catenoid. Figure 2 right.

4. (Euler theorem [7]).
Let f ∈ C2([a, b]) be a positive function and Σf the surface of revolution generated by
the curve {(x, f(x)) | x ∈ [a, b]} after rotation about the x-axis. Demonstrate that if
Σf has least area among all surfaces of revolution Σh where h ∈ C2([a, b]), h > 0, with
h(a) = f(a) and h(b) = f(b), then Σf is contained in a catenoid, i.e., f(x) = λ cosh

(x−µ
λ

)
,

where λ > 0, µ ∈ R.
Hint: Show that the Euler-Lagrange equation associated to this problem is

√
1 + (f ′)2 =

(
ff ′√

1 + (f ′)2

)′

in [a, b]. (7)

Show that f
√

1 + (f ′)2 − f ′ ff ′√
1+(f ′)2

is a first integral of (7). Hence there exists λ ∈ R

such that f
√
1 + (f ′)2 − f ′ ff ′√

1+(f ′)2
= λ. Prove that λ > 0 and ff ′

λ2
= f ′f ′′. After ruling

out the case f = constant (it does not satisfy (7)), work in a neighborhood of a x0 ∈ [a, b]

where f ′ has no zeros, invert y = f(x) with dx
dy = λ2√

y2−λ2
and integrate this equation to

conclude that y = y(x) = λ cosh
(x−µ

λ

)
.

5. (Doubly periodic Scherk surface) Prove that the surface S2 = {(x, y, z) ∈ R3 | cosxez −
cos y = 0} is minimal and invariant under the rank 2 group of translations generated by

(x, y, z)
ψ17→ (x+ 2π, y, z), (x, y, z)

ψ27→ (x, y + 2π, z).

Thus, we can view the qotient surface Σ = S2/(Zψ1 ⊕ Zψ2) as a minimal surface in the
Riemannian manifold R2/(Zψ1⊕Zψ2) ≡ (R/Z)2×R (metric product of a two-dimensional
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torus and the real line). Σ has genus zero and four ends, and S2 has infinite genus and
just one end.

Figure 3: The doubly periodic Scherk surface is a minimal graph over the interior of the shadowed
open squares. Besides containing vertical lines passing through each vertex of the squares, the
surface contains horizontal lines at height zero, namely the diagonals of the above squares. The
graph takes boundary values ±∞ on opposite edges of each square. If we divide the square
in four triangles as in the figure (in blue one of these triangles), then the boundary values are
0, 0,±∞.

We might ask how Scherk discovered this surface: it is natural to look for solutions of (6)
of the form f(x, y) = g(x) + h(y). If we denote by · = ∂/∂x and ∂/∂y, then (6) writes
[1 + h′(y)2]g̈(x) + [1 + ġ(x)2]h′(y) = 0, or equivalently,

g̈(x)

1 + ġ(x)2
= − h′′(y)

1 + h′(y)2
.

Hence the two members of the last equation equal the same number a ∈ R. Integrating,

g(x) = c2 −
log (cos (ax+ c1))

a
, h(y) =

log (cos (ay − c3))

a
+ c4,

where c1, c2, c3, c4 ∈ R. Thus,

g(x) + h(y) = log

(
cos (ay − c4)

cos (ax+ c1)

)
+ (c2 + c3) ,
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which is the expression z(x, y) = log
( cos y
cosx

)
up to translations and changes of scale.

6. (Singly periodic Scherk surface, Figure 4 left) Prove that the surface S1 = {(x, y, z) ∈
R3 | sin z = sinhx sinh y} is minimal and invariant under the infinite cyclic group of
translations

(x, y, z) 7→ (x, y, z + 2kπ), k ∈ Z.

Figure 4: Left: singly periodic Scherk surface. Right: Enneper surface. Figures courtesy of M.
Weber.

7. (Enneper surface, Figure 4 right) Prove that the map

ψ : R2 → R3 | ψ(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

is a minimal immersion of the plane into R3 (not an embedding).

3 The Plateau problem

Let us consider the doubly periodic Scherk surface, which is generated from a minimal graph
Gr(f) over the interior of a square with boundary values +∞,−∞,+∞,−∞ on consecutive
edges. We can imagine this graph as the limit as n→ ∞ of minimal graphs Gr(fn) on the closed
square with boundary values n,−n, n,−n (n ∈ N):

Does the minimal graph fn exist? Note that the boundary values are no longer given as in
(2), because they are not expressed as the graph of a function over the boundary of the square.
How can we find a critical point of the area functional with this kind of boundary values?

One way to solve this problem is to consider the boundary values as a closed polygonal curve
Γ in R3 with eight consecutive horizontal and vertical edges, as in Figure 3, and find a compact
minimal disk with this boundary as a solution to the Plateau problem with boundary Γ.

The Plateau problem admits many formulations, all sharing the same general principle:
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−n

Gr(fn)n

Γn

Figure 5: Minimal graph over a square.

Given a compact (k− 1)-dimensional submanifold (not necessarily connected) Γ of a
Riemannian manifold (Mn, g), can one find a submanifold Σk ⊂M with ∂Σ = Γ of
least ‘area’ (k-dimensional volume) among all submanifolds ofM with that boundary?

In order to clarify the above question, it is necessary to specify what is meant by boundary
(topological boundary, boundary of a manifold-with-boundary) and by ‘area’ (k-dimensional
Hausdorff measure, k-dimensional volume for a Riemannian manifold of the same dimension,
etc). Clearly, one must assume that Γ spans a k-dimensional submanifold of M in some sense
(for example, [Γ] = 0 in the homology group Hk−1(M)).

We will formulate the Plateau problem FOR DISCS in more precise conditions:

Plateau problem for discs in a Riemannian manifold:

Given a rectifiable Jordan curve Γ1 in a Riemannian manifold (M3, g). Is there a smooth
map X : D = {x2 + y2 ≤ 1} → M such that X|S1 = ψ and A(X(D)) ≤ A(X̃(D)) for all
X̃ ∈ C∞(D,M) with X̃|S1 = ψ?

Remark 3.1 1. Although we have talked about the area of X(D) or X̃(D), we are not im-
posing that X, X̃ are immersions (it may be more correct to write 2-dimensional Hausdorff
measure, but we will not do that for the sake of simplicity).

2. In order to ensure the there existence of some X̃ ∈ C∞(D,M) with X̃|S1 = ψ, we must
impose Γ to be homotopically trivial in M3. This is not a restriction when M = R3.

3. To try to solve the Plateau problem, it is reasonable to impose that (M, g) be complete.
For example, in R2 \ {(0, 0)} we cannot find a least length arc joining two points p,−p ∈
R2 \{(0, 0)}, as the arc of minimum length passes through the origin. The same idea leads
us to conclude that there is no disk in R3 \ {(0, 0, 0)} that minimizes area with boundary
a circumference centered at the origin.

1This means that there exists an Lipschitz embedding ψ : S1 → Γ.
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The most general there existence result for the Plateau problem is the following:

Theorem 3.2 (Douglas-Radó-Morrey) Given a rectifiable Jordan curve Γ homotopically
zero in a complete Riemannian manifold (M3, g), there exists X ∈ C∞(D,M) such that X(S1) =
Γ and A(X(D)) ≤ A(X̃(D)) for all X̃ ∈ C∞(D,M) con X̃(S1) = Γ.

Remark 3.3 1. Douglas [5, 6] and Radó [17] independently proved Theorem 3.2 in its version
M = R3, between 1929 and 1933. Douglas [5, 6] won the first Fields medal (shared with
Ahlfors) for this result. The most general version in (M3, g) is due to Morrey.

2. We will prove the version in Rn of Theorem 3.2 in Section 8.

3. Osserman proved that the Douglas-Radó-Morrey solution X to the Plateau problem is an
immersion at every point of D (for boundary points this is unknown). X does not have to
be an embedding, since we can simply take as G any knot in R3.

4. In R4, the Douglas-Radó-Morrey solution X to the Plateau problem does not have to be
an immersion in D: Consider the holomorphic map X(z) = (z2, z3) from C to C2 ≡ R4.
Then, X|D is the solution to the Plateau problem with boundary Γ = X(S1) (this follows
from the fact that every holomorphic curve in a Kaehler manifold minimizes area by a
calibration argument), but X fails to be an immersion at z = 0.

Coming back to the example with which we started this section, given n ∈ N, there exists a
Douglas-Radó solution Σn = Xn(D) to the Plateau problem with boundary the polygonal curve
Γn given by Figure 3. In addition, an argument based on the Radó’s theorem that we will see
later implies that such solution is embedded (in fact, it is a graph over its projection on the
base square) and is unique. This uniqueness ensures that Σn inherits each symmetry of Γn. (in
particular, we conclude that 0⃗ ∈ Σn reasoning by composition of the rotation of angle π with
respect to the x-axis with the rotation by π with respect to the z-axis).

The next step will be checking that we can take limits in Σn as n→ ∞ (and thus recover the
doubly periodic Scherk surface). To do that, we will use that Σn is graph for each n, together
with compactness results that we will study in Section 15. Let us analyze this limit process
in more detail. Consider the same problem where the square obtained as a projection of Γn
is replaced by a straight rectangle R(a, b) of base a and height b with a ≫ b > 0. Intuitively,
the solution of the Plateau problem with edge Γn has a very low central point (next to height
−n, see Figure 40 right), and if n → ∞ then Σn does not converge to a graph over R(a, b)
but to two vertical straight rectangles over two of the edges of the R(a, b) (this phenomenon
will be explained by the Jenkins-Serrin’s method in Section 20; In fact, the Jenkins-Serrin
Theorem implies that if a ̸= b, there is no minimal graph over R(a, b) with boundary values
+∞,−∞,+∞,−∞ on consecutive sides of R(a, b)).

We will finish this section with a result on the extrinsic area growth of minimal graphs in R3.
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Theorem 3.4 Let Ω ⊂ R2 be an open set and f ∈ C2(Ω) a solution of (1). Given q ∈ Ω and
r > 0 such that D(q, r) ⊂ Ω, let p := (q, f(q)) ∈ Gr(f). Then:

A(Σ ∩ B(p, r)) ≤ 2πr2.

Proof. Consider the Jordan curve Γ of class C2 given by the graph of f |∂D(p,r). By Theorem 2.2,
the graph of f |D(p,r) minimizes area among all compact surfaces in R3 with boundary Γ. As

Γ ⊂ S2(p, r) is a Jordan curve, S2(p, r) \ Γ has two connected components Σ1,Σ2. The closure
of Σi is a compact surface with boundary Γ, for i = 1, 2. Thus,

A(Σ ∩ B(p, r)) ≤ min{A(Σ1), A(Σ2)} ≤ 1

2
A(S2(p, r)) = 2πr2. 2

4 Submanifolds. First variation of area formula

Let Σ a k-dimensional submanifold of a Riemannian manifold (Mn, g). Let us denote by ∇,∇
the Levi-Civita connections of Σ and M , respectively. The second fundamental form of Σ is the
symmetric bilinear form

σ(X,Y ) =
(
∇XY

)⊥
,

where X,Y are tangent vector fields to Σ. The Gauss equation relates the sectional curvatures
of Σ and M with the second fundamental form:

KΣ(X,Y )∥X ∧ Y ∥2 = KM (X,Y )∥X ∧ Y ∥2 + ⟨σ(X,X), σ(Y, Y )⟩ − ∥σ(X,Y )∥2,

where KΣ(X,Y ) (resp. KM (X,Y ) is the sectional curvature of the plane spanned by X,Y in TΣ
(resp. in TM), provided thatX,Y are linearly independent, and ∥X∧Y ∥2 = ∥X∥2∥Y ∥2−⟨X,Y ⟩2
(so the Gauss equation makes sense even when X,Y are linearly dependent). In the particular
case k = 2, KΣ is the Gauss curvature of Σ and X,Y are orthogonal and unitary, the Gauss
equation writes

KΣ = KM (X,Y ) + detσ.

The mean curvature vector of Σ is the normal vector field on Σ given by

kH⃗ =
k∑

i=1

σ(Ei, Ei), (8)

where Eq, . . . , Ek is a local orthonormal basis of TΣ (the above sum does not depend on the

choice of orthonormal basis). The submanifold Σ is said to be minimal if H⃗ vanishes identically.
The norm of the second fundamental form is the function

|σ| =

√√√√
k∑

i,j=1

∥σ(Ei, Ej)∥2 ∈ C∞(Σ).
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If N1, . . . , Nn−k is a local orthonormal basis of the normal bundle of Σ, then

σ(X,Y ) =
n−k∑

h=1

⟨σ(X,Y ), Nh⟩Nh =
n−k∑

h=1

⟨
(
∇XY

)⊥
, Nh⟩Nh =

n−k∑

h=1

⟨∇XY,Nh⟩Nh

=
n−k∑

h=1

⟨Y,−∇XNh⟩Nh.

The endomorphism Ah : TΣ → TΣ, Ah(X) = −∇XNh is called the Weingarten endomorphism,
or shape operator of Σ associated to the unit normal Nh.

For a hypersurface, there is only one unit normal vector, up to sign. We will denote by AΣ

the shape operator in this case. Thus,

|σ| = |AΣ|.

As AΣ is self-adjoint with respect to the induced metric on Σ, AΣ diagonalizes in an orthonor-
mal basis. Thus, given p ∈ Σ there exists an orthonormal basis e1, . . . en−1 of TpΣ (principal
directions) such that AΣei = kiei for some ki ∈ R (principal curvatures), i = 1, . . . , n− 1. Thus,

(n− 1)H⃗(p)
(8)
=

n−1∑

i=1

σp(ei, ei) =

n−1∑

i=1

kiNp.

Also for hypersurfaces, we define the mean curvature function as H = 1
n−1

∑n−1
i=1 ki. (Σ is

minimal if and only if H = 0). Decomposing the second fundamental form is its components
proportional to In and traceless σ0, we have

σ = H · In−1 + σ0.

Since In−1, σ0 are orthogonal in the space of symmetric matrices (pointwise), we have

|AΣ|2 = |σ|2 = (n− 1)H2 + |σ0|2 ≥ (n− 1)H2, (9)

with equality only at umbilical points.
Given a (not necessarily tangent) vector field X along a k-dimensional submanifold of a

Riemannian manifold (Mn, g), we define the divergence of X by generalization of the classical
notion of divergence for tangent vector fields to Σ:

divΣ(X) =

k∑

i=1

⟨(∇eiX), ei⟩, (10)

where e1, . . . , ek is any local orthonormal basis of TΣ.
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Lemma 4.1 Let Σ be a k-dimensional submanifold of a Riemannian manifold (Mn, g).

1. If ξ is a normal field along Σ, then divΣ(ξ) = −k⟨H⃗, ξ⟩.

2. If X is a (not necessarily tangent or normal) vector field along Σ, then divΣ(X) =
divΣ(X

T )− k⟨H⃗,X⊥⟩.

Proof. Let e1, . . . ek be a local orthonormal basis of TΣ.

divΣ(ξ)
(def.)
=

k∑

i=1

⟨(∇eiξ)
T , ei⟩ =

k∑

i=1

⟨−Aξei, ei⟩ = −
k∑

i=1

⟨σ(ei, ei), ξ⟩ = −k⟨H⃗, ξ⟩,

and we have 1. As for 2, divΣ(X)
(def.)
= divΣ(X

T ) + divΣ(X
⊥) and we conclude by using 1. 2

Lemma 4.2 A submanifold Σk of Rn is minimal if and only if its coordinate functions are
harmonic on Σ.

Proof. Let ψ : Σk ↬ Rn be an isometric immersion. Taking X = a ∈ Sn−1(1) in (10) we have
divΣ(a) = 0, hence

∆Σ⟨ψ, a⟩ = divΣ(∇Σ⟨ψ, a⟩)
Lemma 4.1(2)

= divΣ(∇⟨ψ, a⟩) + k⟨H⃗, (∇⟨ψ, a⟩)⊥⟩

= divΣ(a) + k⟨H⃗, a⊥⟩ = k⟨H⃗, a⟩. 2

Proposition 4.3 (First variation of area formula) Let Σk be a submanifold of a Rieman-
nian manifold (Mn, g), and let X be a compactly supported smooth vector field on Σ (not nec-
essarily tangent). If F : Σ × (−ε, ε) → M is a variation of Σ (i.e., F (p, 0) = p ∀p ∈ Σ) with
variational field X (∂F∂t (p, 0) = X(p), ∀p ∈ Σ), then

d

dt

∣∣∣∣
t=0

A(Ft) = −k
∫

Σ
⟨X, H⃗⟩+

∫

∂Σ
⟨X, η⟩, (11)

where Ft : Σ ↬ M , Ft(p) = F (t, p) (this is an immersion for |t| sufficiently small) and η is the
unit conormal vector pointing outwards Σ along ∂Σ.

Remark 4.4 When H⃗ ̸= 0, H⃗ gives the direction of maximal decrease of area of Σ (for example,
in the round sphere this happens in the direction that points to the center of the sphere).
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Proof. Take local coordinates (x1, . . . , xk) in Σ. Thus, { ∂F∂xi (p, t)}
k
i=1 is a basis of TFt(p)Ft(Σ) at

every (p, t). Call gij = ⟨ ∂F∂xi ,
∂F
∂xj

⟩ at each (p, t), to the coefficients of the induced metric. The

area element of Ft(Σ) is

dAFt(Σ) = G(t) dx1 ∧ . . . ∧ dxk ≡ G(t) dx,

where G(t) = det(gi,j(·, t)), hence
√
G(0) dx = dAΣ and

A(Ft) =

∫

Σ
dAFt(Σ) =

∫

Σ

√
G(t) dx =

∫

Σ

√
G(t)

√
det(gij(0)) dAΣ,

where (gij(t))i,j = (gij(t))
−1
i,j . Taking derivatives at t = 0,

d

dt

∣∣∣∣
t=0

[A(Ft)] =

∫

Σ

d

dt

∣∣∣∣
t=0

(√
G(t)

) √
det(gij(0)) dAΣ,

=

∫

Σ

1

2
√
G(0)

d

dt

∣∣∣∣
t=0

(G(t))
√
det(gij(0)) dAΣ,

(∗)
=

1

2

∫

Σ
trace

[
(g′ij(0))i,j(g

ij(0))i,j
]
dAΣ,

=
1

2

∫

Σ

k∑

i,j=1

g′ij(0)g
ij(0) dAΣ,

where in (⋆) we have used that if A(t) is a smooth curve of regular matrices, then (detA)′ =
detA · trace(A′A−1). As

g′ij(0) =
d

dt

∣∣∣∣
t=0

⟨ ∂F∂xi ,
∂F
∂xj

⟩ = ⟨∇M
∂F
∂t |t=0

∂F
∂xi
, ∂F∂xj ⟩+ ⟨ ∂F∂xi ,∇

M
∂F
∂t |t=0

∂F
∂xj

⟩,

then
k∑

i,j=1

g′ij(0)g
ij(0) = 2

k∑

i,j=1

⟨∇M
∂F
∂t |t=0

∂F
∂xi
, ∂F∂xj ⟩g

ij(0). (12)

Decompose X in its tangent and normal parts to Σ. As the derivative in the left-hand-side of
(11) is linear, we can prove (11) in two separate cases, namely X = tangent and X = normal to
Σ. In the first case, the Gauss formula allows us to write the last expression as

2

k∑

i,j=1

⟨∇Σ
∂F
∂t |t=0

∂F
∂xi
, ∂F∂xj ⟩g

ij(0).

As X is tangent to Σ, we can take X = ∂F
∂t

∣∣
t=0

as one of the vector fields in the canonical basis

associated to the local coordinates (x1, . . . , xk), thus [
∂F
∂t

∣∣
t=0

, ∂F∂xi ] = 0 and we re-write the last
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expression as

2

k∑

i,j=1

⟨∇Σ
∂F
∂xi

X, ∂F∂xj ⟩g
ij(0) = 2 divΣ(X).

Therefore, in this case X = tangent to Σ we have

d

dt

∣∣∣∣
t=0

[A(Ft)] =

∫

Σ
divΣ(X) dAΣ

(∗∗)
=
∫
∂Σ⟨X, η⟩,

where in (∗∗) we have assumed that Σ is orientable in order to apply Stokes’ theorem (this is
not strictly necessary, but we will assume it for the sake of simplicity), and we have proved (11)
in the case X = tangent to Σ.

Now suppose that X = normal to Σ. Coming back to (12), we can view (x1, . . . , xk, t) as
local coordinates in Σ× (−ε, ε), and thus [ ∂F∂t

∣∣
t=0

, ∂F∂xi ] = 0 hence we can exchange order in the
derivative variables (now in M , before in Σ) and so,

k∑

i,j=1

g′ij(0)g
ij(0) = 2

k∑

i,j=1

⟨∇M
∂F
∂xi

X, ∂F∂xj ⟩g
ij(0) =

∑k
i=1⟨∇M

∂F
∂xi

X, ∂F∂xi ⟩ = divΣ(X),

where we have taken the local coordinates in Σ in such a way that gi,j(0) = δij (the last
divergence does not require that X be tangent to Σ, see equation (10). Using Lemma 4.1,
divΣ(X) = −k⟨H⃗,X⟩ and we deduce (11). 2

Definition 4.5 A submanifold Σk of a Riemannian manifold (Mn, g) is called minimal if H⃗ = 0,
i.e., Σ is a critical point of the area functional for compactly supported variations.

Corollary 4.6 (Weak formulation of minimality) A submanifold Σk of a Riemannian man-
ifold (Mn, g) is minimal if and only if for each compactly supported smooth vector field X on Σ

such that X|∂Σ = 0, it holds

∫

Σ
divΣ(X) = 0.

Proof. We again suppose Σ is orientable in order to apply Stokes’ theorem. By Lemma 4.1, if
X is a vector field as in the statement of this corollary,

∫

Σ
divΣ(X) =

∫

Σ
divΣ(X

T )− k

∫

Σ
⟨H⃗,X⊥⟩ = −k

∫

Σ
⟨H⃗,X⊥⟩,

and the characterization of minimality follows from the L2-density of the linear space of com-
pactly supported normal vector fields that vanish on ∂Σ. 2
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Corollary 4.7 (Convex hull property) If a compact submanifold Σk of Rn is minimal, then
Σ lies in the convex hull of its boundary (in particular, ∂Σ ̸= ∅):

Σ ⊂ E(∂Σ) :=
⋂

H∈A
H,

where A = {H half-space of Rn with ∂Σ ⊂ H}.

Proof. Let H = {x ∈ Rn | ⟨x, a⟩ ≤ c} be a half-space of Rn that contains ∂Σ (a ∈ Sn−1(1),
c ∈ R). As Σ is minimal, the function f : Σ → R, f(p) = x − ⟨p, a⟩ is harmonic on Σ by
Lemma 4.2), and f |∂Σ ≥ 0 because ∂Σ ⊂ H. Using the maximum principle for harmonic
functions, we have f ≥ 0 in Σ. 2

Compactness cannot be dropped from the hypothesis of the last corollary (the exterior of a disk
in a plane of R3 is a counterexample).

5 Weierstrass representation

Suppose Σ ↬ Rn is a minimal surface. By Lemma 4.2, the coordinate functions x1, . . . , xn
of Σ are harmonic on Σ. Given p ∈ Σ, we choose a conformal parameterization (isothermal)
ψ = ψ(z) : U → ψ(U) ⊂ Σ, where U is an open subset of C. Thus, xj ◦ψ : U → R is a harmonic
function on U . Calling z = u+ iv, the Cauchy-Riemann equations imply that the function

ϕj =
∂(xj ◦ ψ)

∂u
− i

∂(xj ◦ ψ)
∂v

(13)

is holomorphic on U , and we can express the immersion up to a translation as

(xj ◦ ψ)(z) = Re

(∫ z

z0

ϕj(z) dz

)
+ cte, (14)

where in order the above integral to be well-defined, we assume that U is simply connected.
Moreover,

n∑

j=1

ϕ2j =
n∑

j=1

[(
∂(xj ◦ ψ)

∂u

)2

−
(
∂(xj ◦ ψ)

∂v

)2

− 2i
∂(xj ◦ ψ)

∂u

∂(xj ◦ ψ)
∂v

]

=

∥∥∥∥
∂ψ

∂u

∥∥∥∥
2

−
∥∥∥∥
∂ψ

∂v

∥∥∥∥
2

− 2i

〈
∂ψ

∂u
,
∂ψ

∂u

〉
= 0,

where the last equality holds because ψ is conformal. Furthermore,

n∑

j=1

|ϕj |2 =
n∑

j=1

[(
∂xj ◦ ψ)
∂u

)2

+

(
∂xj ◦ ψ)
∂v

)2
]
=

∥∥∥∥
∂ψ

∂u

∥∥∥∥
2

+

∥∥∥∥
∂ψ

∂v

∥∥∥∥
2

= 2

∥∥∥∥
∂ψ

∂u

∥∥∥∥
2

> 0.

The equivalence in Lemma 4.2 allows us to state the converse:
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Theorem 5.1 Let U be a simply connected domain in C and ϕ1, . . . , ϕn : U → C holomorphic
functions such that

∑n
j=1 ϕ

2
j = 0 and

∑n
j=1 |ϕj |2 > 0 in U . Then, the map X : U → Rn given by

X(z) =

(
Re

∫ z

z0

ϕj(z) dz

)n

i=1

(15)

is a minimal immersion from U into Rn (z0 is any point in U).

Remark 5.2 The hypothesis π1(U) = 0 in the theorem ensures that the integral in the definition
of X does not depend on the path that joins z0 with z. We can eliminate the hypothesis π1(U) =
0 by directly imposing that the integral does not depend on the path (the problem of periods
is solved), so it is possible to generalize the theorem by replacing U by an arbitrary Riemann
surface, and each holomorphic function ϕj by a holomorphic differential ϕj(z) dz globally defined
on the Riemann surface.

Let Σ ⊂ R3 be an orientable minimal surface. If (U, z = u + iv) is a local holomorphic
coordinate on Σ, then we have the holomorphic functions ϕ1, ϕ2, ϕ3 on U given by (13), that
satisfy

∑3
j=1 ϕ

2
j = 0. The induced metric on M is ds2 = λ2|dz|2, where λ =

∥∥∂X
∂u

∥∥ =
∥∥∂X
∂v

∥∥ and
X is given by (15). It is not hard to check that ϕj dz is a globally defined holomorphic 1-form
on Σ (it does not depend on the local holomorphic coordinate z).

We define

f = ϕ1 − iϕ2, g =
ϕ3
f

in U . (16)

Remark 5.3 If f ≡ 0, we must explain the above definition of g. f ≡ 0 is equivalent to
ϕ1 ≡ iϕ2, i.e., ϕ

2
1 + ϕ22 ≡ 0 or ϕ23 ≡ 0. This is equivalent to ϕ3 ≡ 0 and by (15), to the property

that Σ is contained in a horizontal plane.

For the moment we will assume that Σ is not contained in a horizontal plane, hence f ̸≡ 0. In
this case, f and g are respectively a holomorphic and a meromorphic function in U (f dz is a
holomorphic 1- form in Σ and g : Σ → C is a globally defined meromorphic function).

We can solve for ϕ1, ϕ2, ϕ3 in terms of f, g:

Lemma 5.4 In the above situation,

ϕ1 =
1

2
(1− g2)f, ϕ2 =

i

2
(1 + g2)f, ϕ3 = fg.

Proof. (ϕ1 − iϕ2)(ϕ1 + iϕ2) = ϕ21 + ϕ22 = −ϕ23 = −f2g2, hence ϕ1 + iϕ2 = − f2g2

ϕ1−iϕ2 = −f1g2

f =

−fg2. Thus, ϕ1 = 1
2 [(ϕ1 + iϕ2)+ (ϕ1 − iϕ2)] =

1
2(−fg2 + f), and we have the first formula. The

remainder is obvious. 2

Theorem 5.1 and Lemma 5.4 imply that any minimal surface Σ ⊂ R3 is determined either by the
holomorphic 1-form (ϕ1, ϕ2, ϕ3) dz or by the pair (g, f dz). The first one is called the Weierstrass
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1-form, and the second one is the Weierstrass pair of Σ. Every geometric object on Σ can be
described in therms of the Weierstrass representation. For instance, the induced metric ds2 and
the Gauss curvature K are given by

ds2 =
1

4
(1 + |g|2)2|f |2|dz|2, K = −

(
4g′

(1 + |g|2)2|f |

)2

. (17)

From the first formula above one deduces that g has a pole of order k ∈ N at p ∈ Σ if and only
if f has a zero of order 2k at p (we are assuming that Σ is not a horizontal plane). And from
the second formula we have that the zeros of K (umbilical points of Σ) are isolated if Σ is not
a piece of a plane.

The meromorphic function g has the following geometric interpretation: Consider the Gauss
map N ◦X = Xu×Xv

∥Xu×Xv∥ . Then, the expression of N in terms of the Weierstrass pair is:

N ◦X =

(
2Re(g)

1 + |g|2 ,
2Im(g)

1 + |g|2 ,
|g|2 − 1

1 + |g|2
)
, (18)

In other words, g is the composition of N with the stereographic projection from the North pole
of S2. In particular, N is a anti-conformal map. Another consequence of (18) is that if Σ is
contained in a horizontal plane, then g (defined by (18), recall that (16) does not make sense in
this case) is constant 0 or ∞.

6 Monotonicity formula. Local density of a minimal hypersur-
face

Recall the following result:

Proposition 6.1 (Co-area formula) Let (Mn, g) be a Riemannian manifold and h : M → R
a Lipschitz function such that ∀t ∈ R, h−1(−∞, t] is compact. Given an integrable function
f : M → R, we have ∫

{h≤t}
f∥∇h∥ =

∫ t

−∞

(∫

{h=τ}
f dVgτ

)
dτ, (19)

where dVgτ is the volume element of the submanifold {h = τ} with respect to the induced metric
(h is smooth almost everywhere in M since it is Lipschitz, and its regular values are dense in R
by Sard’s theorem).

If additionally ∇h only vanishes in a measure zero set of M , then

∫

{h≤t}
f =

∫ t

−∞

(∫

{h=τ}

f

∥∇h∥dVgτ

)
dτ. (20)
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In the particular case that ∥∇h∥ ≡ 1 a.e. M (for example, if h = dM (·, p0) is the distance
function to a point p0 ∈M), taking f ≡ 1 we have

Vol({h ≤ t}) =
∫ t

−∞
A({h = τ}) dτ. (21)

Lemma 6.2 Sea Σk ↬ Rn an immersed minimal submanifold and p0 ∈ Rn. Then:

1. ∆Σ(∥p− p0∥2) = 2k.

From now on, we will assume that Σ is orientable and proper in Rn \ {p0}. Let A(p0, ε, r) =
B(p0, r) \ B(p0, ε), 0 < ε < r. Then:

2. k ·Vol[Σ ∩A(p0, ε, r)] =
∫

∂[Σ∩A(p0,ε,r)]
∥(p− p0)

T ∥.

3.
d

ds
Vol[Σ ∩A(p0, ε, s)] = s

∫

Σ∩∂B(p0,s)

1

∥(p− p0)T ∥
.

4.
d

ds

(
Vol[Σ ∩A(p0, ε, s)]

sk

)
=

1

sk+1

∫

∂[Σ∩B(p0,s)]

∥(p− p0)
⊥∥2

∥(p− p0)T ∥
+

1

sk+1

∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥.

Proof.

∆Σ(∥p− p0∥2) =
n∑

i=1

∆Σ

(
(xi − xi(p0))

2
)

= 2
n∑

i=1

(xi − xi(p0))∆Σ(xi − xi(p0)) + 2
n∑

i=1

∥∇Σ(xi − xi(p0))∥2

(∗)
= 2

n∑

i=1

∥∇Σ(xi − xi(p0))∥2 = 2
n∑

i=1

∥eTi ∥2,

where in (∗) we have used Lemma 4.2 and {e1, . . . , en} is the usual basis of Rn. Let {ξk+1, . . . , ξn}
be a local orthonormal basis of (TΣ)⊥. Adding up in i = 1, . . . , n the equality 1 = ∥ei∥2 =
∥eTi ∥2 +

∑n
j=k+1⟨ei, ξj⟩2, we have

n =
n∑

i=1

∥eTi ∥2 +
n∑

i=1

n∑

j=k+1

⟨ei, ξj⟩2 =
n∑

i=1

∥eTi ∥2 +
n∑

j=k+1

(
n∑

i=1

⟨ei, ξj⟩2
)

=

n∑

i=1

∥eTi ∥2 +
n∑

j=k+1

∥ξj∥2 =
n∑

i=1

∥eTi ∥2 + (n− k),

from where
∑n

i=1 ∥eTi ∥2 = k and we deduce item 1.
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Suppose from now on that Σ is proper in Rn \ {p0} and take 0 < ε < r. By item 1,

2k ·Vol[Σ ∩A(p0, ε, r)] =
∫

Σ∩A(p0,ε,r)
∆Σ(∥p− p0∥2)) =

∫

∂r,ε

⟨∇Σ(∥p− p0∥2), η⟩,

where ∂r,ε = ∂[Σ ∩ A(p0, ε, r)] = [Σ ∩ ∂B(p0, r)] \ [Σ ∩ ∂B(p0, ε)] (we have taking into account
the orientations) and η is the outward pointing unit conormal to Σ ∩A(p0, ε, r) along ∂r,ε.

Since
⟨∇Σ(∥p− p0∥2), η⟩ = ⟨∇(∥p− p0∥2), η⟩ = 2⟨p− p0, η⟩,

we have

k ·Vol[Σ ∩A(p0, ε, r)] =
∫

∂r,ε

⟨p− p0, η⟩ =
∫

∂r,ε

⟨(p− p0)
T , η⟩. (22)

Given p ∈ ∂r,ε, TpΣ is the orthogonal direct sum of ⟨η⟩ and Tp∂[Σ∩A(p0, ε, r)] (we will suppose
that the spheres of radii ε, r centered at p0 are transversal to Σ; this is true a.e. in the radius by
Sard’s theorem). As Tp∂[Σ∩A(p0, ε, r)] ⊂ Tp∂A(p0, ε, r) = ⟨p− p0⟩⊥, we deduce that given v ∈
Tp∂[Σ∩A(p0, ε, r)], we have ⟨(p−p0)T , v⟩ = ⟨p−p0, v⟩ = 0, hence (p−p0)T ⊥ Tp∂[Σ∩A(p0, ε, r)]
and thus, (p− p0)

T is parallel to η, i.e.,

⟨(p− p0)
T , η⟩ = ∥(p− p0)

T ∥ in ∂r,ε. (23)

From (22) and (23) we directly deduce item 2.
To prove item 3 we will use the co-area formula with h = ∥p− p0∥|Σ and conclude

Vol[Σ∩A(p0, ε, s)] =
∫ s

ε

(∫

Σ∩∂B(p0,τ)

1

∥∇Σ(∥p− p0∥)∥

)
dτ =

∫ s

ε

(∫

Σ∩∂B(p0,τ)

∥p− p0∥
∥(p− p0)T ∥

)
dτ.

Taking derivatives in s,

d

ds
Vol[Σ ∩A(p0, ε, s)] =

∫

Σ∩∂B(p0,s)

∥p− p0∥
∥(p− p0)T ∥

,

and we have item 3.
As for item 4,

d

ds

(
Vol[Σ ∩A(p0, ε, s)]

sk

)
=

1

sk
d

ds
(Vol[Σ ∩A(p0, ε, s)])−

k

sk+1
Vol[Σ ∩A(p0, ε, s)]

(items 1,3)
=

1

sk−1

∫

Σ∩∂B(p0,s)

1

∥(p− p0)T ∥
− 1

sk+1

∫

∂[Σ∩A(p0,ε,s)]
∥(p− p0)

T ∥

=
1

sk−1

∫

Σ∩∂B(p0,s)

1

∥(p− p0)T ∥
− 1

sk+1

∫

∂[Σ∩B(p0,s)]
∥(p− p0)

T ∥+ 1

sk+1

∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥.
(24)
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Decomposing p − p0 in its tangent and normal parts to Σ and taking norms, ∥p − p0∥2 =
∥(p− p0)

T ∥2 + ∥(p− p0)
⊥∥2 hence

∥(p− p0)
T ∥ =

∥p− p0∥2
∥(p− p0)T ∥

− ∥(p− p0)
⊥∥2

∥(p− p0)T ∥
. (25)

From (24) and (25) we have

d

ds

(
Vol[Σ ∩A(p0, ε, s)]

sk

)
=

1

sk−1

∫

Σ∩∂B(p0,s)

1

∥(p− p0)T ∥
− 1

sk+1

∫

∂[Σ∩B(p0,s)]

∥p− p0∥2
∥(p− p0)T ∥

+
1

sk+1

∫

∂[Σ∩B(p0,s)]

∥(p− p0)
⊥∥2

∥(p− p0)T ∥
+

1

sk+1

∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥

=
1

sk+1

∫

∂[Σ∩B(p0,s)]

∥(p− p0)
⊥∥2

∥(p− p0)T ∥
+

1

sk+1

∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥.

and item 4 is proved. 2

Theorem 6.3 Let p0 ∈ Rn, Σk ↬ Rn \ {p0} a properly immersed minimal submanifold and
0 < s < t. Then:

Vol(Σ ∩A(p0, ε, t))
tk

− Vol(Σ ∩A(p0, ε, s))
sk

=

∫

Σ∩A(p0,s,t)

∥(p− p0)
⊥∥2

∥p− p0∥k+2
+

1

k

(
1

sk
− 1

tk

)∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥ ≥ 0. (26)

In particular, the function

s > ε 7→ Vol(Σ ∩A(p0, ε, s))
ωksk

is not decreasing in s, where ωk = Vol(Bk (⃗0, 1)) (unit ball in Rk).

Proof.

Vol(Σ ∩A(p0, ε, t))
tk

− Vol(Σ ∩A(p0, ε, s))
sk

=

∫ t

s

d

dτ

(
Vol[Σ ∩A(p0, ε, τ)]

τk

)
dτ

(∗)
=

∫ t

s

1

τk+1

(∫

∂[Σ∩B(p0,τ)]

∥(p− p0)
⊥∥2

∥(p− p0)T ∥

)
dτ +

∫ t

s

1

τk+1

(∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥
)
dτ,

where in (∗) we have used item 4 of Lemma 6.2. We will re-write the first integral using

that if h = ∥p − p0∥, then ∇Σh = (p−p0)T
∥p−p0∥ ; observe that the integral

∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥ is

independent of τ , hence the above displayed expression is

∫ t

s

1

τk+1

(∫

∂[Σ∩B(p0,τ)]

1

∥∇Σh∥
∥(p− p0)

⊥∥2
∥p− p0∥

)
dτ +

(∫ t

s

dτ

τk+1

)∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥
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=

∫ t

s

(∫

∂[Σ∩B(p0,τ)]

1

∥∇Σh∥
∥(p− p0)

⊥∥2
∥p− p0∥k+2

)
dτ +

1

k

(
1

sk
− 1

tk

)∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥

(∗∗)
=

∫

Σ∩A(p0,s,t)

∥(p− p0)
⊥∥2

∥p− p0∥k+2
+

1

k

(
1

sk
− 1

tk

)∫

∂[Σ∩B(p0,ε)]
∥(p− p0)

T ∥,

where in (**) we have used the co-area formula. 2

In the particular case that Σ is proper in a neighborhood of p0 with the notation of Theo-
rem 6.3, we can take ε→ 0 and obtain the classical version of the monotonicity formula (observe
that the second integral in the right-hand-side of (26) tends to zero).

Corollary 6.4 Let Σk ↬ Rn be a properly immersed minimal submanifold, p0 ∈ Rn and 0 <
s < t. Then:

Vol(Σ ∩ B(p0, t))
tk

− Vol(Σ ∩ B(p0, s))
sk

=

∫

Σ∩A(p0,s,t)

∥(p− p0)
⊥∥2

∥p− p0∥k+2
≥ 0.

In particular, the function

s > 0 7→ Vol(Σ ∩ B(p0, s))
ωksk

is not decreasing in s. Furthermore, if this function is constant, then Σ is a k-plane passing
through p0.

Proof. We only have to study what happens if s > 0 7→ Vol(Σ∩B(p0,s))
ωksk

is constant. In this case,

(p − p0)
⊥ is identically zero in A(p0, s, t) for each 0 < s < t, hence p − p0 ∈ TpΣ for every

p ∈ Σ. This tells us that Σ is invariant under every homothety centered at p0, so Σ is a cone
over Σ ∩ ∂B(p0, 1). The only way that this can happen being Σ differentiable at p0 is that Σ is
a k-plane passing through p0. 2

There are four possibilities for a point p0 ∈ Rn in terms of Corollary 6.4:

1. If p0 is not an accumulation point of Σ, then as Σ is proper in Rn \ {p0} we have Vol(Σ ∩
B(p0, s)) = 0 for s > 0 sufficiently small, hence Vol(Σ∩B(p0,s))

ωksk
= 0 for these values of s.

2. If Σ extends across p0 as an embedded surface, then Σ can be locally written as the
graph of a function of class C∞ defined in a disk of small radius in Tp0Σ, and thus,

lims→0+
Vol(Σ∩B(p0,s))

ωksk
= 1.

3. If Σ extends across p0 as an immersed surface with p0 being a point of self-intersection
with m ≥ 2 sheets (m ∈ N), we can apply to each sheet the previous case, hence

lims→0+
Vol(Σ∩B(p0,s))

ωksk
= m.
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4. If p0 is an accumulation point of Σ but we do not know if Σ extends across p0 (in this case
p0 is a singularity of Σ), then there exists the limit (called the density of Σ at p0:

Θ(p0) = Θ(Σ, p0) = lim
s→0+

Vol(Σ ∩ B(p0, s))
ωksk

≥ 0. (27)

Remark 6.5 Cases 2 and 3 above also can be seen as particular cases of 4, and in those cases
the density of Σ at p0 is 1 and m, respectively.

There is an intrinsic version of the monotonicity formula, due to Yau [23, §7]. Although it is
valid for Cartan-Hadamard manifolds of every dimension, we will only see here the case of the
ambient space being R3.

Proposition 6.6 Let Σ be a complete, immersed minimal surface in R3 and p0 ∈ Σ. Then, the
function

s > 0 7→ Area(BΣ(p0, s))

πs2

is non-decreasing in s, where BΣ(p0, s) denotes the intrinsic ball in Σ centered at p0 with radius
s. Furthermore, if this last function is constant, then Σ is a plane.

Proof. Consider the function p ∈ Σ 7→ ∥p− p0∥2. By item 1 of Lemma 6.2, ∆Σ(∥p− p0∥2) = 4.
Using the divergence theorem in BΣ(p0, s) (we can assume that the boundary of this ball is
smooth by Sard’s theorem),

4 Area(BΣ(p0, s)) =

∫

BΣ(p0,s)
∆Σ(∥p− p0∥2) =

∫

∂BΣ(p0,s)
⟨∇Σ(∥p− p0∥2), η⟩,

where η is the outward pointing unit conormal vector to BΣ(p0, s) along its boundary. Moreover,

∫

∂BΣ(p0,s)
⟨∇Σ(∥p− p0∥2), η⟩ = 2

∫

∂BΣ(p0,s)
∥p− p0∥⟨∇Σ(∥p− p0∥), η⟩

(A)

≤ 2s

∫

∂BΣ(p0,s)
∥∇Σ(∥p− p0∥)∥

(B)

≤ 2s

∫

∂BΣ(p0,s)
∥∇(∥p− p0∥)∥

= 2s Length(∂BΣ(p0, s)),

where in (A) we have used that BΣ(p0, s) ⊂ B(p0, s). Thus,

2 Area(BΣ(p0, s)) ≤ s Length(∂BΣ(p0, s)). (28)
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Hence,

d

ds

(
Area[BΣ(p0, s)]

s2

)
=

1

s3

[
s
d

ds
(Area[BΣ(p0, s)])− 2Area[BΣ(p0, s)]

]

=
1

s3
[s Length(∂BΣ(p0, s))− 2Area[BΣ(p0, s)]] ,

which is non-negative by (28). This proves that s 7→ 1
s2
Area[BΣ(p0, s)] is non-decreasing. If

this function is constant, the above computation leads us to equality in (A) and (B) a.e. in s.
Equality in (B) implies that Σ contains each straight line passing through p0, thus Σ is a cone
with vertex at p0. As Σ is smooth, it must be plane. 2

7 A Theorem by Ekholm, White and Wienholtz

Definition 7.1 If Γ ⊂ R3 is a Jordan curve of class C2 with arclength parameter s and curvature
κ(s), its total curvature is the number

C(Γ) =

∫

Γ
κ(s) ds.

By Fenchel’s Theorem, C(Γ) ≥ 2π with equality if and only if Γ is a planar convex curve. If
moreover Γ is a knot2, then C(Γ) > 4π by Fary-Milnor’s Theorem.

Theorem 7.2 (Ekholm, White, Wienholtz, 2002) Let Γ ⊂ R3 be a Jordan curve of class
C2 with total curvature C(Γ) ≤ 4π. Let M ↬ R2 be a compact, immersed minimal surface with
boundary Γ. Then, M is embedded.

Remark 7.3 The bound 4π in Theorem 7.2 is sharp: there exist Jordan curves Γε with C(Γε) =
4π + ε and compact, non-embedded minimal surfaces Mε ↬ R2 with ∂Mε = Γε for every ε > 0
arbitrarily small: consider a circle in {z = 0} traveled two times (hence with total curvature
4π) and perturb this immersed closed curve Γ0 by a Jordan curve Γε with C(Γε) = 4π + ε, in
such a way that Γε is a knot, as in Figure 6, arbitrarily close to Γ0. The solution of the Plateau
problem with boundary Γε (which exists by the results in Section 8) is a non-embedded surface
because Γε is a knot.

Proof. [of Theorem 7.2]
By simplicity, we will give a proof assuming that the total curvature of Γ is strictly less than
4π.

Take p ∈ M \ Γ. We can assume that Γ ∩ B(p, 1) = ∅ after a homothety, which does not
change the total curvature of Γ. Define

C = Conep(Γ) = {p+t(x−p) | x ∈ Γ, t ∈ [0, 1]}, E = Coneextp (Γ) = {p+t(x−p) | x ∈ Γ, t ≥ 1}.
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Γε

Figure 6: The bound 4π in Theorem 7.2 is sharp.

p
Γ

C = Conep(Γ)

E = Coneextp (Γ)

1

Figure 7: Cone and exterior cone with respect to a point.

Consider the topological surface without boundary M̃ =M ∪E. We will prove the theorem
assuming the next proposition holds, and after this we will prove the proposition.

Proposition 7.4 (Generalized monotonicity formula) The function

s > 0 7→ A(M̃ ∩ B(p, r))
πr2

is non-decreasing in r.

The proof of Theorem 7.2 has three steps:

1. If p ∈M \ Γ, then Θ(M,p) ≤ Θ(C, p) (with the notation of (27)).

2. Θ(C, p) ≤ 1
2π

∫
Γ κ(s) ds.

3. If p ∈ M is a self-intersection point of M , then 2 ≤ Θ(M,p) ≤ Θ(C), p) ≤ 1
2π

∫
Γ κ(s) ds <

4π
2π = 2, which is a contradiction.

It remains to prove steps 1 and 2 above, which will be done in two lemmas and in Proposition 7.4.

2There is no continuous injective map ψ : D(0, 1) → R3 such that ψ|S1 : Γ → Γ is a homeomorphism.
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Lemma 7.5 If p ∈M \ Γ, then Θ(M,p) ≤ Θ(C, p).

Proof. Let β ⊂ S2(1) be the curve obtained by intersecting C with S2(1). Let r ∈ (0, 1) and
h(q) = ∥q − p∥, q ∈ R3 \ {p}. By the co-area formula,

A[C ∩ B(p, r)] =
∫ r

0

(∫

{h=t}

dst
∥∇Ch∥

)
dt.

Since ∇Ch = ∇h = q−p
∥q−p∥ is unitary, we have

A[C ∩ B(p, r)] =
∫ r

0
L({h = t}) dt =

∫ r

0
L(tβ) dt =

∫ r

0
tL(β) dt = L(β)

∫ r

0
t dt = L(β)

r2

2
.

Thus,

Θ(C, p) = lim
r→0+

A[C ∩ B(p, r)]
πr2

= lim
r→0+

L(β) r
2

2

πr2
=
L(β)

2π
. (29)

As E∩B(p, 1) = ∅, we haveM∩B(p, r) = M̃∩B(p, r) for every r ∈ (0, 1), hence A[M∩B(p, r)] =
A[M̃ ∩ B(p, r)] for every r ∈ (0, 1). This implies

Θ(M,p) = lim
r→0+

A[M̃ ∩ B(p, r)]
πr2

(Proposition 7.4)
≤ lim

R→∞

A[M̃ ∩ B(p,R)]
πR2

. (30)

To compute the limit in the right-hand-side of (30), we can replace a compact part of M̃ and
the limit remains unchanged. For example, let us consider the exterior cone over β:

M̃1 = Coneextp (β) = {p+ t(x− p) | x ∈ β, t ≥ 1}.

Then,

lim
R→∞

A[M̃ ∩ B(p,R)]
πR2

= lim
R→∞

A[M̃1 ∩ B(p,R)]
πR2

.

Again by the co-area formula, if R > 1 then

A[M̃1 ∩ B(p,R)] =
∫ R

1

(∫

{h=t}

dst
|∇

M̃1
h|

)
dt =

∫ R

1
L({h = t}) dt

=

∫ R

1
L(tβ) dt =

∫ r

1
tL(β) dt = L(β)

∫ r

1
t dt = L(β)

R2 − 1

2
.

Hence,

lim
R→∞

A[M̃1 ∩ B(p,R)]
πR2

= lim
R→∞

L(β)R
2−1
2

πR2
=
L(β)

2π
. (31)

And the lemma follows from (30), (31) and (29). 2
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Lemma 7.6 Θ(C, p) ≤ 1

2π

∫

Γ
κ(s) ds.

Proof. By (29), it suffices to show that L(β) ≤
∫
Γ κ(s) ds. Let Σ be the portion of M̃1 bounded

by β and Γ. By Gauss-Bonnet (observe that Σ is flat),

∫

Γ
κΣg +

∫

β
κΣg = 2πχ(Σ) = 0, (32)

where κΣg denotes the geodesic curvature of the corresponding curve in Σ. If u is the arclength

parameter of β and · = d
du , the Gauss equation for Σ tells us that

β̈ = ∇Σ
β̇
β̇ + σΣ(β̇, β̇) = κΣg β + κΣnN

Σ
β , (33)

where κΣn is the normal curvature of β in Σ and NΣ is the Gauss map of Σ.
The Gauss equation for S2(p, 1) allows us to write

β̈ = ∇S2(p,1)
β̇

β̇ + σS
2(p,1)(β̇, β̇) = κS

2(p,1)
g NΣ

β − ∥β̇∥2β = κS
2(p,1)
g NΣ

β − β. (34)

Comparing (33) and (34) we obtain κΣg = −1 (y κΣn = κ
S2(1)
g ), hence

L(β) =

∫

β
du = −

∫

β
κΣg du

(32)
=

∫

Γ
κΣg ds ≤

∫

Γ
|κΣg |ds ≤

∫

Γ
∥Γ′′∥ ds =

∫

β
κ(s) ds,

and the lemma is proved. 2

We now prove Proposition 7.4. The argument is analogous to that of the original proof of the
monotonicity formula for minimal surfaces. For this reason, we will give a different proof, valid
in the case that M̃ minimizes area, i.e., each compact piece of M̃ is a minimum for the area
among all compact surfaces with the same boundary (although the proposition remains true
without this additional hypothesis).

Take r > 0. As the cone Cr with vertex at p and base curve M̃ ∩S2(p, r) is a compact surface

with the same boundary as M̃ ∩B(p, r) and we are assuming that M̃ is area-minimizing, it holds

A[M̃∩B(p, r)] ≤ A(Cr) =

∫ r

0

(∫

{h=t}

dst
∥∇Crh∥

)
dt =

∫ r

0

(∫

{h=t}
dst

)
dt =

∫ r

0
L[Cr∩{h = t}] dt,

where h(q) = ∥q − p∥. But Cr ∩ {h = t} is the image of M̃ ∩ S2(p, r) under the homothety of
factor t/r centered at p, hence the last integral equals

∫ r

0

t

r
L[M̃ ∩ S2(p, r)] dt = L[M̃ ∩ S2(p, r)]

∫ r

0

t

r
dt =

r

2
L[M̃ ∩ S2(p, r)].
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By the co-area formula, we have

d

dr

(
A[M̃ ∩ B(p, r)]

)
=

∫

{h=r}

dsr
∥∇

M̃
h∥

(∗)
≥ L[M̃ ∩ S(p, r)],

where in (∗) we have used that ∥∇
M̃
h∥ ≤ 1 (M̃ contains M). Thus,

A[M̃ ∩ B(p, r)] ≤ r

2
L[M̃ ∩ S2(p, r)] ≤ r

2

d

dr

(
A[M̃ ∩ B(p, r)]

)
,

which implies
d

dr

(
A[M̃ ∩ B(p, r)]

r2

)
≥ 0. 2

8 The Douglas-Radó solution to the Plateau problem for disks

Consider the Plateau problem for disks (proposed by J.A.F. Plateau3 in 1873):

Let Γ ⊂ Rn be a rectifiable Jordan curve (there exists a Lipschitz embedding ψ : S1 →
Γ). ¿Is there a Lipschitz map ϕ : D = {x2 + y2 ≤ 1} → Rn such that ϕ|S1 is a
parameterization of Γ and A(ϕ(D)) ≤ A(ψ(D)) for every Lipschitz map ψ : D → Rn
such that ψ|S1 parameterizes Γ?

Some comments on the previous problem:

1. A rectifiable Jordan curve G can span more than one minimal surface, even with different
topology (Figure 8).

Γ1 Γ2

Figure 8: Γ1 bounds at least two minimum disks, one with less area than the other. Γ2 bounds
at least two minimum disks, both with the same area. Also, Γ2 bounds one surface of genus 1,
of smaller area than the previous ones.
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Figure 9: Γ is a rectifiable Jordan curve (finiteness of its length is guaranteed by the summability
of a series) that bounds infinitely many minimal surfaces, that can be constructed of arbitrary
finite genus, or even with infinite genus (monster surface).

2. A rectifiable Jordan curve Γ can bound infinitely many minimal surfaces, with infinitely many
different topological types, and can even bound a minimal surface of infinite genus (Figure 9).

3. A rectifiable Jordan curve Γ could be the boundary of a non-orientable minimal surface. If Γ
is a knot, Γ cannot be boundary of an embedded surface, but it can bound an non-embedded
minimal surface (and even non-orientable, see Figure 10).

Figure 10: Left: Γ bounds a minimal Möbius band. Right: Γ is a knot and bounds a non-
embedded and non-orientable minimal surface.

4. The rectifiability hypothesis on Γ is necessary: there exists a non-rectifiable Jordan curve
Γ ⊂ R3 (equivalently, of infinite length) which is not the boundary of any disk with finite
area.

5. The minimum area among all surfaces with boundary a rectifiable Jordan curve Γ may not
be a surface (it is always a rectifiable current of dimension 2): let us take Γ as a perturbation
of a circle traveled 3 times (Figure 11). If we intersect Γ with a transversal disk D we will

3Indeed, Plateau was looking for minimal disks whose boundary is a prescribed Jordan curve, not necessarily
area-minimizing.
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produce 3 points A,B,C, and when rotating D around Γ, these points spin around each other

like the permutation

(
1 2 3
3 1 2

)
, so that when we turn D once along Γ, the points rotate an

angle 2π/3 in D. To imagine the minimizer of the area with boundary Γ, observe that given 3
points not aligned in R2, the configuration C of curves linking the three points that minimizes
the length is formed by 3 line segments with a common vertex where the segments form (2
to 2) an angle of 2π/3. C is an example of non-smooth solution of a length minimization
problem. The ‘solution’ M of the Plateau problem for the curve Γ is a 2-dimensional current
that cuts each disc D in a figure like the C on the plane.

Γ
A

B

C

D

A
B

C

Figure 11: The minimum for the area with boundary a Jordan curve Γ can be a 2-dimensional
current that is not a surface.

Theorem 8.1 (Douglas-Radó) If Γ ⊂ Rn is a rectifiable Jordan curve, there exists a Lipschitz
map ϕ : D = {x2 + y2 ≤ 1} → Rn such that ϕ|S1 is a parameterization of Γ and A(ϕ(D)) ≤
A(ψ(D)) for every Lipschitz map ψ : D → Rn such that ψ|S1 parameterizes Γ.

Remark 8.2 1. Osserman, Gulliver and Alt proved that ϕ|Int(D) is an immersion.

2. It can happen that the minimum of the area among ALL surfaces (without restricting the
topology to disks) with boundary Γ exists but it is not a disk (Figures 11 and 12).

Figure 12: Left: Minimal disk bounded by Γ. Right: The least area surface bounded by Γ is
not a disk.

32



Before starting the proof of Theorem 8.1, let us make some considerations. Let Γ ⊂ Rn be
a rectifiable Jordan curve. Define the set

XΓ = {ψ : D2 → Rn | ψ is Lipschitz and ψ|S1 parameterizes monotonically Γ},

where by parameterizing monotonically Γ we mean that when moving the parameter θ in S1
monotonically, ψ(θ) travels along Γ in a non-decreasing way; that is, ψ(θ) cannot turn back but
could remain constant at some interval of S1. Rigorously, we are imposing that ψ|S1 : S1 → Γ
is onto and that (ψ|S1)−1(C) is connected for each connected subset C of Γ. In particular,
ψ|S1 : S1 → Γ does not need to be a homeomorphism (it is not necessarily injective). This
generalization of the notion of monotonicity is reasonable because we will take limits on a
sequence of maps inXΓ whose areas decrease to the infimum of the area inXΓ, and the injectivity
condition on the boundary of the elements in the sequence could be lost when passing to the
limit.

The family XG is not empty: let us take p ∈ Γ and consider the cone over Γ with vertex p,
which has finite area by the co-area formula. It is possible to parameterize this cone by a map
in XΓ.

Consider the area functional

A : XΓ → [0,∞), A(ψ) =

∫

D
Jac(ψ) dxdy, (35)

where Jac(ψ) =
√

∥ψx∥2∥ψy∥2 − ⟨ψx, ψy⟩2.
Since A is bounded from below in XΓ, there exists

a(Γ) := inf
ψ∈XΓ

A(ψ) ∈ (0,∞). (36)

Now we can restate the theorem as:

Theorem 8.3 (Douglas-Radó) If Γ ⊂ Rn is a rectifiable Jordan curve, then there exists
ϕ ∈ XΓ such that A(ϕ) = a(Γ).

The first idea that comes to us to prove Theorem 8.1 is to consider a sequence {ψk}k ⊂ XΓ

with A(ψk) ↘ a(Γ) (in the sequel, aminimizing sequence) and wonder if we can find a convergent
subsequence of {ψk}k to a limit ϕ ∈ XΓ with A(ϕ) = a(Γ). This idea does not work, for two
reasons:

1. (Geometric reason). Let us take Γ = S1 ⊂ {z = 0} in R3, so that a(Γ) = π, attained in XΓ

only by the closed disk D ⊂ {z = 0}. It is possible to construct immersions ψk ∈ XΓ with
A(ψk) = π + 1

k , whose image is arbitrarily close to D except in k arbitrarily thin vertical
‘tentacles’ over k points in D (see Figure 13). In addition, it is possible to construct the
ψk in such a way that {ψk(D)}k is dense in R3 (taking the tentacles in an appropriate way,
not necessarily vertical). Hence we will not be able to find any subsequence of {ψk}k that
converges to the desired limit.
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Figure 13: Figures taken from [13].

2. (Non-geometric reason). Let us take a sequence of diffeomorphisms fk : D → D. If {ψk}k ⊂
XΓ is a minimizing sequence, then {ψk ◦ fk}k ⊂ XΓ is also a minimizing sequence (the
area is invariant under reparameterizations). Since the group of diffeomorphisms of D is
non-compact, it is not expected to be able to take a convergent subsequence of {ψk ◦ fk}k.

The second issue above comes from the invariance of the area under reparameterizations.
This is one of the reasons why we will replace area by energy, in the same way it is done with
length and energy when studying geodesics in a Riemannian manifold.

Definition 8.4 Given X ∈ XΓ, define

Energy(ψ) = E(ψ) =

∫

D
|dψ|2 =

∫

D

(
∥ψx∥2 + ∥ψy∥2

)
.

Lemma 8.5 2A(ψ) ≤ E(ψ), ∀ψ ∈ XΓ. Moreover, equality holds if and only if ψ is conformal
a.e. in D.

Proof. 2∥ψx×ψy∥ = 2∥ψx∥∥ψy∥| sin∢(ψx, ψy)| ≤ 2∥ψx∥∥ψy∥ = − (∥ψx∥ − ∥ψy∥)2+
(
∥ψx∥2 + ∥ψy∥2

)
≤

∥ψx∥2+∥ψy∥2. Equality in the lemma follows from analyzing when the above inequalities become
equalities. 2

Define
b(Γ) := inf

ψ∈XΓ

E(ψ) ∈ (0,∞).

Proposition 8.6 In the above situation, 2a(Γ) = b(Γ).
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Proof. Taking infimum in XΓ, Lemma 8.5 gives that 2a(Γ) ≤ b(Γ).
Reciprocally, take {ψk}k ⊂ XΓ such that A(ψk) ↘ a(Γ). We can assume that ψk is C2, by

a density argument. Assume the following property holds:

(P) Given k ∈ N, there exists a diffeomorphism fk from D to itself such that E(ψk ◦ fk) ≤
2A(ψk) +

1
k .

Then, b(Γ) ≤ E(ψk ◦ fk) ≤ 2A(ψk) +
1
k , hence taking k → ∞ we have b(Γ) ≤ 2a(Γ).

Next we prove property (P). Given r > 0, define

ψk,r : D → Rn+2, ψk,r(x, y) = (ψk(x, y), rx, ry) .

ψk,r is injective, of class C
2, and A(ψk,r), E(ψk,r) depend continuously on r. In particular, there

exists ε > 0 such that ∀r ∈ (0, ε),

|A(ψk,r)−A(ψk)| <
1

k
. (37)

As ψk,r(D) is an embedded disk in Rn+2, the induced metric by ψk,r in D is Riemannian,
hence it admits isothermal coordinates. Thus, there exists fk : D → D such that ψk,r := ψk,r ◦kn
is conformal. Therefore, Lemma 8.5 implies

E(ψk,r) = 2A(ψk,r)
(∗)
= 2A(ψk,r), (38)

where in (∗) we have used the invariance of area under reparameterizations. From (37) and (38)
we have that ∀r ∈ (0, ε),

lim
k→∞

E(ψk,r) = 2 lim
k→∞

A(ψk,r) = 2 lim
k→∞

A(ψk) = 2a(Γ). (39)

On the other hand, ψk,r(x, y) = (ψk,r(fk(x, y)), r fk(x, y)), hence by definition of energy,

E(ψk ◦ fk) ≤ E(ψk,r), (40)

thus

limE(ψk ◦ fk) ≤ lim
k→∞

E(ψk,r)
(39)
= 2a(Γ).

As ψk ◦ fk ∈ XΓ for each k, the above inequality implies b(Γ) ≤ limE(ψk ◦ fk) ≤ 2a(Γ). 2

Remark 8.7 Note that from the above proof we deduce that if {ψk}n ⊂ XΓ satisfies A(Γk) ↘
a(Γ), then limE(ψk ◦ fk) = b(Γ).

We can argue similarly with the lim inf: from (40) we have

limE(ψk ◦ fk) ≤ lim
k→∞

E(ψk,r)
(39)
= 2a(Γ) = b(Γ),

and since ψk ◦ fk ∈ XΓ for each k, then b(Γ) ≤ limE(ψn ◦ fn) ≤ b(Γ). Thus, there exists the
limit of E(ψk ◦ fk) and equals b(Γ) = 2a(Γ).
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We want to prove Theorem 8.3. Let us take a rectifiable Jordan curve Γ ⊂ Rn and a
minimizing sequence {ψk}k ⊂ XΓ with A(ψn) ↘ a(Γ). By the proof of Proposition 8.6, we can
exchange every ψk by the composition of ψk with a diffeomorphism of D (denoted in the same
way) so that E(ψk) converges to 2a(Γ) (and A(ψk) still converges to a(Γ), because the area is
invariant by reparameterizations).

For k ∈ N fixed, ψk|S1 is a Lipschitz map taking values in Rn. Applying to each component
of ψk|S1 the usual minimization of the Rayleigh quotient for the laplacian (we are using that
the first eigenvalue of the laplacian in D is strictly positive), we conclude that there exists a
harmonic extension fk ∈ H1(D,Rn) ∩ C0(D,Rn) of ψk|S1 , i.e.,

{
∆fk = 0 in D,
fk = ψk in S1,

such that fk minimizes energy among all functions in H1(D,Rn) ∩ C0(D,Rn) with boundary
values ψk|S1 . As fk ∈ XΓ, we have

2a(Γ) ≤ 2A(fk)
(Lemma 8.5)

≤ E(fk) ≤ E(ψk).

Taking limits we deduce that E(fk) converges to 2a(Γ) and A(fk) converges to a(Γ).
The next step consists of finding a convergent subsequence of {fk}k. To do this, we will

normalize the above construction in the following way: Fix points a, b, c ∈ S1 and A,B,C ∈∈ Γ
(different).

Lemma 8.8 For each k ∈ N, there exists a Möbius transformation gk : D → D such that

(fk ◦ gk)(a) = A, (fk ◦ gk)(b) = B, (fk ◦ gk)(c) = C.

Proof. It is well-known that if z1, z2, z3 ∈ S1 are distinct points and w1, w2, w3 ∈ S1 are also
distinct, there exists a unique Möbius transformation g : D → D such that g(zj) = wj , j = 1, 2, 3.
For k ∈ N fixed, as fk|S1 : S1 → Γ is onto, there exist w1, w2, w3 ∈ S1 such that

fk(w1) = A, fk(w2) = B, fk(w3) = C.

Moreover, we can take w1, w2, w3 distinct because A,B,C are different and fk|S1 is monotone in
the sense of the definition of XΓ. Thus, there exists a a unique Möbius transformation g : D → D
such that g(zj) = wj , j = 1, 2, 3, and the lemma is proved. 2

Since gk is conformal, Lemma 8.5 implies that E(fk) = E(fk◦gk). Hence E(fk◦gk) converges
to 2a(Γ) and A(fk ◦ gk) converges to a(Γ).

Lemma 8.9 In the above situation, {(fk ◦ gk)|S1}k is equicontinuous: given ε > 0, there exists
δ > 0 such that if z1, z2 ∈ S1 satisfy |z1 − z2| < δ, then |(fk ◦ gk)(z1)− (fk ◦ gk)(z2)| < ε.
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Proof. Before proving Lemma 8.9 we will need the following result, that shows how the energy
controls the local dilatation of a map.

Lemma 8.10 (Courant-Lebesgue) Given E0 > 0, a Lipschitz map f : D → Rn with E(f) ≤
E0, p ∈ D and R ∈ (0, 1), there exists r ∈ [R,

√
R] such that if L(r) denotes the length of

f(C(p, r) ∩ D), then

L(r)2 ≤ 4πE(f)

log(1/R)
≤ 4πE0

log(1/R)
.

Proof. Since the function

ρ ∈ [R,
√
R] 7→ L(ρ) = Length[f(C(p, ρ) ∩ D)]

is continuous, it achieves a minimum in the compact set [R,
√
R]. Thus, there exists r ∈ [R,

√
R]

such that L(r) ≤ L(ρ) for all ρ ∈ [R,
√
R].

Calling s to the arclength parameter of f(C(p, ρ) ∩ D) and using Schwarz’ inequality, we
have:

L(r)2 ≤ L(ρ)2 =

(∫

C(p,ρ)∩D

∥∥∥∂f∂s
∥∥∥ds
)2

≤ Length[C(p, ρ) ∩ D]
∫

C(p,ρ)∩D

∥∥∥∂f∂s
∥∥∥
2
ds ≤ 2πρ

∫

C(p,ρ)∩D

∥∥∥∂f∂s
∥∥∥
2
ds.

Dividing by ρ and integrating from R to
√
R,

∫ √
R

R

L(r)2

ρ
dρ ≤ 2π

∫ √
R

R

(∫

C(p,ρ)∩D

∥∥∥∂f∂s
∥∥∥
2
ds

)
dρ. (41)

The integral of the left-hand-side of (41) is L(r)2 log(1/
√
R) = L(r)2

2 log(1/R), hence

L(r)2 ≤ 4π

log(1/R)

∫ √
R

R

(∫

C(p,ρ)∩D

∥∥∥∂f∂s
∥∥∥
2
ds

)
dρ ≤ 4π

log(1/R)
E(f).

2

We now come back to the proof of Lemma 8.9. As Γ is a Jordan curve in Rn, the chord-arc
ratio is bounded in Γ. More precisely, given ε > 0, there exists λ = λ(ε) only depending on Γ
such that for any P,Q ∈ Γ with 0 < |P−Q| < λ, P,Q separate Γ into two arcs Γ1(P,Q),Γ2(P,Q)
such that the diameter in Rn of Γ1(P,Q) is less than ε.

Now take
ε ∈ (0,min{|A−B|, |A− C|, |B − C|}) , (42)
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which produces a λ = λ(ε) > 0 with the above chord-arc property. In particular, Γ1(P,Q) con-
tains at most one of the pointsA,B,C (if for instance Γ1(P,Q) containsA,B, then diam(Γ1(P,Q) ≥
|A−B| > ε, which is a contradiction).

Take δ0 ∈ (0, 1) such that

2
√
δ0 < min{|a− b|, |a− c|, |b− c|}. (43)

Let E0 > 0 be an upper bound of E(fk ◦ gk) for each k ∈ N (recall that E(fk ◦ gk) converges to
2a(Γ)). Since the function

R > 0 7→
(

4πE0

log(1/R)

)1/2

tends to 0+ as R↘ 0, there exists R = R(ε) ∈ (0, δ0) such that
(

4πE0

log(1/R)

)1/2

< λ(ε). (44)

Now take z0 ∈ ∂D. Applying Lemma 8.10 to fk ◦ gk with p = z0 and with the number R
we have just obtained, we deduce that there exists r ∈ [R,

√
R] satisfying the inequality of the

Courant-Lebesgue Lemma. Thus, if z, z′ are the intersection points of ∂B(z0, r) with S1, then

∥(fk ◦ gk)(z)− (fk ◦ gk)(z′)∥ ≤ L(r)
(Lemma 8.10)

≤
(

4πE0

log(1/R)

)1/2 (44)
< λ(ε).

Therefore, the above chord-arc property of Γ ensures that

diam Γ1

(
(fk ◦ gk)(z), (fk ◦ gk)(z′)

)
< ε, (45)

and thus, Γ1 ((fk ◦ gk)(z), (fk ◦ gk)(z′)) only contains one of the points A,B,C.
Consider the arc (fk ◦ gk)

(
B(z0, r) ∩ S1

)
⊂ Γ, that satisfies the following properties:

(P1) (fk ◦ gk)
(
B(z0, r) ∩ S1

)
has the same extrema as Γ1 ((fk ◦ gk)(z), (fk ◦ gk)(z′)) (by con-

struction).

(P2) (fk ◦ gk)
(
B(z0, r) ∩ S1

)
only contains one of the points A,B,C (this follows from 0 < r ≤√

R <
√
δ0 < 2

√
δ0 and from (43)).

As Γ1 ((fk ◦ gk)(z), (fk ◦ gk)(z′)) also satisfies properties (P1) and (P2) above, we deduce that

(fk ◦ gk)
(
B(z0, r) ∩ S1

)
= Γ1

(
(fk ◦ gk)(z), (fk ◦ gk)(z′)

)
. (46)

Finally, given w,w′ ∈ B(z0, r) ∩ S1), from (46) we have

(fk ◦ gk)(w), (fk ◦ gk)(w′) ∈ Γ1

(
(fk ◦ gk)(z), (fk ◦ gk)(z′)

)
,

hence (45) implies ∥(fk ◦ gk)(w) − (fk ◦ gk)(w′)∥ < ε. This proves the equicontinuity of {(fk ◦
gk)|S1}k (the dependence on z0 ∈ S1 can be ruled out taking a finite number of these points on
S1 by compactness and using that r does not depend on z0). Now Lemma 8.9 is proved. 2
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Lemma 8.11 There exists f ∈ XΓ and a subsequence of {fk ◦ gk}k that converges on compact
subsets of D to f .

Proof. Note that given k, h ∈ N, (fk ◦gk)− (fh ◦gh) is harmonic in D and continuous in D, hence

∥(fk ◦ gk)− (fh ◦ gh)∥L∞(D) = ∥(fk ◦ gk)− (fh ◦ gh)∥L∞(S1) (47)

(maximum norm). By Lemma 8.9 and Arzelá-Ascoli theorem, {(fk ◦ gk)|S1}k is relatively com-
pact in C0(S1,Γ). Thus, after passing to a subsequence (denoted in the same way), we have that
(fk ◦ gk)|S1 converges to a continuous function from S1 to Γ in maximum norm, and this limit
is Lipschitz in S1 (because there is a common bound for the Lipschitz constants of (fk ◦ gk)|S1).
Thus, for k, h large enough in this subsequence, the right-hand-side of (47) can be made ar-
bitrarily small. Therefore, given K ⊂ D compact, ∥(fk ◦ gk) − (fh ◦ gh)∥L∞(K) can be made
arbitrarily small if k, h are large, i.e. {(fk ◦ gk)|K}k is a Cauchy sequence with the maximum
norm. Thus, {(fk ◦ gk)|K}k converges to a harmonic function f : K → Rn. Moving the compact
set K in an increasing sequence whose union is D and using a diagonal argument, we produce a
harmonic map f : D → Rn that is the limit on compact subsets of D of (fk ◦ gk)|S1 as k → ∞. In
addition, f extends continuously to S1 as the limit of the restrictions of (fk ◦ gk)|S1 as k → ∞.
From here it is not difficult to verify that f ∈ XΓ and the Lemma is proved. 2

Now we can finish the proof of the Theorem by Douglas and Radó: If f ∈ XΓ is the map given
by Lemma 8.11, then given a compact set K ⊂ D,

A(f |K) = lim
k→∞

A((fk ◦ gk)|K) ≤ lim
k→∞

A(fk ◦ gk) = a(Γ),

hence the dominated convergence theorem implies that A(f) = a(Γ), which finishes the proof of
the theorem. 2

Let us see some properties of the Douglas-Radó solution to the Plateau problem for disks.
Until the end of this section, Γ ⊂ Rn will denote a rectifiable Jordan curve and f : D → Rn a
Lipschitz map, harmonic in D, with E(f) = 2A(f) = 2a(Γ). In particular, f is conformal in D
by Lemma 8.5. In addition, f |S1 : S1 → Γ is a monotone non-decreasing parameterization of Γ.

Lemma 8.12 Let A = {w ∈ D | (Jacf)(w) = 0} (points in A are called ramification points of
f). Then, A has no accumulation points in D.

Proof. Take w = x + iy ∈ A. As dfw is not injective and ∥fx∥ = ∥fy∥, ⟨fx, fy⟩ = 0, we have
dfw = 0. If we write f = (f1, . . . , fn) in its components, then ∥fx(w)∥2 = 0 writes as

[f1x(w)]
2 + . . .+ [fnx (w)]

2 = 0.
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(and we can replace x by y in this last equation). On the other hand, as f is harmonic in D we
have ∆fk = 0 for each k = 1, . . . , n, hence by the Cauchy-Riemann equations

fkx − ifky is holomorphic in D, ∀k = 1, . . . , n.

A point w lies in A if and only if fkx − ifky vanishes at w. Since fkx − ifky is holomorphic and
not constantly zero (if identically zero, f would be constant in D, a contradiction), the identity
principle for holomorphic functions implies that A has no accumulation points in D. 2

Lemma 8.13 f |S1 : S1 → Γ is a homeomorphism.

Proof. Arguing by contradiction, suppose that there exists a non-trivial interval β ⊂ S1 such
that f(β) is a point of Γ. Take a circular domain E ⊂ D, topologically a disk, whose boundary
is the union of a circle arc contained in β and another one contained in D. Let φ be a Möbius
transformation mapping D onto the open upper half-plane C+ ⊂ C. The image of E will be
a half-disk contained in C+, with a connected portion of its boundary contained in ∂C+ (see
Figure 14).

D

Eβ

β

E

ϕ

Figure 14: φ is a Möbius transformation.

After composing f with φ (we will not change the notation) and translating the image in
Rn, we can suppose that the restriction of f to the half-disk E maps the segment β ⊂ ∂C+ into
0⃗ ∈ Rn. This implies that each component fk of f is identically zero on β. As fk is harmonic,
we can extend fk to the lower half-disk E∗ = {w | w ∈ E} by fk(x, y) = fk(x,−y), ∀(x, y) ∈ E∗.
Thus we have a real-valued function fk defined in the disk E ∪ E∗ ∪ (β ∩ ∂E). fk will be the
real part of a holomorphic function hk : E ∪ E∗ ∪ (β ∩ ∂E) → C.

As ∇fk = 0 on β ∩ ∂E, we conclude that the derivative of hk vanishes in β ∩ ∂E. By the
identity principle for holomorphic functions, we have that hk is constant in E ∪E∗ ∪ (β ∩ ∂E),
and thus fk is constant in E. Doing this for k = 1, . . . , n we deduce that f is constant in
E and thus, f is constant in D (by the identity principle for harmonic functions), which is a
contradiction. 2

Lemma 8.14 If Γ contains an analytic arc, then A = {w ∈ D | (Jacf)(w) = 0} has no
accumulation points in the preimage by f |S1 : S1 → Γ of this arc.
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Proof. Suppose that A has an accumulation point in an interval β ⊂ S1 such that f(β) = Γ0 is
an analytic arc of Γ. After composing f with an analytic diffeomorphism between open sets of
R3, we can assume that f(β) is a segment in Rn contained in the axis {x1 = . . . = xn−1 = 0}.
By the argument in the proof of Lemma 8.13 applied to the components f1, . . . , fn−1 of f , we
conclude that each of these components extends to a disk E ∪ E∗ ∪ (β ∩ ∂E) (we are using the
notation in that proof). Fix k ∈ {1, . . . , n − 1}. As ∇fk = 0 in β ∩ ∂E, we can repeat the
argument in the last paragraph of the proof of Lemma 8.13 to deduce that f1, . . . , fn−1 are
constant in D. Thus, f(Γ) is contained in a straight line of Rn in the direction of the xn-axis.
This contradicts Lemma 8.13. 2

Remark 8.15 Lemma 8.12 implies that the number of branch points of f in each compact of D
is finite, and Lemma 8.13 implies that if Γ is an analytic Jordan curve, then the number branch
points of f is finite. A lot more can be said about this, although we will not prove the following
properties:

1. Even if Γ is just C∞, the number of branch points of f is finite. This is a consequence of
a Gauss-Bonnet type formula, which relates the sum of the orders of the branch points of f
(this concept has not been defined, but is related to the order of vanishing of the holomorphic
map whose components are obtained as in the proof of Lemma 8.12) with the total curvature
of the branched immersion f and the total curvature of G. This formula can be found in page
213 of the book Handbook of Differential Geometry, Vol 1, Elsevier North Holland (1999).

2. The branch points of a Douglas-Radó solution to the Plateau problem are of two types:
true branch points, around which f(D) fails to be an immersed surface, and false branch
points, around which f(D) is an immersed surface but f fails to be an immersion. In 1970,
Osserman proved that any Douglas-Radó solution for a rectifiable Jordan curve Γ ⊂ R3 is
free of interior true branch points. Later, Gulliver proved there are also no interior false
branching points, and therefore, every Douglas-Radó solution to the Plateau problem in R3

produces a minimal immersion in the interior. If Γ is analytic or its total curvature is strictly
less than 4π, boundary branch points can also be discarded (Gulliver and Leslie, 1973).

3. There are examples of analytic Jordan curves Γ ⊂ R4 whose Douglas-Radó solution always

has interior branch points: the application z ∈ D
f7→ (z2, z3) is the least area surface whose

boundary is the analytic Jordan curve obtained as the image of z ∈ S1 7→ (z2, z3). f has a
true branch point at z = 0.

4. As for uniqueness of the Douglas-Radó solution of the Plateau problem for a Jordan curve
Γ ⊂ R3, in general such a solution does not have to be unique. However, Radó (1930)
gave conditions that imply uniqueness (Radó’s Theorem, see Theorem 10.8). Nitsche (1989)
proved that if Γ ⊂ R3 is either analytic with total curvature ≤ 4π or smooth with total
curvature < 4π, then the Douglas-Radó solution for Γ is unique.
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5. There are Jordan curves Γ ⊂ R3, even analytic, whose Douglas-Radó solution to the Plateau
problem can never be an embedding: it is enough to take a knot. However, if we can exclude
interior self-intersection points in a Douglas-Radó solution, then that solution is embedded.
Meeks and Yau (1982) proved that if Γ lies in the boundary of a convex body, then every
Douglas-Radó solution with boundary Γ is an embedding. Also recall Theorem 7.2: If Γ ⊂ R3

is a Jordan curve of class C2 with total curvature ≤ 4π, then every Douglas-Radó solution
with boundary Γ is embedded.

As for the Plateau problem in an arbitrary Riemannian manifold, we will only state the following
result (without proof):

Theorem 8.16 Let (M3, g) be a complete Riemannian manifold and Γ ⊂M a rectifiable Jordan
curve that is homotopically trivial in M . Then, there exists an immersion f : D → M with
boundary Γ that minimizes area among all immersions with boundary Γ.

9 The isoperimetric inequality for minimal surfaces

Let (Mk, g) be a compact Riemannian manifold with boundary ∂M ̸= ∅. In general, we cannot
expect any relation of the type Vol(M) ≤ C ·Area(∂M) between the volume of M and the area
of its boundary (the second one could be arbitrarily small and the first one arbitrarily large),
see Figure 15.

Figure 15: The quotient Vol(M)/Area(∂M) can be arbitrarily large.

Can we say something else in the case of a minimal submanifold of Euclidean space? In R3,
it is expected that minimal surfaces satisfy the Euclidean isoperimetric inequality:

Conjecture 9.1 If M ⊂ R3 is a compact minimal surface with boundary, then 4πArea(M) ≤
L(∂M)2, with equality if and only if M is a flat round disk.

Very recently, Brendle [1] has solved this conjecture. In fact, he has proved a much more
general result:
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Theorem 9.2 (Brendle, 2019) Let M be a compact immersed hypersurface in Rn+1, with
boundary ∂M and mean curvature H (here H means trace of the second fundamental form).
Then,

Area(∂M) +
∫
M |H|

Area(∂Bn)
≥
(
Vol(M)

Vol(Bn)

)n−1
n

Furthermore, equality holds if and only if M is a flat round disk.

Observe that if we take H = 0 and n = 2, we directly have the validity of Conjecture 9.1.
At the end of this section we will give a proof of Brendle’s theorem. Before doing this, we

will collect some previous advances on this problem.

Lemma 9.3 Let Mk ⊂ Rn be a compact minimal submanifold with boundary. Take R > 0 such
that ∂M ⊂ B(R) = B(⃗0, R). Then,

Vol(M) ≤ R

k
Area(∂M).

Proof. Consider the variation M(t) = (1 + t)M of M by homotheties, whose variational field is
Yx = x, x ∈ Rn. Thus, Vol(M(t)) = (1 + t)kVol(M) and the first variation formula for volume
(Proposition 16.1) implies

k ·Vol(M) =
d

dt

∣∣∣∣
t=0

[Vol(M(t))] = −k
∫

M
⟨Y, H⃗⟩+

∫

∂M
⟨Y, η⟩ =

∫

∂M
⟨Y, η⟩,

≤
∣∣∣∣
∫

∂M
⟨Y, η⟩

∣∣∣∣ ≤
∫

∂M
∥Y ∥ ≤

∫

∂M
R = R ·Area(∂M).

where η is the outward pointing unit conormal vector to M along ∂M . 2

Let us particularize Lemma 9.3. After a rigid motion, we can assume 0⃗ ∈ ∂M hence ∂M ⊂
B(R) for R = L(∂M)/2. Thus, Lemma 9.3 tells us that Area(M) ≤ R

2 L(∂M) = 1
4L(∂M)2. This

inequality is much weaker than the conjecture (it is like comparing π to 1).
Let M ⊂ R3 be a minimal surface and [γ] ∈ H1(M) a 1-dimensional homology class. Given

γ1, γ2 ∈ [γ], there exists a compact domain M(γ1, γ2) ⊂ M such that ∂M(γ1, γ2) = γ1 − γ2
(beware with the orientations). Let η the unit conormal vector to M(γ1, γ2) along its boundary,
so that η points outwards (resp. inwards) M(γ1, γ2) along γ1 (resp. γ2) o vice versa (see
Figure 16).

Let us see that ∫

γ1

η =

∫

γ2

η. (48)

Fix a ∈ R3 and consider the tangent vector field to M given by Y = aT . The divergence of Y in
M can be computed as follows: take an orthonormal basis ofTpM (with p ∈ M arbitrary) and
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M

η
γ2

γ1

M(γ1, γ2)

η

Figure 16: The flux vector does not depend on the representative in the same homology class.

a Gauss map N for M . Then,

divM (Y ) =

2∑

i=1

⟨∇M
ei (a

T ), ei⟩ =
2∑

i=1

⟨∇R3

ei (a− ⟨a,N⟩N) , ei⟩

= −⟨a,N⟩
2∑

i=1

⟨∇R3

ei N, ei⟩ = 2H⟨a,N⟩ = 0,

hence the divergence theorem implies

0 =

∫

M(γ1,γ2)
divM (Y ) =

∫

γ1−γ2
⟨Y,−η⟩ =

∫

γ2

⟨Y, η⟩ −
∫

γ1

⟨Y, η⟩ =
∫

γ2

⟨a, η⟩ −
∫

γ1

⟨a, η⟩.

It only remains to move a in R3 to deduce (48). Consequently,
∫
γ η does not depend on the

representative γ ∈ [γ].

Definition 9.4 (Flux) In the above situation, the flux map is the group morphism

F : H1(M) → R3, F ([γ]) = Flux([γ]) =

∫

γ
η.

Clearly, the flux map does not depend on translations of M in R3.

Theorem 9.5 Let M ⊂ R3 be a compact minimal surface with boundary ∂M = γ1 ∪ . . . ∪ γk,
where each γi ⊂ R3 is a Jordan curve. If Flux([γi]) = 0 for each i = 1, . . . , k, then Conjeture 9.1
holds.
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Proof. Consider the vector field on R3 given y Sea Yx = x. Let us compute the divergence of
Y T in M : take an orthonormal basis e1, e2 of TpM (with p ∈M arbitrary) and a Gauss map N
for M . Then,

divM (Y T ) =
2∑

i=1

⟨∇M
ei (Y

T ), ei⟩ =
2∑

i=1

⟨∇R3

ei (Y − ⟨Y,N⟩N) , ei⟩

= 2− ⟨Y,N⟩
2∑

i=1

⟨∇R3

ei N, ei⟩ = 2 + 2H⟨Y,N⟩ = 2,

hence the divergence theorem implies

2 ·Area(M) =

∫

M
divM (Y T ) =

∫

∂M
⟨Y, η⟩ =

k∑

i=1

∫

γi

⟨p, η⟩. (49)

For each i = 1, . . . , k, we choose a point ai ∈ γi and call γ̃i = γi − ai. Then,

∫

p∈γi
⟨p, η⟩ =

∫

q∈γ̃i
⟨q + ai, η⟩ =

∫

q∈γ̃i
⟨q, η⟩+

〈
ai,

∫

γ̃i

η

〉
=

∫

q∈γ̃i
⟨q, η⟩+ ⟨ai,Flux([γ̃i])⟩ .

The second term above vanishes by hypothesis, hence
∫

γi

⟨p, η⟩ =
∫

γ̃i

⟨q, η⟩ ≤
∫

γ̃i

∥q∥ (50)

by Schwarz inequality. Using (49) and (50),

2 ·Area(M) ≤
k∑

i=1

∫

γ̃i

∥q∥
(∗)
≤
(∫

∪̇k
i=1γ̃i

∥q∥2
)1/2

L
(
∪̇ki=1γ̃i

)1/2
=

(∫

∪̇k
i=1γ̃i

∥q∥2
)1/2

L1/2, (51)

where in (∗) we have used Schwarz inequality in L2(γ̃1∪̇ . . . ∪̇γ̃k) and L = L (∂M).
Next parameterize γ̃1∪̇ . . . ∪̇γ̃k by ϕ : S1L → γ̃1∪̇ . . . ∪̇γ̃k, where S1L is the circumference of

length L and each γ̃i is traveled with speed 1 starting and finishing at the origin. ϕ is piecewise
smooth (it is continuous and may fail to be smooth when changing of γ̃i at the origin). Therefore,
we can see ϕ (indeed, each of its components) in the Sobolev space H1(S1L). Note that can
assume

∫
S1L
ϕ = 0⃗ ∈ R3 (translate ϕ by the vector −

∫
S1L
ϕ ∈ R3, which does not change the

above arguments). The mean zero condition on ϕ allows us to use it to give an estimate of
the second eigenvalue of the laplacian for the standard metric on S1L by means of the Rayleigh
quotient of ϕ: ∫

S1L
∥∇ϕ∥2 ≥ λ2(∆,S1L)

∫

S1L
∥ϕ∥2 =

(
2π

L

)2 ∫

S1L
∥ϕ∥2, (52)
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hence
∫

∪̇k
i=1γ̃i

∥q∥2 =
∫

S1L
∥ϕ∥2

(52)

≤
(
L

2π

)2 ∫

S1L
∥∇ϕ∥2 =

(
L

2π

)2 ∫

∪̇k
i=1γ̃i

∥γ̃′i∥2 =
(
L

2π

)2

L. (53)

Finally,

2 ·Area(M)
(51)

≤
(∫

∪̇k
i=1γ̃i

∥q∥2
)1/2

L1/2
(53)

≤ L2

2π
.

which is the inequality in Conjecture 9.1. If the equality holds in the conjecture, then we will
also have equality in each of the estimates that we have done. In particular, ϕ is an eigenfunction
for the second eigenvalue of the laplacian for the standard metric on S1L. This means that ϕ
parameterizes a circle and k = 1. Thus, the boundary of M is a circle, and the convex hull
property (Corollary 4.7) gives that M is a flat round disk. 2

Corollary 9.6 IfM ⊂ R2 is a compact minimal surface with connected boundary, Conjeture 9.1
holds.

Proof. The condition Flux([∂M ]) = 0 holds by the divergence theorem, hence it suffices to apply
Theorem 9.5. 2

Remark 9.7 Osserman proved Conjecture 9.1 under the additional hypothesis that M is topo-
logically an annulus.

To finish this section, we will give the proof by Brendle of Theorem 9.2. LetM be a compact
immersed hypersurface in Rn+1, with boundary ∂M and mean curvature H. We recall that for
the remainder of this section H will mean trace of the second fundamental form of M .

Lemma 9.8 After possibly a homothety in Rn+1, we can assume

Area(∂M) +

∫

M
|H| = nVol(M).

Proof. Let f : (0,∞) → (0,∞) be the function defined by

f(λ) =
Area(∂(λM)) +

∫
λM |HλM | dvλM

nVol(λM)
,

where dvλM denotes the volume element of λM . Note that Area(∂(λM)) = Area(λ∂(M)) =
λn−1Area(∂(M)), Vol(λM) = λnVol(M) and

∫

λM
|HλM | dvλM =

∫

M
|HλM |λn dvM = λn−1

∫

M
|HM | dvM ,
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hence f(λ) = 1
λf(1). This implies that f(λ) has limit +∞ as λ → 0+ and limits to 0 when

λ→ ∞. By continuity, we conclude that there exists λ0 ∈ (0,∞) such that f(λ0) = 1. 2

Let η be the outward pointing unit conormal vector to M along ∂M .

Lemma 9.9 Under the normalization in Lemma 9.8, there exists u : M → R of class C2,α (here
α is any number in (0, 1)) solving the following Neumann type problem:

{
∆u = n− |H| in M ,
∂u
∂η = 1 on ∂M ,

(54)

Proof. Recall that since M is compact with boundary, the first eigenvalue of the laplacian in M
for the Neumann problem is zero, and the associated eigenfunctions are constants. Thus, given
f ∈ L2(M), the Neumann type problem

{
∆v = f in M ,
∂v
∂η = 0 on ∂M

(55)

admits a solution v ∈ H1(M) if and only if
∫
M f = 0. Take a function φ ∈ C∞(M) such that

∂φ
∂η = 1 on ∂M . Then, the Stokes’ theorem gives

∫

M
(n− |H| −∆φ) = nVol(M)−

∫

M
|H| −

∫

∂M

∂φ

∂η
= nVol(M)−

∫

M
|H| −Area(∂M),

which vanishes by Lemma 9.8. Since |H| is Lipschitz on M , then f = n − |H| − ∆φ is also
Lipschitz, and the above discussion allows us to find a solution v ∈ H1(M) of (55). In fact,
v ∈ C2,α(M) for any α ∈ (0, 1) since f is Lipschitz (for this regularity property, see for instance
the book of Gilbarg and Trudinger [8]). Finally, the function u = v + φ satisfies the conditions
of the lemma. This finishes the proof. 2

Next we consider the sets

U = {x ∈M \ ∂M | |∇u| < 1},
Ω = {(x, s) ∈ (M \ ∂M)× (−1, 1) | |∇u|2 + s2 < 1},
A = {(x, s) ∈ Ω | (∇2u)x + s σx is positive semi-definite},



 (56)

where σ is the second fundamental form ofM . Clearly x ∈ U provided that (x, s) ∈ Ω. Consider
also the C1,α map Φ: M × R → Rn+1 given by

Φ(x, s) = (∇u)(x)− sNx, (57)

where N is the Gauss map of M associated to σ (i.e. σx(v1, v2) = −⟨dNx(v1), v2⟩ ∀v1, v2 ∈ TxM
and x ∈M). Clearly,

|Φ(x, s)|2 = |∇u|2(x) + s2. (58)
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Lemma 9.10 Φ(A) = Bn+1.

Proof. Since A ⊂ Ω, then Φ(A) ⊂ Φ(Ω) ∈ Bn+1.
Let us prove the converse. Take a ∈ Bn+1 and consider the restriction of the height function

⟨a, ·⟩ to M , whose gradient and hessian are aT (the tangent part of a to M) and ⟨a,N⟩σ,
respectively. Consider the C2,α function on M given by f = u − ⟨a, ·⟩, where u is given by
Lemma 9.9. We claim that f attains its minimum in M \ ∂M . To see this, observe that on ∂M
we have

∂f

∂η
=
∂u

∂η
− ⟨aT , η⟩ (54)

= 1− ⟨a, η⟩
(⋆)

≥ 1− ∥a∥ > 0,

where in (⋆) we have used the Schwarz inequality. As f is bounded from below in M (because
M is compact), we deduce that f attains its minimum in M \ ∂M .

Take a point x ∈ M \ ∂M where f attains its minimum. Since (∇f)(x) = 0 we have
(∇u)(x) = aT (x), from where

a = aT (x) + ⟨a,Nx⟩Nx = (∇u)(x)− sNx, (59)

where s = −⟨a,Nx⟩ ∈ (−1, 1). Since ∇u and N are orthogonal, (59) implies that

|∇u|2(x) + s2 = |a|2 < 1,

i.e., (x, s) ∈ Ω.
Next we will prove that (x, s) ∈ A, which amounts to check that (∇2u)x + s σx is positive

semi-definite. As f has a minimum at x, the hessian (∇2f)x is positive semi-definite. But

(∇2f)x = (∇2u)x − ⟨a,Nx⟩σx = (∇2u)x + s σx,

and thus, (x, s) ∈ A.

Finally, Φ(x, s) = (∇u)(x)− sNx
(59)
= a, from where a ∈ Φ(A) and the lemma is proved. 2

In the above situation, the Jacobian determinant JacΦ of Φ is the determinant of the matrix
of the differential (dΦ)(x,s) in any orthonormal basis of (TxM) × (TsR) ≡ (TxM) × R, at every
point (x, s) ∈M × R.

Lemma 9.11 Given (x, s) ∈ A, |JacΦ|(x, s) = det
(
(∇2u)x + s σx

)
.

Proof. Take an orthonormal basis e1, . . . , en of TxM . Given i = 1, . . . , n, let αi = αi(t) be
a smooth curve in M with αi(0) = x, α′

i(0) = ei. For i, j = 1, . . . , n, consider the function
fij : R → R given by

fij(t) = ⟨Φ(αi(t), s), ej⟩ = ⟨(∇u)αi(t) − sNα(t), ej⟩. (60)
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Thus,
d

dt

∣∣∣∣
t=0

fij(t) = ⟨dΦ(x,s)(ei, 0), ej⟩,

which corresponds to the (i, j)-entry of the Jacobian matrix of Φ. We compute:

d

dt

∣∣∣∣
t=0

fij(t) =
d

dt

∣∣∣∣
t=0

⟨(∇u)αi(t) − sNαi(t), ej⟩ = ⟨∇ei (∇u− sN) , ej⟩

= (∇2u)x(ei, ej) + s σx(ei, ej).

Furthermore,

dΦ(x,s)(0, 1) =
d

dt

∣∣∣∣
t=0

Φ(x, t+ s) =
d

dt

∣∣∣∣
t=0

((∇u)x − (t+ s)Nx) = −Nx.

Hence, |JacΦ|(x, s) = | det((∇2u)x+ s σx)|. To finish the proof it suffices to remove the absolute
value; this can be done since (x, s) ∈ A. 2

Lemma 9.12 Given (x, s) ∈ A, (JacΦ)(x, s) ≤ 1 with equality if and only if (∇2u)x+s σx = gx,
the induced metric on M at x.

Proof. Take (x, s) ∈ A. By (54), (∆u)(x) = n− |H|(x) hence

(∆u)(x) + sH(x) ≤ (∆u)(x) + |H|(x) = n. (61)

Recall that the arithmetic-geometric mean inequality ensures that

n∏

i=1

λi ≤
(
1

n

n∑

i=1

λi

)n
,

where λ1, . . . , λn ∈ [0,∞), with equality if and only if all λi are equal. This implies that given
a real-valued, symmetric, positive semi-definite matrix S of order n, it holds

detS ≤
(
1

n
trace(S)

)n
,

with equality if and only if S is a multiple of the identity matrix. Applying this to S =
(∇2u)x + s σx (which is positive semi-definite because (x, s) ∈ A), we have

(JacΦ)(x, s)
(Lemma 9.11)

= det
(
(∇2u)x + s σx

)
≤
(
1
ntrace[(∇2u)x + s σx]

)n

=
(
1
n [(∆u)(x) + sH(x)]

)n (61)

≤ 1,
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as desired. This proves the first statement of Lemma 9.12.
Now suppose that (JacΦ)(x, s) = 1 and let us prove that (∇2u)x+ s σx = gx. Since equality

holds in the last displayed inequality, we have also equality in our use of the arithmetic-geometric
mean inequality, hence (∇2u)x + s σx is a multiple of the induced metric gx at x, say

(∇2u)x + s σx = µ gx (62)

for some µ ∈ R. The lemma will be proved if we check that µ = 1. Observe that equality in

(61) must also hold, hence n = (∆u)(x) + sH(x) = trace[(∇2u)x + s σx]
(62)
= trace[µ gx] = nµ. 2

Proof. [of Theorem 9.2]
Write each a ∈ Bn+1 as a = (y, z) with y ∈ Bn and z ∈ R. Thus, Fubini’s theorem gives

∫

Bn+1

da√
1− |a|2

=

∫

Bn

(∫ √
1−|y|2

−
√

1−|y|2

dz√
1− |y|2 − z2

)
dy = π

∫

Bn

dy = πVol(Bn). (63)

Using the area formula with the C1,α map Φ on A, we have
∫

Bn+1

da√
1− |a|2

(Lemma 9.10)
=

∫

Φ(A)

da√
1− |a|2

=

∫

A

|JacΦ|(x, s)√
1− |Φ(x, s)|2

dvM × ds

(⋆)

≤
∫

x∈U

(∫ √
1−|∇u|2(x)

−
√

1−|∇u|2(x)

|JacΦ|(x, s)χA(x, s)√
1− |Φ(x, s)|2

ds

)
dvM

(Lemma 9.12)

≤
∫

x∈U

(∫ √
1−|∇u|2(x)

−
√

1−|∇u|2(x)

1√
1− |Φ(x, s)|2

ds

)
dvM

(58)
=

∫

x∈U

(∫ √
1−|∇u|2(x)

−
√

1−|∇u|2(x)

1√
1− |∇u|2(x)− s2

ds

)
dvM

= π

∫

x∈U
dvM = πVol(U),

(64)

where χA is the characteristic function of A, and in (⋆) we have used that if (x, s) ∈ A then
x ∈ U and the integrand is non-negative. From (63) and (64) we deduce that Vol(Bn) ≤ Vol(U),
and thus,

Vol(Bn) ≤ Vol(M). (65)

Next we analyze the quotient that appears in Theorem 9.2. First observe that

Area(∂Bn) = nVol(Bn), (66)

which follows from the divergence theorem in Bn applied to the vector field Xp = p, p ∈ Bn.
Hence,

Area(∂M) +
∫
M |H|

Area(∂Bn)
(Lemma 9.8)

=
nVol(M)

Area(∂Bn)
=

Vol(M)

Vol(Bn)
(65)

≥
(
Vol(M)

Vol(Bn)

)n−1
n

,
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and the inequality of Theorem 9.2 is proved.
Now suppose that M is a compact immersed hypersurface in Rn+1 such that

Area(∂M) +
∫
M |H|

Area(∂Bn)
=

(
Vol(M)

Vol(Bn)

)n−1
n

. (67)

We claim that M is connected: if not, we decompose M in connected components, M = M1 ∪
. . . ∪ Mk (finitely many because M is compact). Applying the already proven inequality of
Theorem 9.2 to M1 and M ′ =M \M1, we have the following contradiction with (67):

Area(∂M) +
∫
M |H|

Area(∂Bn)
=

Area(∂M1) +
∫
M1

|H|
Area(∂Bn)

+
Area(∂M ′) +

∫
M ′ |H|

Area(∂Bn)

≥
(
Vol(M1)

Vol(Bn)

)n−1
n

+

(
Vol(M ′)

Vol(Bn)

)n−1
n

=
Vol(M1)

n−1
n +Vol(M ′)

n−1
n

Vol(Bn)
n−1
n

>

(
Vol(M)

Vol(Bn)

)n−1
n

,

where the last inequality uses that if V1, V2 > 0, then

V
n−1
n

1 + V
n−1
n

2 > (V1 + V2)
n−1
n . (68)

For the sake of completeness, we next prove (68): Consider the functions f(x) = x
n−1
n , x ≥ 0; it

is straightforward to see that f ′′(x) < 0 for each x > 0, hence f ′(x) > f ′(V1 + x) ∀x > 0, which
implies that the function x ∈ [0,∞) 7→ h(x) = f(V1) + f(x) − f(V1 + x), satisfies h′(x) > 0
∀x > 0. Since h(0) = 0, then h(x) > 0 ∀x > 0. In particular, h(V2) > 0 with is (68).

By scaling M in Rn+1, we can assume that

Area(∂M) +

∫

M
|H| = Area(∂Bn). (69)

(Observe that this normalization is a priori, different from the one in Lemma 9.8). From (67)
and (69) we have

Vol(M) = Vol(Bn). (70)

This equality and (66) imply that the normalization to have (69) is in fact the same that gives
Lemma 9.8. This allows us to apply Lemma 9.9 and find a C2,α function u : M → R satisfying
(54). Consider the sets U,Ω, A and the map Φ: M × R → Rn+1 defined as in (56) and (57)
respectively. Then, Lemmas 9.10, 9.11 and 9.12 hold, as well as the chain of inequalities in
(64), from where we had deduced the inequality (65). Since the equality holds in (65) by (70),
we deduce that all inequalities in (64) must be equalities. In particular, Vol(U) = Vol(M) and
JacΦχA = 1 a.e. in Ω. This implies that Ω \ A has measure zero, and JacΦ = 1 a.e. in Ω. By
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Lemma 9.12, we have that (∇2u)x+ s σx = gx almost everywhere in Ω. As u is of class C2,α, we
deduce that

(∇2u)x + s σx = gx at each (x, s) ∈ Ω. (71)

Since the right-hand-side of (71) does not depend on s, we conclude that σx = 0 whenever
(x, s) ∈ Ω. Since this equation does not depend on s, we deduce that σx = 0 ∀x ∈ U . A
consequence of Vol(U) = Vol(M) is that U is dense in M . Therefore, σ = 0 in M . This implies
that M is contained in a hyperplane Π ⊂ Rn. By (71) we have (∇2u)x = gx for all (x, s) ∈ Ω.
Since this equation does not depend on s, we deduce that (∇2u)x = gx ∀x ∈ U , and by density,
the same equality holds ∀x ∈ M . As M is contained in a hyperplane, the PDE ∇2u = g can
be integrated giving u(x) = 1

2 |x − p|2 + c for some p ∈ Π and c ∈ R. Since |∇u| < 1 in U and
U is dense in M , we deduce that |∇u| ≤ 1 in M . This implies M ⊂ {x ∈ Π : |x − p| ≤ 1}.
This last containment is in fact an equality because Vol(M) = Vol(Bn). This finishes the proof
of Theorem 9.2. 2

10 The maximum principle for the mean curvature

Suppose M1,M2 ⊂ R3 are two surfaces (the argument that follows is purely local,, so we can
assume they are embedded) and p ∈ M1 ∩M2 is an interior point such that TpM1 = TpM2.
We orient M1,M2 by choosing Gauss maps N1, N2 such that N1(p) = N2(p), and let H1, H2 be
the mean curvature functions of M1,M2 with respect to N1, N2, respectively (H1, H2 are not
necessarily constant).

We will say that M1 ≤M2 around p if u1 ≤ u2 in a neighborhood Ω′ ⊂ Ω of the origin. The
same notion can be defined if p is a boundary point of both surfaces and we additionally assume
Tp∂M1 = Tp∂M2 as oriented vector spaces (in this case, both Ω and Ω′ are neighborhoods of
(0, 0) in {(x, y) ∈ R2 | y ≥ 0}).

The maximum principle for the mean curvature is the following local property:

Theorem 10.1 Let M1,M2 ⊂ R3 be two surfaces.

1. (Interior maximum principle). Let p ∈ M1 ∩M2 be an interior point such that TpM1 =
TpM2. Take Gauss maps N1, N2 onM1,M2 so that N1(p) = N2(p). Suppose thatM1 ≤M2

in a neighborhood of p, and that the mean curvatures H1, H2 with respect to N1, N2 satisfy
H1 ≥ H2 (meaning that H1(x, y, u1(x, y)) ≥ H2(x, y, u2(x, y)) for each (x, y) ∈ Ω′ with the
notation above). Then, there exists a neighborhood O of p in R3 such thatM1∩O =M2∩O.

2. (Boundary maximum principle). Item 1 holds if p ∈ ∂M1 ∩ ∂M2 and TpM1 = TpM2,
Tp∂M1 = Tp∂M2 as oriented vector spaces.

A detailed proof of the above theorem can be found in the website
http://wpd.ugr.es/ jperez/wordpress/wp-content/uploads/todo-2.pdf
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However, we will not follow here the classic analytical PDE approach that one can find in the
above URL or in the book by Gilbarg and Trudinger [8]. Instead, we will adopt a more geometric
viewpoint; the price we will pay for this is that we will restrict to minimal surfaces, instead of
obtaining the maximum principle under more general conditions as in Theorem 10.1 (although
the calculations that follow can also be carried out for surfaces of constant mean curvature
H ̸= 0 with certain modifications).

If two M1,M2 ⊂ R3 intersect transversally, around every intersection point p the local
structure of the union is the same as for two planes intersecting along a line; in particular,
M1 ∩M2 consists locally around p of an embedded curve (which is analytic if both surfaces are)
and the angle ∢(M1,M2) along this curve is ≥ ε for some ε > 0.

We are now wondering what the intersection of two minimal surfaces M1,M2 is like, locally
around a point p ∈ Int(M1) ∩ Int(M2) at which M1,M2 intersect tangentially (TpM1 = TpM2).
Intuition tells us that since minimal surfaces are locally given as the graph of a ‘harmonic’
function4, we will be able to model the ‘difference’ of M1 and M2 by studying the zeros of a
function whose principal term is Re(zk) for a certain k ∈ N, k ≥ 2 (after a change of coordinates
centered at p). This zero set has the structure of an equiangular set of segments crossing at the
origin, as shown in Figure 17. Consequently, we deduce that M1 cannot lie at one side of M2 in

Figure 17: The zero set of z 7→Re(z3) forms an equiangular system.

any neighborhood of p, which is another way of stating the content of the maximum principle.
Next we will develop this idea rigorously.

After possibly a translation and rotation in R3, we can assume

p = 0⃗ ∈ R3, and TpM1 = TpM2 = {z = 0}.

Each surface Mi can be written locally around p as the graph of a smooth function ui : D(c) ⊂
R2 → R, for some c ∈ (0, 1). Let us call u = u1 − u2. Clearly, M1 ∩M2 = u−1({0}) locally

4We use quotation marks because this property is not actually true: the component functions of the immersion
are harmonic, but function that expresses the surface locally as a graph satisfies the minimal surface equation 6).
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around p. Furthermore,

u1(0, 0) = u2(0, 0) = 0, ∇u2(0, 0) = ∇u2(0, 0) = (0, 0).

Thus, the Taylor expansion of u around (0, 0) is of the form:

u(x, y) =

∞∑

n=2

n∑

i=0

n!

i!(n− i)!

∂nu

∂xi∂yn−i
(0, 0)xiyn−i =

∞∑

n=k

Pn(x, y), (72)

where every Pn(x, y) is a homogeneous polynomial of degree n. By analyticity, either u ≡ 0 (i.e.
M1 and M2 coincide in a neighborhood of p, and so they globally coincide) or the above sum
has a first term Pk(x, y) which is non-trivial, of degree k ≥ 2. From now on we will assume that
this last possibility occurs.

Lemma 10.2 In the above situation, Pk(x, y) is a harmonic polynomial.

Proof. Taking derivatives term by term in (72) we have ∆u =
∑∞

n=k∆Pn, and we want to show
that ∆Pk = 0. Reasoning by contradiction, suppose ∆Pk ̸= 0. Therefore, ∆Pk is a non-trivial
homogeneous polynomial of degree k − 2. As ∆Pk+1, ∆Pk+2, . . . are homogeneous polynomials
of degree k − 1, k, . . . (some of them could be identically zero, and in that case they will not
affect the argument that follows), the non-trivial term in ∆u with lowest degree has degree
k − 2 (there are no cancellations of distinct ∆Ph because they are homogeneous polynomials of
different degrees). If we check that

∆u = A(x, y)uxx +B(x, y)uyy + C(x, y)uxy +D(x, y)ux + E(x, y)uy, (73)

where each one of the de los five summands above (Auxx, etc) is an analytic function in a
neighborhood of (0, 0) with a first non-trivial term of degree ≥ k, then we will have that the term
in ∆u with lowest degree has at least degree k, which is a contradiction. Hence everything reduces
to proving the decomposition (73) with the desired degrees in Auxx, Buyy, Cuxy, Dux, Euy.

As Mi is minimal, we have

[1 + (ui)
2
y](ui)xx − 2(ui)x(ui)y(ui)xy + [1 + (ui)

2
x](ui)yy = 0.

Therefore,
∆ui = −(ui)

2
y(ui)xx − (ui)

2
x(ui)yy + 2(ui)x(ui)y(ui)xy.

And
∆u = ∆u1 −∆u2 = −(u1)

2
y(u1)xx − (u1)

2
x(u1)yy + 2(u1)x(u1)y(u1)xy

+(u2)
2
y(u2)xx + (u2)

2
x(u2)yy + 2(u2)x(u2)y(u2)xy.
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Wemaintain the three first terms unchanged. In the fourth one we use that (u2)xx = (u1)xx−uxx,
in the fifth one we replace (u2)yy = (u1)yy − uyy, and in the sixth one we use that (u2)xy =
(u1)xy − uxy. After grouping the terms by the second order derivatives of u and u1, we obtain

∆u = −(u2)
2
yuxx − (u2)

2
xuyy + 2(u2)x(u2)yuxy

+
[
(u2)

2
y − (u1)

2
y

]
(u1)xx +

[
(u2)

2
x − (u1)

2
x

]
(u1)yy + 2 [(u1)x(u1)y − (u2)x(u2)y] (u1)xy.

The brackets of the fourth and fifth summands can be written as ‘sum times difference’, and
this difference can be written in terms of u. In the bracket of the sixth summand we add and
subtract (u1)x(u2)y in order to transform this bracket in (u1)xuy+ux(u2)y. Writting all together
and grouping by uxx, ux,y, ux, uy we get the expression (73) where

A = −(u2)
2
y, B = −(u2)

2
x, C = 2(u2)x(u2)y,

D = − [(u1)x + (u2)x] (u1)yy + 2(u2)y(u1)xy, E = − [(u1)y + (u2)y] (u1)xx + 2(u1)x(u1)xy.

A,B,C,D,E are analytic functions in a neighborhood of (0, 0), because the surfaces M1,M2

are analytic. Thus, each one of the de five summands in (73) is an analytic function in a
neighborhood of (0, 0). We next analyze the order of the zero of Auxx at the origin: Since ∇u2
vanishes at (0, 0), (u2)

2
y has a zero at least of order 2 at the origin. By (72), u has a zero of

order k at (0, 0), hence uxx vanishes at least to order k− 2 at the origin. This Auxx vanishes at
(0, 0) at least to order k. The other summands of (73) can be analyzed in an analogous way. 2

Theorem 10.3 (Maximum principle for minimal surfaces)
Let M1,M2 ⊂ R3 two distinct minimal surfaces, and p ∈ Int(M1) ∩ Int(M2) such that TpM1 =
TpM2. Then, M1 ∩M2 consists locally around p in the zero set of an analytic function u(x, y)
whose first term h(x, y) in the Taylor expansion is a harmonic function with a zero of finite
order k ≥ 2. Therefore:

(1) After possibly a biholomorphism between open subsets of C that preserves the origin, we can
write h(z) = Re(zk).

(2) M1 ∩M2 consists of an equiangular system of k analytic curves crossing at p with an angle
of π/k, and on each component of the complement of the union of these curves in a neigh-
borhood of p, the surfaces M1,M2 lie at one side of each other, alternating this ordering
when changing between adjacent sectors (as in Figure 17).

Proof. We first normalize as explained in the paragraph just before Lemma 10.2. By (72),
M1 ∩ M2 consists locally around p of the zero set of the function u =

∑∞
n=k Pn(x, y), and

h := Pk is harmonic by Lemma 10.2. Thus, h can be written as h(x, y) = Re(zkf(z)) for
certain holomorphic function f(z) (z = x + iy) with f(0) ̸= 0. This last condition implies
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the existence of a k-th holomorphic root f1/k of f , defined in a neighborhood of zero. Hence,
ξ = ξ(z) := zf1/k(z) is a biholomorphism around 0, and item (1) of the theorem is proved.
Item (2) is a direct consequence of item (1). 2

We generalize (without proof, see the discussion at the beginning of this section) the previous
theorem for hypersurfaces of constant mean curvature in an arbitrary Riemannian manifold:

Theorem 10.4 (Interior maximum principle for CMC hypersurfaces) Let Σn1 ,Σ
n
2 two

distinct hypersurfaces in an analytic Riemannian manifold (Mn+1, g), and p ∈ Int(Σ1)∩ Int(Σ2)
such that TpΣ1 = TpΣ2. If the mean curvature vectors H⃗1, H⃗2 of Σ1,Σ2 satisfy ∥H⃗1∥ ≡ ∥H⃗2∥ ≡
c ∈ [0,∞) and H⃗1(p) = H⃗2(p)

5, then Σ1 ∩ Σ2 consists locally around p of the zero set of an
analytic function of n variables, whose first order in the Taylor expansion around the origin in
Rn is a harmonic function of n variables with a zero of finite order k ≥ 2 at the origin. In
particular, Σ1 cannot lie at one side of Σ2 in any neighborhood of p.

We will state, also without proof, the boundary maximum principle (also known as the Hopf
maximum principle):

Theorem 10.5 (Boundary maximum principle for CMC hypersurfaces) Let Σn1 ,Σ
n
2 two

distinct hypersurfaces with smooth boundaries in an analytic Riemannian manifold (Mn+1, g),
and p ∈ ∂Σ1 ∩ ∂Σ2 such that TpΣ1 = TpΣ2 and Tp∂Σ1 = Tp∂Σ2. If the mean curvature vectors

H⃗1, H⃗2 of Σ1,Σ2 satisfy ∥H⃗1∥ ≡ ∥H⃗2∥ ≡ c ∈ [0,∞) and H⃗1(p) = H⃗2(p), and with this ori-
entation Σ1,Σ2 are local graphs over the same domain with boundary6 of the common tangent
hyperplane, then Σ1 cannot lie at one side of Σ2 in any neighborhood of p.

We will finish this section with two consequences of the maximum principle.

Theorem 10.6 Let Z be a complete Killing field in a Riemannian manifold (M3, g), whose
integral curves are non-compact. Let Σ ⊂ M be a compact minimal surface with boundary
∂Σ ̸= ∅ such that Σ intersects each integral curve of Z at most at one point7. Let

C =
⋃

t∈R
φt(Σ) ⊂M

be the ‘cylinder’ obtained by moving Σ by the isometries in the 1-parameter subgroup {φt}t∈R
associated to Z. Then, Σ is the unique compact minimal surface in C with boundary ∂Σ.

5In the case c = 0 this condition is void.
6This condition rules out that Σ1 is graphical over a halfball in TpΣ1 and Σ2 is graphical over the opposite

half-ball, a situation in which the graphing functions cannot be subtracted. This is exactly the same condition
expressed by the equality ‘TpM1 = TpM2,Tp∂M1 = Tp∂M2 as oriented vector spaces’ in item 2 of Theorem 10.1.

7In this case we say that Σ is a graph in the direction of Z.
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Proof. Suppose that Σ1 ⊂ C is a compact minimal surface with ∂Σ1 = ∂Σ. Since the integral
curves of Z are non-compact and Σ,Σ1 are compact, we can find T > 0 such that φT (Σ)∩Σ1 = ∅
(hence the ambient distance between both surfaces is positive). Move continuously φt(Σ) a Σ1

by decreasing t from T until we find a first contact point between both surfaces; in other words,
let

t0 = inf{t ∈ (0, T ) | φt(Σ) ∩ Σ1 = ∅} ∈ [0, T ).

Since Σ,Σ1 are compact, there exists p ∈ φt0(Σ)∩Σ1 (first contact point between both surfaces).
p is interior to φt0(Σ) and to Σ1, because ∂Σ = ∂Σ1 is a graph in the direction of Z. Locally
around p, φt0(Σ) lies at one side of Σ1 (because p is the first contact point), hence the maximum
principle implies that φt0(Σ) = Σ1. This gives that t0 = 0 (just compare the boundaries) and
thus, Σ = Σ1. 2

Remark 10.7 We can generalize Theorem 10.6 to the case of non-zero CMC: Under the same
hypotheses on (M3, g) and Z, assume that Σ ⊂M is a compact surface with boundary ∂Σ ̸= ∅,
such that ∥H⃗Σ∥ ≡ c > 0 and suppose that Σ is a graph in the direction of Z. Σ will divide C
into two components. Let us call C+ to the component of C \ Σ that H⃗Σ points to. If Σ1 ⊂ C
is a compact surface with ∥H⃗Σ∥ ≡ c, ∂Σ = ∂Σ1 and H⃗Σ1 points towards the end8 of C+, then
Σ = Σ1 (for the proof, simply repeat the above arguments by moving Σ ‘to the right’ in the sense
of Figure 18, till the ‘translated’ copy does not intersect Σ1, and then move back continuously
this translated copy ‘to the left’ till find a first contact point with Σ1).

Σ Σ1 ϕt(Σ)

Figure 18: Theorem 10.6 is still true for non-zero CMC.

Theorem 10.8 (Radó) Let Γ ⊂ R3 be a Jordan curve that admits a 1-1 projection onto a con-
vex planar curve Γ′. Then, there exists a unique compact minimal surface M ⊂ R3 with ∂M = Γ
(in particular, M is the Douglas-Radó solution for the Plateau problem for Γ). Furthermore,
the interior of M is a smooth graph over the convex planar domain bounded by Γ′.

Proof. [Antonio Ros, Gaceta de la RSME, 2000]
By Theorem 8.1, there exists a compact minimal surface M ⊂ R3 with ∂M = Γ (in fact, we can
take M as a minimizer of area for its boundary, although we will not use this). After possibly

8Observe that the three-manifold C+ has a unique end.
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a rigid motion in R3, we can assume that Γ′ ⊂ {z = 0}. Let Ω ⊂ R2 ×{0} be the convex planar
domain bounded by Γ′.

(1) M ⊂ Ω × R: This can be deduced from either the maximum principle applied to M and
to vertical planes, or the convex hull property (Corollary 4.7, note that since Ω is convex,
Ω× R is also convex). We leave the details to the reader.

(2) M \ Γ ⊂ Ω× R: This is also a consequence of the maximum principle applied to M and to
vertical planes.

(3) M\Γ is a graph over Ω: Arguing by contradiction, suppose that there exist points p, q ∈M\Γ
with the same vertical projection over Ω and with x3(p) < x3(q). Traslate M vertically
upwards until M(t0) = (M + t0(0, 0, 1)) ∩M = ∅ for some t0 > 0 (t0 exists because M is
compact). As p+ t0(0, 0, 1) ∈M(t0) is strictly above q ∈M , the first contact point between
a translated image of M and M will occur for some t1 ∈ (0, t0). This first contact point
cannot lie in the boundary of any of the two surfaces, because M \ Γ ⊂ Ω × R, and both
∂M = Γ, ∂M(t1) = Γ + t1(0, 0, 1) are graphs over Γ′. Hence, the first contact point is
interior to both surfaces, which contradicts the interior maximum principle.

(4) M is the graph of a smooth function over Ω: Again by contradiction, let us assume there
exists p ∈ M \ Γ such that TpM is vertical. Let Π be the horizontal plane that passes
through p. Take an open neighborhood U of p in M small enough so that Π divides U
into two connected components U1, U2, each one being a surface with boundary. These
boundaries share a common curve c lying in Π, that passes through p. Let us denote by U∗

1

the image of U1 by the symmetry with respect to Π. Then, U∗
1 and U2 lie at the same side

of Π and they can only intersect along c (otherwise there would exist points in U1 \ Π and
U2 \Π with the same vertical projection, which is impossible). Therefore, U∗

1 lies at one side
of U2 around p. Since TpU1 = TpU2 and Tp(∂U1) = Tp(∂U2) as oriented vector spaces, we
contradict the boundary maximum principle.

(5) M is the unique compact minimal surface with boundary Γ (in particular,M minimizes area
among all surfaces with boundary Γ): every compact minimal surface M ′ with ∂M ′ = Γ
satisfies items (1) and (2) of this proof, hence uniqueness follows from Theorem 10.6. 2

11 The Douglas criterion for the Plateau problem

Consider two coaxial circles Γ1,Γ2 of the same radius R > 0, at distance d > 0 apart.

(1) If d/R is sufficiently small, there exists a connected compact minimal surface with boundary
Γ1 ∪ Γ2 (a piece of a catenoid).
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(2) If d/R is large enough, there are no connected compact minimal surfaces with with boundary
Γ1 ∪ Γ2: to see this, suppose that M ⊂ R3 is a connected compact minimal surface with
∂M = Γ1 ∪ Γ2. After possibly a rigid motion, we can assume that Γ1,Γ2 are contained
in horizontal planes and their centers are (0, 0,±d/2). By the convex hull property, M ⊂
{x21 + x22 ≤ R} ∩ {|x3| ≤ d/2}. Now put two coaxial circles C1, C2 of radius r > 0 to
be determined, centered at (±(R + ε), 0, 0) (for a given ε > 0) and contained in planes
orthogonal to the x-axis. If r/R is large enough, there exists a compact piece Σ of a catenoid
with boundary ∂Σ = C1 ∪ C2. From now on we will suppose d > 2r (see Figure 19).

C1

C2

M

M
d

R

Γ1

Γ2

r

Σ

M

Figure 19: If R≪ r < d
2 , then we can put a catenoid Σ between Γ1 and Γ2.

Now translate Σ by a vector (0, a, 0) with a > 0 large enough so that Σ + (0, a, 0) does not
intersectM (by compactness ofM and Σ, this a exists). Also, we can take a large enough so
that Σ− (0, a, 0) does not intersect M . If we move continuously Σ+ (0, t, 0) with t ∈ [−a, a]
we will find a first interior contact point between M and a translated image of Σ, which
contradicts the interior maximum principle.

¿How can we quantify the dichotomy between (1) and (2)?
Consider the catenoid C = {(x, y, z) | cosh2 z = x2 + y2} and its image

Ca = {a2 cosh2(z/a) = x2 + y2}
by the homothety of factor a > 0. As a→ 0, Ca converges to the plane {z = 0} with multiplicity
2 away from the origin 0⃗ ∈ R3 (we will see how to study rigorously this convergence in Section 12)
and as λ→ ∞, Ca leaves every compact subset of R3.

Given the vertical one Cλ = {(x, y, z) ∈ R3 | x2 + y2 = λ2z2} con λ > 0, we will denote by

Int(Cλ) = {(x, y, z ∈ R3 | x2 + y2 < λ2z2}, Ext(Cλ) = {(x, y, z ∈ R3 | x2 + y2 > λ2z2}.
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Lemma 11.1 There exists a cone Cλ that is disjoint from every Ca, ∀a > 0.

Proof. Both Cλ and Ca are surfaces of revolution around the z-axis, thus we can reduce ourselves
to analyze the generating curves. This reduces the proof to finding a straight line y = (sinh τ0)z
(here τ0 > 0 is a constant to be determined) that is disjoint from every catenary y = a cosh(z/a),
a > 0, see Figure 20.

Figure 20: Different catenoids Ca for a = 1, 0′5 and 0′25.

Equivalently, we must find τ0 > 0 such that a cosh(z/a) − (sinh τ0)z ≥ 0 for all z ∈ R and
a > 0 (we have replaced > 0 by ≥ 0, which suffices by increasing slightly the slope of the straight
line y = (sinh z0)z). Consider the function f(z) = a cosh(z/a)− (sinh τ0)z, z ∈ R. Thus,

f ′(z) = sinh(z/a)− sinh τ0, f ′′(z) =
1

a
cosh(z/a) > 0.

hence the unique critical point of f is z = aτ0, which is a minimum of f . If we find τ0 > 0
such that f(aτ0) = 0 for all a ∈ R, then we will have f(z) ≥ 0 ∀z ∈ R,∀a > 0. But f(aτ0) =
a cosh τ0 − aτ0 sinh τ0, that vanishes ∀a > 0 if and only if the function g(τ) := cosh τ − τ sinh τ
vanishes at τ0. Observe that

g(1) = cosh 1 = e−1 > 0, lim
τ→+∞

g(τ) = −∞, g′(τ) = −τ cosh τ < 0 (para τ > 0).

These three properties imply that there exists a unique τ0 > 1 such that g(τ0) = 0. 2

Now we can quantify the dichotomy (1)-(2) that appears at the beginning of this section
with the following non-existence result.

Theorem 11.2 (Cone Theorem, Hildebrandt [9])
If Cλ is the cone obtained in Lemma 11.1, then there are no connected, compact minimal surfaces
M ⊂ R3 such that ∂M ⊂ Int(C), ∂M ∩ Int(C)+ ̸= ∅ and ∂M ∩ Int(C)− ̸= ∅ (here +,− denote
the portion of the corresponding set above and below the plane {z = 0}).
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Proof. Arguing by contradiction, if such an M exists, then we will find a contradiction applying
the interior maximum principle to M and the catenoids Ca with a > 0. 2

Next we will give a positive result about existence of minimal surfaces, also related to the
dichotomy (1)-(2) of the beginning of this section. Let Γ1,Γ2 ⊂ Rn be two disjoint Jordan
curves. Let us call Γ = Γ1 ∪ Γ2 and

XΓ =

{
ψ : S1 × [0, 1] → Rn | ψ is Lipschitz,

ψ|S1×{0} parameterizes ‘monotonically’ Γ1, and

ψ|S1×{1} parameterizes ‘monotonically’ Γ2

}
.

(here, ‘monotonically’ means in the sense of the proof of Theorem 8.1). Consider the area
functional A : XΓ → [0,∞) defined as in (35), and the infimum a(Γ) of the areas of maps in
XΓ, defined as in (36) with our new family XΓ of Lipschitz annuli. Consider for i = 1, 2 the
corresponding infimum a(Γi) for the area of Lipschitz disks with boundary Γi (i.e., a(Γi) is
defined as in (36) in the proof of the Douglas-Radó Theorem).

Theorem 11.3 (Douglas’ criterion) Let Γ1,Γ2 ⊂ Rn be two disjoint Jordan curves. If there
exists a (not necessarily minimal) compact annulus Σ ⊂ Rn with ∂Σ = Γ1 ∪ Γ2 such that
A(Σ) < a(Γ1)+a(Γ2), then there exists a compact minimal annulus M ⊂ Rn with ∂M = Γ1∪Γ2

that minimizes area in XΓ, i.e., A(Σ) = a(Γ).

Remark 11.4 The Douglas’ criterion is valid in any Riemannian manifold.

To prove the Douglas’ criterion, take {ψk}k ⊂ XΓ with A(ψk) ↘ a(Γ) (a minimizing se-
quence). We will follow as much as possible the proof of the Douglas-Radó Theorem. A priori,
every ψk is only Lipschitz, but we can assume it to be of class C2 by a density argument. Given
r > 0, define

ψk,r : S1 × [0, 1] → Rn+2, ψk,r(x, y) = (ψk(x, y), rx, ry) .

ψk,r is injective, C
2 and both A(ψk,r), E(ψk,r) (energy) depend continuously on r. In particular,

taking {rk}k → 0 we can assume that ψk,rk has area and energy arbitrarily close to those of ψk.
Since ψk,rk(A) is a C2 embedded disk in Rn+2, the induced metric by ψk,rk in A is Rie-

mannian, hence admits isothermal coordinates. This means that we can compose each ψk,rk
with a conformal diffeomorphism, obtaining a new map ψk : S1 × [0, Tk] → Rn+2 with energy
equal to twice its area (ψk(A) is conformally equivalent to S1 × [0, Tk]). As A(ϕk) = A(ψk,rk)
(because area is invariant under reparameterizations), we obtain that {ϕk}k is an A-minimizing
and E-minimizing sequence (for this step to hold we must prove that the infimum of energies
of maps in XΓ coincides with twice the infimum of areas of maps in in XΓ, which follows from
a straightforward adaptation of the proof of Proposition 8.6). After projecting again Rn+2

to Rn forgetting the last two components, we get for each k ∈ N a Lipschitz map, denoted
again by ψk : S1 × [0, Tk] → Rn, such that ψk|S1×{0} is a ‘monotone’ parameterization of Γ1

61



and ψk|S1×{Tk} is a ‘monotone’ parameterization of Γ2, and {ψk}k is an A-minimizing and E-
minimizing sequence in XΓ.

Now replace each ψk by the unique harmonic map fk : S1 × [0, Tk] → Rn with the same
boundary values as ψk. Thus, A(fk) converges as k → ∞ to a(Γ) and E(fk) converges to twice
the infimum of the energies of maps in XΓ. The last step of the proof consists of finding a
convergent subsequence of {fk}k. The reasoning in our current situation is more delicate than
in the proof of the Douglas-Radó Theorem, because in that case we dealt with disks (with fixed
conformal structure) and a three-point normalization condition in the boundary allowed us to
extract a convergent subsequence. We will now to work some more to control the conformal
structures of the annuli.

Lemma 11.5 {Tk}k is bounded from above.

Proof. Take t0 ∈ [0, Tk] such that Ck := fk(S1 × {t0}) is a Jordan curve in Rn (for example,
t0 = 0). Let Dk ⊂ Rn be a Douglas-Radó solution disk to the Plateau problem with boundary
Ck (see Figure 21).

Γ2

Γ1

Ck
Dk

Im(fk)

Figure 21: Dk is a disk with boundary Ck, and it is a Douglas-Radó solution to the Plateau
problem with this boundary.

Since fk(S1 × [0, t0]) ∪Dk is a Lipschitz disk with boundary Γ1, then

a(Γ1) ≤ A
[
fk(S1 × [0, t0])

]
+A(Dk).

Analogously,
a(Γ2) ≤ A

[
fk(S1 × [t0, Tk])

]
+A(Dk).

Hence,

a(Γ1) + a(Γ2) ≤ A(fk) + 2A(Dk)
(∗)
≤ A(fk) +

1

2π
L(Ck)

2,
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where in (∗) we have used the isoperimetric inequality for minimal disks (Theorem 9.5). Taking
k → ∞,

a(Γ1) + a(Γ2) ≤ a(Γ) +
1

2π
limL(Ck)

2,

By hypothesis, a(Γ1) + a(Γ2)− a(Γ) > 0, hence we conclude that

L(Ck)
2 ≥ ε > 0 for some ε > 0. (74)

Note that (74) has been proven for each Ck being a Jordan curve in Rn (this condition depends
on t0, given k), but the lower bound for the square of the length of Ck is independent on t0.
By a perturbation argument of the curve Ck(t) := hk(S1 × {t}), the above lower bound holds
independently of t ∈ [0, Tk].

On the other hand, using the Cauchy-Schwarz inequality,

L(Ck(t))
2 =

(∫ 2π

0

∥∥∥∥
∂fk
∂θ

(θ, t)

∥∥∥∥ dθ
)2

≤ 2π

∫ 2π

0

∥∥∥∥
∂fk
∂θ

(θ, t)

∥∥∥∥
2

dθ, (75)

and integrating from 0 to Tk,

εTk =

∫ Tk

0
ε dt

(74)

≤
∫ Tk

0
L(Ck(t))

2 dt
(75)

≤ 2π

∫ Tk

0

(∫ 2π

0

∥∥∥∥
∂fk
∂θ

(θ, t)

∥∥∥∥
2

dθ

)
dt = 2πE(hk),

which is bounded from above. Now the lemma is proved. 2

Remark 11.6 The proof of (74) can be adapted to show that given any generator Ck of the
fundamental group of fk(S1 × [0, Tk]), the length of Ck is not less than some δ > 0 independent
of k ∈ N.

Lemma 11.7 {Tk}k is bounded from below by some positive number.

Proof. Since Γ1,Γ2 are disjoint, d := distRn(Γ1,Γ2) > 0. Fix k ∈ N and θ ∈ S1. Since the arc
t ∈ [0, Tk] 7→ fk(θ, t) joins Γ1 and Γ2, we have that d ≤ L (t ∈ [0, Tk] 7→ fk(θ, t)). Squaring and
using Cauchy-Schwarz,

d2 ≤
(∫ Tk

0

∥∥∥∥
∂fk
∂t

(θ, t)

∥∥∥∥ dt
)2

≤ Tk

∫ Tk

0

∥∥∥∥
∂fk
∂t

(θ, t)

∥∥∥∥
2

dt

hence integrating from 0 to 2π,

2πd2 ≤ Tk

∫ 2π

0

(∫ Tk

0

∥∥∥∥
∂fk
∂t

(θ, t)

∥∥∥∥ dt
)
dθ = Tk E(fk).

Thus, Tk ≥ 2πd2

E(fk)
, that converges as k → ∞ to πd2

a(Γ) > 0. 2
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Remark 11.8 By Lemmas 11.5 and 11.7, after passing to a subsequence we can assume that
{Tk}k converges to some T > 0.

Next step consists of modifying the proof of the Courant-Lebesgue Lemma (Lemma 8.10) to
adapt it to annuli (we will not give ths proof).

Lemma 11.9 (Courant-Lebesgue para anillos) Let E0 > 0, and f : A→ Rn be a Lipschitz
map defined in an annulus A, with E(f) ≤ E0. Given p ∈ ∂A, there exists {rm}m → 0 such
that if L(rm) denotes the length of f(C(p, rm) ∩ A), then L(rm) tends to zero as m → ∞ (see
Figure 22).

rm
p

A

Figure 22: The image by f of the thick arc tends to zero as m→ ∞ (for all p ∈ ∂A).

Coming back to our proof of the Douglas criterion, given fk, we can assume that given
p ∈ S1 × {0} there exists {rk,m}m → 0 such that

L(rk,m) = L
[
fk(C(p, rk,m) ∩ (S1 × [0, Tk])

)
≪ δ/2 for m large enough,

where δ > 0 is the number that appeard in Remark 11.6.
Abusing slightly of the notation, we will call [p − rk,m, p + rk,m] to the arc inside S1 × {0}

with extrema C(p, rk,m) ∩ (S1 × {0}) of least length, and call I to the complementary interval
(see Figure 23). Thus, S1 × {0} = [p− rk,m, p+ rk,m]∪̇I.

fk(p− rk,m), fk(p+ rk,m) are two points of Γ1, and

distRn (fk(p− rk,m), fk(p+ rk,m) ≤ L
[
fk(C(p, rk,m) ∩ (S1 × [0, Tk]))

]
≪ δ/2. (76)

Furthermore, we can choose δ > 0 arbitrarily small (see Remark 11.6).
Since Γ1 is a Jordan curve in Rn, the chord-arc ratio is bounded in Γ1. More precisely, we

can choose δ > 0 small enough so that for any P,Q ∈ Γ1 with 0 < |P −Q| < δ/2, it holds that
P,Q separate Γ1 into two arcs Γ1(P,Q), Γ̃1(P,Q) such that the diameter in Rn of Γ1(P,Q) is
less than δ/2 (see the first paragraph after the proof of Lemma 8.10 for the same argument).

64



rk,m rk,m

S1 × {0} S1 × {Tk}

p p

Figure 23: Two conformal representations of the annulus A.

Lemma 11.10
{
hn|S1×{0}

}
k
is equicontinuous.

Proof. Following the above notation and reasoning as in the proof of Lemma 8.9, the lemma
will be proved if we check that

fk ([pk − rk,m, pk + rk,m]) = Γ1(P,Q) (independently of p ∈ S1 × {0}), (77)

where P = fk(pk − rk,m), Q = fk(pk + rk,m) (compare to equation (46)). Arguing ba con-

tradiction, suppose that (77) fails to hold. Then fk ([pk − rk,m, pk + rk,m]) = Γ̃1(P,Q), hence
fk(I) = Γ1(P,Q). But

L
[
fk
[
I∪̇
[
C(p, rk,m) ∩ (S1 × [0, Tk])

])]
= L(fk(I)) + L

[
fk
(
C(p, rk,m) ∩ (S1 × [0, Tk])

)]

(76)

≤ L(fk(I)) + δ/2 = L(Γ1(P,Q)) + δ/2 < δ,

which contradicts that I∪̇
[
C(p, rk,m) ∩ (S1 × [0, Tk])

]
is an embedded generator of the funda-

mental group of fk(S1 × [0, Tk]), se Remark 11.6. This finishes the proof of the Lemma. 2

Replacing fk by f̂k(θ, t) = fk(θ, Tk − t) and using the above argument, we obtain:

Lemma 11.11
{
hn|S1×{Tn}

}
k
is equicontinuous.

Lemma 11.12 There exists (f : S1×[0, T ] → Rn) ∈ XΓ, (this T > 0 is the number that appeared
in Remark 11.8) harmonic in S1× (0, T ), and there exists a subsequence of {fk}k that converges
on compact subsets of S1 × (0, T ) to f .

Proof. By Lemmas 11.10 and 11.11 and the Arzelá-Ascoli Theorem, after extracting a subse-
quence we can assume that

∥∥fk|S1×{0,Tk} − fh|S1×{0,Tk}
∥∥
∞ → 0 if k, h→ ∞.
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Since fk and fh are harmonic and Tk → T , the maximum principle for harmonic functions
implies

∥fk|K − fh|K∥L∞(K) → 0 if k, h→ ∞, ∀K ⊂ S1 × [0, T ] compact subset.

Given a compact subset K ⊂ S1 × [0, T ], the above displayed property implies the existence of
a harmonic map h : K → Rn such that {fk|K}k → f uniformly in K (again after passing to
a subsequence). A diagonal argument varying K in an increasing exhaustion of S1 × [0, T ] by
compact subsets proves that there exists a harmonic map h : S1× [0, T ] → Rn and a subsequence
of {fk}k that satisfies the conditions of the Lemma. 2

Now we can finish the proof of the Douglas criterion in the same way as we did for the
Douglas-Radó theorem.

12 Limits of embedded minimal surfaces

Our next goal is to understand how to take limits of a sequence of embedded minimal surfaces,
and the different objects we may encounter in the limit process.

12.1 Motivation

Suppose that Γ is a polygon in R3, i.e. a C0 Jordan curve consisting of with finitely points
joined by straight line segments. We want to produce a compact embedded minimal surface
Σ ⊂ R3 with boundary Γ.

Note that Douglas-Radó’s Theorem is not enough to produce the desired surface, as it only
produces a disc that minimizes the area among all surfaces with boundary Γ, but such a disk
could have self-intersections and/or branch points. However, if Γ satisfies the hypotheses of
Radó’s Theorem (Theorem 10.8), then we can ensure the existence a unique compact minimal
surface Σ ⊂ R3 with this boundary, which is embedded and has no branch points.

This application ot Radó’s Theorem (and of its proof) can be generalized by replacing R3 by
a homogeneous, simply connected three-manifold E(κ, τ) admitting a Riemannian submersion
π : E(κ, τ) → M2(κ) with bundle curvature τ ∈ R onto the simply connected surface of constant
curvature κ ∈ R. These spaces are S2(κ) × R if κ > 0, H2(κ) × R if κ < 0 and R3 in the
case of product spaces, and if the fibration π is non-trivial (equivalently, τ ̸= 0), we have the
Heisenberg space E(0, τ) fibering over R2, the Berger spheres fibering over S2(κ) with κ > 0,

and the universal cover S̃L(2,R) of the special linear group fibering over H2(κ) when κ < 0. In
all these cases we can extend Radó’s Theorem exchanging the orthogonal projection from R3

into R2 by the Riemannian submersion π : E(κ, τ) → M(κ). In order the proof of Theorem 10.8
to be valid in E(κ, τ), we need the following ingredients (compare to the steps of the proof of
Theorem 10.8):
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(A) Vertical ‘planes’, that is, π−1(γ) with γ ⊂ M(κ) any geodesic arc, must be minimal. This
follows since given a geodesic γ ⊂ M(κ), γ is invariant under the rotation of angle π around
any of the points of γ, and such a rotation lifts via π to an isometry of E(κ, τ) that inverts
the orientation of π−1(γ). This allows us to reproduce steps (1) and (2) of the proof of
Theorem 10.8.

(B) The fibers π−1({p0}) of π, with p0 any point in M(κ), are diffeomorphic to R. This is
valid for every E(κ, τ) except for the Berger spheres), and that vertical translations (i.e.,
elements in the 1-parameter group generated by the unit vertical field E3 on E(κ, τ) that
generates ker(dπ)) are isometries (equivalently, E3 is a Killing field). In this way, we can
move a minimal surface vertically in E(κ, τ) and produce a 1-parameter family of minimal
surfaces depending continuously on the parameter. This allows us to extend the arguments
of step (3) of the proof of Theorem 10.8.

(C) The argument we gave in step (4) of the proof of Theorem 10.8 is no longer valid now, since
we do not have reflections about horizontal ‘planes’ (in the case τ = 0 we do have these
reflections), but we can overcome this problem by the following argument: if there exists
p ∈ M with TpM vertical, then we can find a vertical ‘plane’ π−1(γ) ⊂ E(κ, τ) passing
through p, which is also a minimal surface, such that as the intersection of M and π−1(γ)
produces an equiangular system of curves that intersect at p and the two minimal surfaces
cross each other along these curves, which contradicts the fact that M does not have two
points on the same vertical.

The above observations tell us that we can extend Radó’s Theorem to spaces E(κ, τ) not being a
Berger sphere (in this case there is also a Radó’s type Theorem provided that we give additional
conditions in order step (B) above to hold).

Next we choose a geodesic polygon Γ ⊂ E(κ, τ) whose edges are vertical (i.e., the velocity
vector of an edge lies in ker(dπ)) or horizontal (the velocity vector of an edge is orthogonal to
ker(dπ)), and we want as before to find an embedded minimal surface with boundary Γ. The
problem is that for a contour Γ like this, the restriction π|Γ fails to produce a 1-1 projection
onto a convex polygonal Jordan curve in M2(κ): vertical segments of Γ apply to points of π(Γ).
Therefore we cannot directly apply Radó’s Theorem, see Figure 24.

To solve this problem, we will approximate Γ by polygons Γn to which we can apply Radó’s
Theorem and we will take limits in the corresponding sequence of minimal surfaces with bound-
ary Γn.

Let us simplify the situation by going back to R3, with the geodetic polygon Γ of Figure 24.
By the Theorem of Douglas-Radó, there exists a compact minimal disk Σ (possibly immersed
and with branch points) with ∂Σ = Γ. By the convex hull property, Σ is contained in the solid
cylinder π−1(R), where π(x, y, z) = (x, y) and R ⊂ {z = 0} is the rectangle bounded by π(Γ).

Given n ∈ N, take another two polygons Γ̃n and Γ′
n as in Figure 25, determined by the

vertices an, bn.
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Γ ⊂M 3 = E(κ, τ )

π

π(Γ) ⊂ M2(κ)

Figure 24: Radó’s Theorem does not apply in this situation.

Both Γ̃n and Γ′
n satisfy the hypotheses of Radó’s Theorem, hence there exist compact minimal

surfaces Σ̃n, Σ
′
n ⊂ R3 with ∂Σ̃n = Γ̃n, ∂Σ

′
n = Γ′

n, such that Σ̃n, Σ
′
n are graphs over the convex

domain π(Γ). Moreover, Σ̃n, Σ
′
n ⊂ R3 are the unique compact minimal surfaces with these

boundaries.
Now compare Σ̃n with Σ. Given t > 0, llet Σ̃n(t) = Σ̃n+ te3. For T > 0 large enough, Σ̃n(T )

is disjoint from Σ. Start moving Σ̃n(t) down from t = T to t = 0, until we find a first contact
point. Analyzing the boundaries of Σ̃n(t) and Σ we conclude that this first contact point occurs
at t = 0, i.e., Σ̃n ≥ Σ (this ordering refers to the vertical direction). Reasoning in an analogous
way with translations of the type Σ′

n − te3, t > 0, we get that Σ ≥ Σ′
n. In summary:

Σ′
n ≤ Σ ≤ Σ̃n, for all n ∈ N. (78)

If we know that Σ′
n and Σ̃n converge to the same compact minimal surface and that such limit

is a graph over its projection by π, then we will have proven the conclusions of Radó’s Theorem
for the boundary Γ. In fact, Σ′

n and Σ̃n are respectively the graphs of solutions un, vn : R→ R of
the PDE (6), and the above arguments prove that {un}n is increasing and {vn}n is decreasing.
From here and (78) we can conclude that {un}n and {vn}n converge in the uniform topology on
compact subsets of R to a minimal graph (observe that the space of solutions of (6) is closed
under this topology). In more general situations we will not have as good conditions as the above
monotonicity, so we will need more general results that allow us to take limits of sequences of
embedded minimal surfaces.

To finish with the example of the contour Γ, let us see that in this particular case everything
reduces to know that there exists Σ∞ := limnΣ

′
n (in what follows, it is not necessary to know
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R

π

{z = 0}

Γ̃n Γ′
n

R

an

bn

Figure 25: Radó’s Theorem de Radó can be applied to the polygons Γ̃n and Γ′
n.

that Σ∞ = Σ). Clearly

∂Σ∞ := ∂
(
lim
n→∞

Σ′
n

)
= lim

n→∞
∂Σ′

n = lim
n→∞

Γ′
n = Γ = ∂Σ.

We claim that if ηΣ∞ (resp. ηΣ) denotes the inward pointing unit conormal vector to Σ∞ (resp.
Σ) along Γ, then

⟨ηΣ∞ , e3⟩ ≤ ⟨ηΣ, e3⟩ : (79)

In the vertical part of Γ, both members of (79) are zero. In the horizontal part of Γ, the fact
that Σ∞ ≤ Σ (this can be deduced from (78) taking limits) and the maximum principle for
minimal surfaces ensures that (79) holds.

Lemma 12.1 Let Σ be a compact minimal surface with boundary in a Riemannian manifold
(M3, g) and let Y be a Killing field on M . Then,

∫

∂Σ
⟨Y, η⟩ = 0.

where η is a unit conormal field to Σ along ∂Σ.

Proof. divΣ(Y
T ) = 0 because H = 0 and Y is a Killing field on M . The lemma now follows

from integrating on Σ and applying the divergence theorem. 2

Applying Lemma 12.1 to our situation with Σ∞,Σ ⊂ R3 and Y ≡ e3, we deduce that
∫

Γ
⟨ηΣ∞ , e3⟩ = 0 =

∫

Γ
⟨ηΣ, e3⟩,
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hence (79) implies that ⟨ηΣ∞ , e3⟩ = ⟨ηΣ, e3⟩ along the horizontal part of Γ. This implies that
Σ∞ = Σ by the boundary maximum principle.

Note that we could have taken Γ̃n as the image of Γ′
n by the composition ϕ of the rotation of

angle π/2 with respect to the vertical axis that passes through the center of R with the rotation
of angle π with respect to a certain horizontal straight line whose height is half the height of Γ′

n.
By the uniqueness given by Radó’s Theorem, we deduce that Σ̃ = ϕ(Σ′

n) for each n. Therefore,

lim
n→∞

Σ̃n = lim
n→∞

ϕ(Σ′
n) = ϕ

(
lim
n→∞

Σ′
n

)
= ϕ(Σ∞) = ϕ(Σ),

that is, there exists the limit of Σ̃n and equals ϕ(Σ). Applying the above argument we conclude
that ϕ(Σ) = Σ, i.e., Σ is invariant by ϕ.

Although we will not use it, it is worth mentioning that the minimal surface Σ bounded by
Γ (we already know that Σ is unique) generates a properly embedded, triply periodic9 minimal
surface without boundary, by successive applications of the Schwarz’s reflection principle below
with respect to any segment in the boundary.

Proposition 12.2 (Schwarz’s reflection principle) Let Σ be a minimal surface in a Rie-
mannian manifold (M3, g) and α ⊂ ∂Σ a geodesic arc. Suppose there exists an order two
isometry ϕ : M →M such that ϕ(p) = p for each p ∈ α and dϕp is a rotation of angle π in TpM
with respect to the straight line tangent to α at p. Then, Σ ∪ ϕ(Σ) is a minimal surface is a
neighborhood of each point of α.

Proof. (Only in the case (M, g) = (R3, ⟨, ⟩))
Apply the classical Schwarz’s reflection principle for harmonic functions to each of the coordinate
functions of Σ with respect to a coordinate system having α as one of the coordinate axes. 2

12.2 Limits of sequences of minimal surfaces

Take a sequence {Σn}n of properly embedded minimal surfaces without boundary in a complete
Riemannian manifold (M3, g).

Under which conditions there exists a subsequence of {Σn}n that converges to a
complete embedded minimal surface inside M?

Let us see some examples.

(1) Let Σ1 be a catenoid with axis the z-axis. If we define Σn = 1
nΣ1 (homothety) for each

n ∈ N, then {Σn}n converges to the plane {z = 0} on compact subsets of R3 \ {⃗0} with
multiplicity 2. The Gauss curvature KΣn of Σn blows up in any neighborhood of 0⃗.

9That is, invariant under a group of translations of R3 of rank three.
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(2) Suppose that Σ1 is a helicoid with axis the z-axis. Let Σn = 1
nΣ1. Then, {Σn}n converges

to the foliation of R3 by horizontal planes, away from the z-axis, where the Gauss curvature
KΣn blows up, see Figure 26.

H 1
2H

1
4H

1
16H

Figure 26: When we take limits of 1
nH where H is a vertical helicoid, we obtain the foliation of

R3 by horizontal planes, but convergence fails to holds along the z-axis.

(3) Suppose that Σ1 is a properly embedded triply periodic minimal surface without boundary,
as for instance the one we have just constructed in the previous section. Let Σn = 1

nΣ1.

Then {Σn}n = R3 (closure) and {KΣn}n blows up in any neighborhood of every point of
R3. In other words, the limit of {Σn}n (or of any subsequence) has no structure.

We will prove several compactness results, always assuming the existence of an accumulation
point of the sequence of embedded minimal surfaces and different assumptions on uniform local
bounds for the sequence.

12.3 Limits of minimal graphs

Let Ω be a connected open subset in a Riemannian surface (M2, g), and

M(Ω) =

{
u ∈ C∞(Ω) : divM

(∇Mu

W

)
= 0

}

the set of minimal graphs over Ω (they are minimal in (M×R, g×dt2)), whereW =
√
1 + |∇Mu|2.

Theorem 12.3 Let {un}n ⊂ M(Ω). If there exist p ∈ Ω and c > 0 such that |un(p)| ≤ c for all
n ∈ N, and for each compact subset K ⊂ Ω there exists C(K) > 0 such that ∥∇Mun∥ ≤ C(K)
in K for all n ∈ N, then there exists u ∈ M(Ω) and a subsequence of {un}n that converges on
compact subsets of Ω to u in the topology Ck for each k ∈ N.
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Proof. Fix a connected compact subset K ⊂ Ω that contains p. Given q ∈ K and n ∈ N,

|un(p)− un(q)| ≤ ∥∇Mun∥L∞(K) · distM (p, q) ≤ C(K) · distM (p, q),

hence {un}n is uniformly Lipschitz in K and so, uniformly equicontinuous in K. By the triangle
inequality, {un}n is also uniformly bounded in K. By the Arzelá-Ascoli Theorem, there exists
u ∈ M(K) and a subsequence of {un}n that converges uniformly to u in K (and in Ck for each
k ∈ N by a standard argument in elliptic theory). After moving K in an exhaustion of Ω and
applying a diagonal argument we conclude the proof. 2

Lemma 12.4 (Uniform graph lemma) Let O ⊂ R3 an open set. Take C > 0 and let Σ ⊂ O
be a properly embedded surface10 with |AΣ| ≤ C. Then, given p ∈ Σ and R ∈ (0, R0) where

R0 = min

{
1

8C
,
1

2
dist(p, ∂O)

}
, (80)

there exists a differentiable function u : D(p,R) = {p + v | v ∈ TpΣ, ∥v∥ < R} → R such that
u(p) = 0 and Σ can be written locally around p as the graph of u. Furthermore, given q ∈ D(p, r),

(1) |u(p)− u(q)| ≤ 8C∥p− q∥2.

(2) ∥∇u∥(q) ≤ 8C∥p− q∥ (in particular, (∇u)(p) = 0).

(3) ∥∇2u∥(q) ≤ 8C.

Proof. After possibly a rigid motion, we can assume p = 0⃗ ∈ R3 and TpΣ = {z = 0}. Let I be
the set of the numbers R ∈ (0, R0) such that Σ is locally around p the graph of a differentiable
function u ∈ C∞(D(p,R)) with u(⃗0) = 0, (∇u)(⃗0) = 0⃗ ∈ R2. Consider the parameterization
of Σ given by ψ(x, y) = (x, y, u(x, y)), with Gauss map N = 1

W (−ux,−uy, 1), where W =√
1 + ∥∇u∥2. Let N3 =

1
W . Since N3(⃗0) = 1, we can assume taking R ∈ I small enough that

N3 ≥
1√
2

in D(⃗0, R). (81)

Let
I1 = {R ∈ I | (81) holds} and R1 = sup I1.

Thus, I1 is an interval of the form (0, R1], and Σ is locally around p the graph of a differentiable
function u ∈ C∞(D(p,R1)) with u(⃗0) = 0, (∇u)(⃗0) = 0⃗ ∈ R2 and N3 ≥ 1√

2
in D(⃗0, R1). If we

check that R1 = R0 and that u satisfies (1),(2),(3), we will have proven the lemma.
Note that exactly one of the following possibilities holds:

10Not necessarily minimal.
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(A) u can be extended to D(⃗0, R1) (in particular ∂D(p,R1) ∩ ∂O = ∅), and there exists q0 ∈
∂D(p,R1) such that N3(q0) =

1√
2
.

(B) Case (A) does not hold, and there exists {qn}n ⊂ D(p,R1) such that ∥qn − p∥ → R1 and
dist(ψ(qn), ∂O) → 0.

(C) Neither (A) or (B) occur. In this case, either R1 < R0 (this is impossible because it
contradicts that R1 = sup I), or R1 = R0.

Claim 12.5 If (A) holds, then R1 = R0.

Proof. |(N3)x| = |(⟨N, e3⟩)x| =
∣∣⟨∇ψxN, e3⟩

∣∣ = |⟨Aψx, e3⟩| ≤ ∥Aψx∥ ≤ ∥A∥ · ∥ψx∥ ≤ C∥ψx∥ =

C
√

1 + u2x ≤ CW
(81)

≤
√
2C. Analogously, |(N3)y| ≤

√
2C, hence ∥∇N3∥2 ≤ 4C2 and

∥∇N3∥ ≤ 2C in D(⃗0, R1). (82)

given q ∈ D(⃗0, R1),

|N3(p)−N3(q)|
(82)

≤ 2C∥p− q∥ ≤ 2CR1. (83)

On the other hand, from W ≤
√
2 (i.e. (81)) we have 1 + ∥∇u∥2 ≤ 2 hence

∥∇u∥ ≤ 1 in D(⃗0, R1). (84)

Therefore, |u(p) − u(q)|
(84)

≤ ∥p − q∥ ≤ R1. Now evaluate (83) at the point q0 ∈ ∂D(p,R1) that
appears in (A) (note that (84) can be used in the boundary of D(p,R1) because u extends to
D(⃗0, R1) and by continuity).

R1

(83)

≥ 1

2C
|N3(p)−N3(q0)| =

1

2C

(
1− 1√

2

)
≥ 1

8C

(80)

≥ R0, (85)

hence R1 = R0 as desired. 2

Claim 12.6 (B) cannot occur.

Proof. By the triangle inequality,

dist(p, ∂O) ≤ dist(p, ψ(qn)) + dist(ψ(qn), ∂O) ≤
∫ qn

p
W + dist(ψ(qn), ∂O)

≤
∫ qn

p

√
2 + dist(ψ(qn), ∂O) =

√
2∥qn − p∥+ dist(ψ(qn), ∂O) ≤

√
2R1 + dist(ψ(qn), ∂O),
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hence taking n→ ∞ we have dist(p, ∂O) ≤
√
2R1. But R0 ≤ 1

2dist(p, ∂O), hence 2R0 ≤
√
2R1 ≤√

2R0, which is a contradiction. 2

We now finish the proof of Lemma 12.4. From Claims 12.5 and 12.6 we deduce that R1 = R0.
It remains to prove that (1), (2) and (3) hold.

uxx
W = ⟨N,ψxx⟩ = −⟨Nx, ψx⟩ = ⟨Aψx, ψx⟩, hence |uxx|

W ≤ ∥A∥ · ∥ψx∥2 ≤ C(1 + u2x) ≤ CW 2.

Thus, |uxx| ≤ CW 3 ≤ 23/2C. Analogously,

|uxy| ≤ 23/2C, |uyy| ≤ 23/2C.

thus, ∥∇2u∥2 = u2xx + u2yy + 2u2xy ≤ 32C2, and ∥∇2u∥ ≤ 4
√
2C ≤ 8C, which is (3).

Given q ∈ D(p,R1), ∥∇u∥(q) = ∥(∇u)(p)− (∇u)(q)∥ ≤ 8C∥p− q∥, and we have (2). Finally,
|u(p)− u(q)| ≤ ∥∇u∥∞∥p− q∥ ≤ 8C∥p− q∥2 and we have (1). 2

12.4 Compactness theorems for sequences of embedded minimal surfaces

Definition 12.7 We call a Riemannian manifold (Mn, g) homogeneously regular if its injectivity
radius Inj(M) is positive (hence given R ∈ (0, Inj(M)), the exponential map expMp provides
geodesic coordinates in the geodesic ball B(p,R) centered at p of radius R) and the absolute
sectional curvature of M is bounded in M .

Every Riemannian manifolds is locally homogeneously regular, and every compact Rieman-
nian manifold is homogeneously regular. By using harmonic coordinates, it can be proven
that the local distortion in a homogeneously regular Riemannian manifold is uniformly C1,α-
controlled11. This property allows us to generalize Lemma 12.4 to these manifolds:

Theorem 12.8 (Uniform graph lemma)
Let (M3, g) be a homogeneously regular Riemannian manifold. Given C > 0, there exists δ > 0
such that if Σ ⊂M is a properly embedded surface12 with |AΣ| ≤ C, then Σ is a local graph over
the disk

D(p, δ) := expMp
(
DTpΣ(p, δ)

)

and such a graph has bounded geometry independently of Σ13 (see Figure 27).

Remark 12.9
(1) As M is homogeneously regular, we can assume that δ < Inj(M); in particular, expMp is a

diffeomorphism in the ball BM (p, δ).

11This means that the entries gij of the metric with respct to harmonic coordinates centered at any point p
of M are controlled in the C1,α topology for any α ∈ (0, 1), and this control only depends on Inj(M) and of the
bound of the absolute sectional curvature of M .

12Not necessarily minimal.
13This means that all derivatives of u in D(p, δ) are bounded by a constant that does not depend on Σ.
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p

D(p, δ)

Σ

geodesic in M

q

δ

Figure 27: graph in exponential coordinates.

(2) Also because (M3, g) is homogeneously regular, there exist δ, ε > 0 small enough so that

W (p, δ, ε) :=
{
expMq

(
t · Ñq

)
: q ∈ D(p, δ), |t| ≤ ε

}

is a tubular neighborhood of the surface D(p, δ), where Ñ : D(p, δ) → TM is a unit normal
field for D(p, δ). That Σ is a local graph over the disk D(p, δ) means that Σ can be written
locally around p as the image of the map

q ∈ D(p, δ) 7→ expMq

(
u(q)Ñq

)
, (86)

where u ∈ C∞(D(p, δ)) satisfies u(p) = 0 and (∇u)(p) = 0. In fact, the map defined in (86)
parameterizes a neighborhood of p in the component Σ(p) of Σ ∩W (p, δ, ε) that contains p
(see Figure 28).

p

W (p, δ, ε)
Σ(p) −ε

ε

D(p, δ)

q

u(q)

Figure 28: The component Σ(p) of Σ ∩W (p, δ, ε) that contains p can be written as a graph in
exponential coordinates.

Definition 12.10 A surface Σ in a Riemannian three-manifold (M3, g) is called two-sided it Σ
admits a globally defined, smooth unit normal field N : Σ → U1(M).

Take a sequence {Σn}n of complete two-sided minimal surfaces without boundary, embedded in
a complete and homogeneously regular Riemannian manifold (M3, g). Suppose that {Σn}n has
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an accumulation point p ∈ M ; thus, p = limn pn for some sequence pn ∈ Σn. We will assume
that the second fundamental forms of the Σn has uniform local bounds (we will not assume
uniform local bounds for the area). Under these conditions, the sequence (pn, Nn(pn)) converges
to an element (p,Np) ∈ U1(M) after passing to a subsequence. Since (M, g) is homogeneously
regular, there exists δ > 0 such that

D(p, δ) :=
{
expMp (tw) | w ∈ TpM, gp(w,w) = 1, gp(w,Np) = 0, |t| < δ

}

is a surface passing through p. Analogously, define for each n ∈ N

D(pn, δ) :=
{
expMpn(tw) | w ∈ TpΣn, gp(w,w) = 1, |t| < δ

}
.

Note that D(pn, δ) converges to D(p, δ) uniformly as n→ ∞.
By Theorem 12.8, we can choose δ > 0 such that a neighborhood of pn

Σn(pn) := Gr[un : D(pn, δ) → R] ⊂ Σn

is the graph of a differentiable function with bounded geometry independently of n (think of
Σn(p) as the component of Σn ∩W (pn, δ, ε) that contains pn, where ε > 0 is independent of
n). Since D(pn, δ) converges uniformly to D(p, δ), for n large enough Σn(pn) is also the graph
of a differentiable function vn : D(p, δ) → R with bounded geometry independently of n (we
should take here δ/2 instead of δ but we will not do this for the sake of simplicity). Moreover,
each vn is a solution of an elliptic PDE that is independent of n (since Σn is minimal). By
Theorem 12.3, after passing to a subsequence the vn converge on compact subsets of D(p, δ) to
a smooth function v∞ : D(p, δ) → R in the Ck topology for each k. In particular, v∞ satisfies
the same PDE as the vn, i.e., v∞ produces a minimal graph Σ(p) := Gr(v∞) over D(p, δ). By
construction, Σ(p) has unit normal Np at p.

Next we will construct a global object that contains Σ(p). Note that Σ(p) has the topology
of a disk. Take q ∈ ∂Σ(p). As the convergence of Σn(pn) to Σ(p) is C1 on compact subsets,
there exists {qn}n ∈ Σn(pn) such that

Nn(qn) = NΣn(pn)(qn) → NΣ(p)(q),

where el super-index denote the related surface. Theorem 12.8 ensures that around qn, Σn(pn)
can be written as the graph of a differentiable function defined in a disk of radius δ (this is
the same δ before). Repeating the same reasoning, a subsequence of these graphs converges
uniformly on compact subsets of D(q, δ) to a smooth function w∞ : D(q, δ) → R in the Ck

topology for each k. Thus, the limits Gr(v∞) and Gr(w∞) overlap and their union produces a
minimal surface that contains q in its interior and which lies in the closure of the Σn. Applying
repeatedly this continuation argument we will obtain a minimal surface Σ ⊂ M without self-
intersections14. The intersection of Σ with each compact subset of M has bounded second

14Recall that if Σ has self-intersections, then we can fin a point of transversal self-intersection of Σ; this produces
self-intersection points in the Σn for n large enough, which is a contradiction.

76



fundamental form, and Σ is a closed subset of M (Σ has no boundary by the above continuation
argument). This last property and the fact that (M3, g) is complete imply that Σ is also complete
(every Cauchy sequence in Σ is a Cauchy sequence in M , hence it is convergent in M , and its
limit lies in the closure of Σ, which equals Σ). In summary, we have proved the following result:

Theorem 12.11 Let (M3, g) be a complete and homogeneously regular Riemannian manifold,
and let {Σn ⊂ M}n be a sequence of complete embedded, two-sided minimal surfaces without
boundary. If {Σn}n has an accumulation point in M and local uniform bounds for the second
fundamental form, then

Lim({Σn}n) = {p = lim
n→∞

pn ∈M | pn ∈ Σn ∀n ∈ N}

contains a complete embedded minimal surface Σ ⊂M such that after passing to a subsequence,
the Σn converge on compact subsets of M to Σ in the Ck topology for each k.

Note that under the conditions of Theorem 12.11, we do not ensure that Lim({Σn}n) equals
Σ. Next we will develop this idea further.

Assume that in addition to the hypotheses of Theorem 12.11, the surfaces Σn have uniform
local area bounds15. In this case, in the previous local argument to produce graphs Σn(pn)
converging to a minimal graph Σ(p), we can assume that Σn∩W (pn, δ, ε) has only a finite number
(independent of n) of components, of which Σn(pn) is the one that contains pn. In particular, the
convergence of Σn∩W (pn, δ, ε) to Σ(p) has finite multiplicity. This finite multiplicity is constant
in each connected component of Σ, and around each p ∈ Lim({Σn}n), the local structure of the
limit set

Lim({Σn}n) = {p = lim
n→∞

pn ∈M | pn ∈ Σn ∀n ∈ N}
consists of a properly embedded minimal surface inside M . In summary:

Theorem 12.12 Let (M3, g) be a complete and homogeneously regular Riemannian manifold,
and let {Σn ⊂ M}n be a sequence of properly embedded, two-sided minimal surfaces without
boundary. If {Σn}n has an accumulation point in M and uniform local bounds for the second
fundamental form and area, then after passing to a subsequence we have:

(1) The limit set Lim({Σn}n) consists of a properly embedded minimal surface Σ ⊂M .

(2) The Σn converge on compact subsets of M to Σ in the Ck topology for each k, with finite
multiplicity that is constant in every component of Σ.

If under the hypotheses of Theorem 12.11, the surfaces Σn fail to have uniform local bounds
of the area, there is still a reasonable structure in the set Lim({Σn}n): the surfaces Σn could
accumulate at the same time that converge to Σ(p) with infinite multiplicity. This produces a
minimal lamination of codimension 1 in (M3, g), in the following sense:

15That is, for each p ∈ M there exists R > 0 such that Area(Σn ∩ BM (p,R)) is bounded by a constant that
only depends on p and R. In particular, each Σn is proper.
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Definition 12.13 A lamination of codimension 1 in a Riemannian manifold (Mn, g) is the
union of a collection of pairwise disjoint, connected, injectively immersed hypersurfaces in M ,
with a certain local product structure. More precisely, it is a pair (L,A) that satisfies:

1. L is a closed subset of M ;

2. A = {φβ : Dn−1× (0, 1) → Uβ}β is an atlas of M (here Dn−1 denotes the unit ball of Rn−1

and Uβ is an open subset of M);

3. For each β, there exists a closed subset Cβ of (0, 1) such that φ−1
β (Uβ ∩ L) = D× Cβ, see

Figure 29.

ϕβD

Cβ

Uβ L

0

1

Figure 29: Local product structure of a lamination.

We will denote laminations simply by L, omitting the local charts φβ in A. A lamination L
is called a (codimension 1) foliation of M if L =M . Every lamination L decomposes naturally
into pairwise disjoint connected hypersurfaces (given locally by φβ(Dn−1 × {t}), t ∈ Cβ, with
the notation above), which are called the leaves of L.

A codimension 1 lamination is called minimal if its leaves are minimal hypersurfaces.

The simplest example of a minimal lamination of R3 is a collection of parallel planes L =
{z = c}c∈C , where C ⊂ R is a closed subset of the real line.

With the above discussion at hand, we have the following result.

Theorem 12.14 Let (M3, g) be a complete and homogeneously regular Riemannian manifold,
and let {Σn ⊂ M}n be a sequence of complete embedded, two-sided minimal surfaces without
boundary. If {Σn}n has an accumulation point in M and uniform local bounds for the second
fundamental form, then after passing to a subsequence the limit set Lim({Σn}n) has the structure
of a codimension 1 minimal lamination L of (M3, g), and given any leaf Σ of L, the Σn converge
on compact subsets of M to Σ in the Ck topology for each k.
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13 Complete minimal surfaces with finite total curvature

Definition 13.1 Let (M2, g) be a connected, complete Riemannian surface with Gauss curva-
ture K. The total curvature of (M, g) is

C(M) =

∫

M
K dA.

If (M2, g) is a connected, orientable, complete non-compact Riemannian surface What is the
relationship between the total curvature of (M, g) and its topological and/or conformal type?16?

In the above situation, take a point p0 ∈M and let DM (p0, r) be a metric ball of radius r > 0
(neither r is necessarily a geodesic radius nor DM (p0, r) is topologically a disk). In DM (p0, r)
we have radial geodesics starting from p, that might fail to produce local coordinates since r is
not necessarily a geodesic radius. ∂DM (p0, r) consists of a curve or collection of them, with a
finite number of vertices V1, . . . , Vnr , nr ∈ N. Since we are assuming M is oriented, we also have
an induced orientation in ∂DM (p0, r). This orientation produces angles θr1, . . . , θ

r
nr
< 0 at the

vertices, as in Figure 30.

θi Vi

Figure 30: Left: The topology of a metric ball can change as the radius varies, and the boundary
does not have to be smooth. Right: angle at a vertex.

Let us call L(r) to the length of ∂DM (p0, r).

Theorem 13.2 (First variation of length formula) In the above situation, the function r >
0 7→ L(r) is of class C1 a.e. in r, and

l′(r) =

∫

∂DM (p0,r)
κg(s) ds+ 2

nr∑

i=1

tan (θri /2) , (87)

where l′(r) makes sense, where κg is the geodesic curvature of DM (p0, r) and s is arclength
parameter.

16In other words, to what possible models is M homeomorphic and/or conformally equivalent?
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Proof. We can view l(r) as the 1-dimensional volume of ∂DM (p, r), which in turn can be con-
sidered to be a variation by curves in (M, g). This variation fails to be smooth at the vertices of
∂DM (p0, r). In absence of these vertices, we could apply the first variation of volume formula
(Proposition 16.1) and conclude that

l′(r) = −
∫

∂DM (p0,r)
⟨X, H⃗⟩ds

where X is the variational field of the variation of ∂DM (p0, r) by the boundaries of metric
balls. We can write this variation in the form F (r, ξ) = expp0(rξ), where ξ parameterizes
the unit sphere Up0M = {ξ ∈ Tp0M | ∥ξ∥ = 1}. Thus, the variational field of F is X(ξ) =
∂F
∂r (r, ξ) = γ′ξ(r), where γξ is the unique geodesic in M with initial conditions γxi(0) = p0,
γ′ξ(0) = ξ. By Gauss’ Lemma, X(ξ) = JΓ′(s), where J is the rotation of angle π/2 on TΓ(s)M
and Γ(s) is a parameterization by arclength of ∂DM (p0, r) around the point of intersection of γξ
and ∂DM (p0, r) (furthermore, X points outwards DM (p0, r)). As for H⃗ = H⃗(s), it equals the
geodesic curvature vector of Γ:

H⃗(s) = κ⃗g(s) = ∇M
Γ̇
Γ̇,

hence

⟨X, H⃗⟩ = ⟨JΓ′, κ⃗g⟩
(∗)
= −κg,

where in (∗) we have used that JΓ′ points outwards DM (r0,M) and the geodesic curvature
vector of ∂DM (p0, r) points inwards DM (p0, r). Thus, if ∂DM (p0, r) had no vertices we would
have

l′(r) =

∫

∂DM (p0,r)
κg(s) ds.

In order to compute the infinitesimal variation of length produced by the vertices, first note
that this a order 1 information for l(r) around the vertices, hence we can replace the two arcs
meeting at a vertex by straight line segments L1, L2 as in Figure 31.

Given t > 0, we next analyze how to compute the length l(r + t). As we are not interested
in what happens far from the vertex, we can think of just measuring the variation of l(r+ t) by
measuring the lengths of the new segments L1(t), L2(t) parallel to L1, L2 at distance t from these
last ones, so that the vertices A(t), B(t) of L1(t) satisfy that the segment A,A(t) is perpendicular
to L1, and analogously the vertices B(t), C(t) of L2(t) make the segment C,C(t) perpendicular
to L2, see Figure 31.

Consider the points B1 ∈ L1, B2 ∈ L2 such that A,A(t), B(t), B1 are the vertices of a
rectangle based on L1; and C,C(t), B(t), B2(t) are the vertices of another rectangle based on
L2. The points B(t), B1, B are the vertices of a right triangle (with right angle at B1); let us
call β to the angle of this triangle at B and φ = π

2 − β to the angle at B(t). By construction,
the points B(t), B2, B are the vertices of another right triangle, with a right angle at B2 and
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L1 L2

t

A

A(t)

L1(t)

B(t)

L2(t)

C(t)

t

C

B2

B

B1

a(t) a(t)

ϕ
ϕ

π/2
β β

r

Figure 31: Computing the infinitesimal variation of l(r) around a vertex B. The gray region
represents a portion of DM (p0, r).

angles β at in B and φ at B(t). If l0 denotes the length of the polygonal line L1 ∪ L2 and l(t)
the length of the polygonal line L1(t) ∪ L2(t), then

l(t) = l0 − 2a(t),

where a(t) is the length of B1, B. On the other hand, the external angle θ at B (with the
orientation that goes from B2 to B1 passing through B) satisfies 2β + |θ| = π. Thus, φ =
π
2 − β = π

2 − π−|θ|
2 = |θ|

2 . As tanφ = a(t)
t , we have a(t) = t tanφ = t tan (|θ|/2) and

l(t) = l0 − 2t tan (|θ|/2) ,

hence l′(0) = −2 tan (|θ|/2). This proves the formula of Theorem 13.2. 2

We keep working with a metric ball DM (p0, r) is a non-compact, connected, orientable,
complete Riemannian surface (M2, g). The function x 7→ tan(x)− x is non-decreasing, as it has
non-negative derivative. Since the value of this function at zero is zero, it takes non-positive
values when x < 0. Since each angle θri in (87) is negative, we have tan (θri /2) ≤ θri /2, hence

l′(r)
(87)
=

∫

∂DM (p0,r)
κg(s) ds+ 2

nr∑

i=1

tan (θri /2) ≤
∫

∂DM (p0,r)
κg(s) ds+

nr∑

i=1

θri

(∗)
= 2πχ (DM (p0, r))−

∫

DM (p0,r)
K dA, (88)
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where in (∗) we have used the Gauss-Bonnet formula, χ (DM (p0, R)) is the Euler characteristic
of DM (p0, R) and K the Gauss curvature of (M2, g).

Note that l(r) > 0 ∀r > 0 (because since M is connected, complete and non-compact, we
have ∂DM (p0, r) ̸=M).

Lemma 13.3 In the above situation, lim
r→∞

l′(r) ≥ 0.

Proof. Arguing by contradiction, suppose that there exists r0 > 0 such that l′(r) ≤ δ < 0 a.e.
in [r0,∞). This implies that there exists R > r0 such that l(R) = 0, which contradicts that
l(r) > 0 ∀r > 0. 2

Using Lemma 13.3 and (88),

0 ≤ lim
r→∞

l′(r) ≤ lim
r→∞

[
2πχ (DM (p0, R))−

∫

DM (p0,r)
K dA

]
(89)

= lim
r→∞

[
2π(2− 2g(r)− C(r))−

∫

DM (p0,r)
K+ dA+

∫

DM (p0,r)
K− dA

]
, (90)

where

g(r) = genus(DM (p0, r)), C(r) = #[connected components of ∂DM (p0, r)],

K+ = max(K, 0), K− = −min(K, 0).

}

From now on, we will assume that

∫

M
K− dA <∞. (91)

(91) gives an upper bound for every positive term of the bracket in (90), independent of r. As
the right-hand-side of (90) is ≥ 0, we conclude that all non-positive terms of the bracket in (90)
must be bounded from below by a number that is independent of r. Therefore:

g(r), C(r),

∫

M
K+ dA are bounded from above as functions of r. (92)

A first consequence is:

Lemma 13.4 If (M2, g) is non-compact, connected, orientable, complete Riemannian surface

with

∫

M
K− dA <∞, then:

(1) (M, g) has finite total curvature.

82



DM(p0, r)

component
contained in A(r)

p0

Figure 32: The dotted components of M \DM (p0, r) cannot exist.

(2) There exists r0 > 0 such that g(r) ≡ g(r0) ∀r ≥ r0.

From now on we will use the number r0 > 0 that appears in Lemma 13.4. Given r ≥ r0, we
define

A(r) = DM (p0, r) ∪ [compact components of M \DM (p0, r)] .

Let us analyze the topology of A(r) for r ≥ r0. Given r ≥ r0, A(r) is compact hence it
has finite genus (independent of r by item (2) of Lemma 13.4) and a finite number of boundary
components.

Lemma 13.5 Given r ≥ r0, every compact component of M \DM (p0, r) is topologically a disk.

Proof. Let C be a compact component of M \DM (p0, r). If ∂C has more then one component,
then DM (p0, r)∪C has genus strictly greater than g(r0). This contradicts that DM (p0, r)∪C ⊂
DM (p0, rC) for some rC > r0 and item (2) of Lemma 13.4; therefore, ∂C has only one component.
If the genus of C is positive, then DM (p0, r) ∪ C has genus strictly greater than g(r0) and we
have the same contradiction. 2

The only way that the topology of DM (p0, r) gets more complicated for r ≥ r0 is by means of
pieces of genus zero and at least three boundary components (pair of pants), as in Figure 33.

Observe that once a piece bifurcates into two pieces by means of a pair of pants, the two
newly created pants cannot join in a posterior stage (i.e., for some r′ > r) because genus cannot
increase (g(r′) = g(r)). Also note that once a pair of pants appears, the number of components
C(r) of DM (p0, r) increases by at least one. Since C(r) is bounded from above independently of
r), we conclude that there exists {rm}m ↗ ∞ such that C(rm) = k ∈ N is constant in m. This
implies that A(rm+1) is the union of A(rm) with m cylinders.
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DM(p0, r)
p0

equivalent

Figure 33: Red components are topologically equivalent.

DM(p0, r)
p0

ends
of M

Figure 34: From a radius on, the topology of DM (p0, r) remains the same.

If we take m → ∞, we will deduce that M has finite topology, i.e., finite genus g(r0) and a
finite number of ends k. Furthermore, taking r = rm → ∞ in (89) we obtain

0 ≤ 2πχ(M)−
∫

M
K dA.

In summary, we have proven the following result.

Theorem 13.6 (Cohn-Vossen) Let (M2, g) be a connected, orientable, complete Riemannian

surface with Gauss curvature K. If

∫

M
K− dA <∞, then M has finite topology, finite total

curvature and ∫

M
K dA ≤ 2πχ(M).

In view of the above proof, any surface M as above is homeomorphic to a compact surface
of genus g ∈ N ∪ {0} with k ∈ N points removed, each one forming an end of M . In particular,
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the k ends of M are annular17. Regarding the conformal structure of each end, we have two
options: either the end is conformally equivalent to a punctured disk D∗ = {z ∈ C | 0 < |z| ≤ 1}
(parabolic end), or to an annulus A(0;R, 1) = {z ∈ C | R < |z| ≤ 1} for some R ∈ (0, 1)
(hyperbolic end). The following result rules out the hyperbolic case.

Theorem 13.7 (Huber) Let (M2, g) be a connected, orientable, complete Riemannian sur-

face with Gauss curvature K. If

∫

M
K− dA <∞, then each end of M is parabolic and M is

conformally equivalent to a compact Riemann surface of genus g ∈ N ∪ {0} with k ∈ N points
removed.

Proof. Let E be an end of M , which is annular by the previous discussion. Suppose that E is
conformally equivalent to {1 ≤ |z| < R} for some R > 1, let us see that R = ∞. Using the same
notation son far, we can take r > r0 so that ∂DM (p0, r) ∩ E = Γ(r), where Γ(r) is a generator
of π1(E) ≡ Z (note that Γ(r) might fail to be smooth).

DM(p0, r)
p0 end E of M

∂E Γ(r) ⊂ ∂DM(p0, r)

Figure 35: Annular end E of M .

Let ϕ : E → {1 ≤ |z| < R} be a conformal diffeomorphism. ϕ(Γ(r)) is a generator of the
fundamental group of {|z| ≥ 1}, hence

2π = L({|z| = 1}) ≤ L[ϕ(Γ(r))] =

∫

Γ(r)
∥dϕΓ(r)(Γ(r)′)∥ds

where s is the arclength parameter of Γ(r) (defined except at a finite number of points) and
′ = d

ds . By Schwarz’ inequality,

4π2 ≤ L[ϕ(Γ(r))]2 ≤ L[Γ(r)]

∫

Γ(r)
∥dϕΓ(r)(Γ(r)′)∥2ds

17Diffeomorphic to an annulus.
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(∗)
= L[Γ(r)]

∫

Γ(r)
(Jacϕ)∥Γ(r)′∥2ds = L[Γ(r)]

∫

Γ(r)
Jacϕds, (93)

where in (∗) we have used that ϕ is conformal.
Recall (88):

l′(r) ≤ 2πχ (DM (p0, r))−
∫

DM (p0,r)
K dA,

for almost all r > 0. By Cohn-Vossen’s Theorem, χ (DM (p0, r)) = χ(M) for each r ≥ r1 > 0,

and since the limit of

∫

DM (p0,r)
K dA as r → ∞ exists and equals C(M) =

∫

M
K dA ∈ R, we

conclude that l′(r) ≤ 2πχ(M)−C(M) + 1 for all r large enough. Thus, there exists C > 0 such
that

l(r) ≤ Cr for all r > 0. (94)

Finally, from (93) and (94) we have

4π2

Cr
≤ 4π2

l(r)
≤ 4π2

L[Γ(r)]
≤
∫

Γ(r)
Jacϕds

for almost all r > 0, hence integrating from r1 > 1 to ∞ we get

∞ =
4π2

C
[log r]∞r1 =

∫ ∞

r1

4π2

Cr
dr ≤

∫ ∞

r1

(∫

Γ(r)
Jacϕds

)
dr.

As the last right-hand-side is the area of Im(ϕ) = {1 ≤ |z| < R} with the standard flat metric
in R2, we conclude that R = ∞. This proves that every end of M is conformally parabolic, and
the theorem is proved. 2

Lemma 13.8 Let Σ ⊂ R3 be an orientable minimal surface. Then, |C(Σ)| equals the spherical
area of image of Σ by its Gauss map counting multiplicities.

Proof. C(Σ) =

∫

M
K dA = −

∫

Σ
|K| dA = −

∫

Σ
|JacN | dA, which is the opposite of the spherical

area of N(Σ) (counting multiplicities) by the area formula. 2

Theorem 13.9 (Osserman) Let Σ ⊂ R3 be an orientable complete minimal surface without
boundary. Then, either C(Σ) = −∞ or C(Σ) is a non-positive integer multiple of 4π. In
particular, if C(Σ) ∈ (−4π, 0] then Σ is a plane.
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Proof. Suppose that C(Σ) > −∞. By Huber’s Theorem, M is conformally equivalent to a
compact Riemann surface Mg of genus g minus a finite number of points p1, . . . , pk ∈ Mg.
Let g : Σ → C be the Gauss map of Σ, stereographically projected from the North pole of
S2. Recall from Section 5 that g is a meromorphic function defined on Σ. Up to a conformal
biholomorphism, we can view g : Mg \ {p1, . . . , pk} → C as a meromorphic function.

Let us prove that g extends meromorphically across each pj (i.e., g has at most a pole at pj ,
not an essential singularity). Take j ∈ {1, . . . , k} and let (U = D∗ = {0 < |z| ≤ 1}, z) be a local
isothermal coordinate for Mg around pj . We can assume that pj is the unique end of Σ in D∗.
We have g : D∗ → C, a meromorphic function. Given r ∈ (0, 1), denote by γr(s) an arclength
parameterization of {|z| = r}. Then, L (g(γr)) =

∫
γr
|dgγr(γ′s)| ds, hence by Schwarz’ inequality,

[L (g(γr))]
2 ≤ 2πr

∫

γr

∥∥dgγr(γ′s)
∥∥2 ds.

Dividing by 2πr and integrating in r from 0 to 1,

∫ 1

0

[L (g(γr))]
2

2πr
dr ≤

∫ 1

0

(∫

γr

∥∥dgγr(γ′s)
∥∥2 ds

)
dr

(∗)
= 2 Area(g(D∗)),

where in (∗) we have used that g is conformal. The last right-hand-side is finite by Lemma 13.8.
Since 1/r is not integrable in (0, 1], there exists {rm}m ⊂ (0, 1] tending to zero such that
L (g(γrm)) → 0 as m → ∞. Take an accumulation point w0 ∈ C of {g(γrm)}m. Then, for any
δ > 0 small, the closed curve g(γrm) is contained in D(w0, δ) para m large enough depending on
δ. By the maximum principle for holomorphic functions, the image by g of the annulus bounded
by γrm ∪ γrm+1 is contained in D(w0, δ) for all m large enough. This implies that g is bounded
in a neighborhood of the end pj . By Liouville’s Theorem, g extends meromorphically across pj ,
and the same holds for each j = 1, . . . , k.

Finally, the above arguments show that the Gauss map N of Σ extends as a meromorphic
map to Ñ : Mg → S2, hence the spherical area of Ñ(Mg) is 4π deg(Ñ). By Lemma 13.8, this
spherical area equals |C(M)| and the proof is complete. 2

14 The Gauss map of a complete minimal surface

Recall that the Picard’s little theorem asserts that for a non-constant entire function f , the
set of values that f(z) assumes is either the whole complex plane or the plane minus a single
point. Taking into account the relationship between the Gauss of a complete, orientable minimal
surface Σ ⊂ R3 and the holomorphic function g : Σ → C given by (18), the central problem of
this section arises naturally:

¿How many points of S2 can the Gauss map N : Σ → S2 of a complete, non-flat,
orientable minimal surface Σ ⊂ R3 omit?
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The Gauss map of the catenoid misses two points of S2, as well as the one of the helicoid. The
Gauss map of the singly (or doubly) periodic Scherk minimal surface omits four points, and the
one of the Enneper surface omits one point. For a long time, it was conjectured that the answer
to the above problem is that the maximum number possible of points omitted for N(Σ) is four.
This problem boosted the research on minimal surfaces via Complex Analysis. Using the classic
Liouville theorem, Osserman deduced that N(Σ) must be dense in S2; later, Osserman improved
his own result by proving that S2 \N(Σ) has zero logarithmic capacity18; Xavier proved in 1981
that N(Σ) cannot miss seven points; in 1988 López and Ros reduced seven to six, and finally in
1988, Fujimoto gave the final solution proving that N(Σ) cannot miss five points. In this section
we will give the first result of Osserman mentioned above.

Closely related to the above discussion we have the following open problem:

¿How many points of S2 can the Gauss map N : Σ → S2 of a complete, non-flat,
orientable minimal surface with finite total curvature Σ ⊂ R3 omit?

Some known facts about this problem:

(1) In 1964, Osserman proved that N cannot omit four points of S2.

(2) In 1987, Weitsman and Xavier proved that ii N omits three points, then C(Σ) ≥ −16π
(total curvature), or equivalently, deg(N) ≥ 4. In 1993, Fang improved this result proving
under the same hypotheses that deg(N) ≥ 5.

There are no known examples of total finite curvature whose application of Gauss omits three
points of S2. So far, it is not known if two or three is the maximum number of points that can be
omitted by the Gauss map of a complete, non-flat, orientable minimal surface with finite total
curvature.

Theorem 14.1 (Osserman) Let Σ ⊂ R3 be a complete, non-flat, orientable minimal surface
without boundary. Then, the Gauss map image N(Σ) is dense in S2.

Proof. Let π : Σ̃ → Σ be the universal cover de Σ. If we endow Σ̃ with the covering metric, π
becomes a local isometry and Σ̃ can be considered to be an immersed surface in R3 in the same
conditions of the theorem. Thus, in the sequel we will assume that Σ is simply connected. This
implies that Σ is conformally equivalent to C or to the open unit disk D. Let g : Σ → C be the
Gauss map of Σ, after stereographic projection from the North pole of S2.

Arguing by contradiction, suppose that N(Σ) is not dense in S2. Thus, g(Σ) omits an open
disk of C. After a rotation of Σ in R3, we can assume that thus missed disk is centered at ∞,
i.e., there exists C > 0 such that

|g(z)| ≤ C for all z ∈ Σ. (95)

18This concept is technical and we will not define it here; we will only say that it refers to the conformal
structure of the open set N(Σ), and that the complement of any subset of S2 with zero logarithmic capacity is
dense in S2.
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If Σ is conformally C, then g is entire and bounded, hence constant by Liouville’s Theorem.
This contradicts that Σ is not flat. Hence Σ is conformally equivalent to D.

Let (g, fdz) be the Weierstrass pair of Σ (defined in Section 5). Completeness of the induced
metric ds2 on Σ and equation (17) imply that for any divergent curve γ ⊂ Σ, it holds

∞ = L(γ, ds2) =

∫

γ
ds =

1

2

∫

γ
(1 + |g|2)|f ||dz|

(95)

≤ (1 + C2)

2

∫

γ
|f ||dz|,

from where we deduce that |f |2|dz|2 is a complete metric (globally defined) on D. As |f |2|dz|2
is flat (because f is holomorphic, as can be deduced from the equation K ′e2u = K − ∆u for
the Gauss curvatures K,K ′ of two conformal metrics g, g′ = e2ug on a surface), there exists an
isometry ψ : (R2, g0) → (D, |f |2|dz|2) (here g0 denotes the standard inner product on R2). The
composition ψ ◦ g is holomorphic in C and bounded, hence constant by Liouville’s Theorem.
Hence, g is also constant, which is a contradiction. 2

15 Compactness results under uniform local bounds of the total
curvature

As in Section 12, we will consider possible limits of a sequence {Σn}n of embedded minimal
surfaces in a Riemannian manifold (M3, g). Let Ω ⊂M3 a homogeneously regular open subset.
Suppose that

(1) (Σn, ∂Σn) ⊂ (Ω, ∂Ω) for each n ∈ N (Σn is properly embedded in Ω).

(2) {Σn}n has an accumulation point in Ω.

(3) {Σn}n has uniform local bounds of the second fundamental form in Ω:

∀p ∈ Ω, ∃r(p), C(p) > 0 such that BM (p, r(p)) ⊂ Ω and
∣∣AΣn∩BM (p,r(p))

∣∣ ≤ C(p), ∀n ∈ N.

In these conditions, the techniques explained in Section 12 allow us to prove that the limit set
(after passing to a subsequence) Lim({Σn}n) := L has the structure of a minimal lamination
of codimension 1 of Ω, and that given a leaf Σ of L, the surfaces Σn converge on compact
subsets of Ω to Σ in the Ck topology for each k. Furthermore, if we additionally have uniform
local bounds for the area of {Σn}n in Ω, then L reduces to a (possibly non-connected) surface
(Σ, ∂Σ) ⊂ (Ω, ∂Ω) and the convergence of {Σn}n has finite multiplicity that is constant on every
component of Σ.
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Theorem 15.1 Given C ∈ (0, 8π) there exists C0 = C0(C) > 0 such that if {Σn}n is a sequence
of complete embedded minimal surfaces in R3 with boundary19 ∂Σn ̸= ∅, such that

∫

Σn

|AΣn |2 ≤ C,

then
|AΣn | · distΣn(·, ∂Σn) ≤ C0 in Σn, for each n ∈ N. (96)

Proof. We claim that we can suppose that Σn is compact ∀n ∈ N: to see this, take n ∈ N and
consider an exhaustion

Σ1
n ⊂ Σ2

n ⊂ . . . ⊂ Σkn ⊂ . . .↗ Σn

If we prove that there exists C0 = C0(C) such that (96) holds ∀n, k ∈ N, then the theorem will
be proven.

Given n ∈ N, let pn ∈ Σn be a maximum of the continuous function

fn : Σn → [0,∞), fn(q) = |AΣn |(q) · distΣn(q, ∂Σn), (97)

which exists by compactness of Σn. Since fn = 0 in ∂Σn, we have pn ∈ Σn \ ∂Σn (for this we
need Σn to be non-flat, in which case the theorem is trivial).

Assume that (96) fails to hold. This produces a sequence of surfaces Σn as in the theorem,
and points pn ∈ Σn defined as above, such that fn(pn) → ∞.

Translate Σn in R3 in such a way that pn = 0⃗ for each n (we will keep denoting this point
by pn, we will see the reason when dealing with the general case of (M3, g)). Let us call

Σ′
n = |AΣn(pn)|Σn (homothety in R3), ∀n ∈ N.

{Σ′
n}n is a sequence of compact embedded minimal surfaces in R3 with non-empty boundary,

each one passing through the origin, with |AΣn (⃗0)| = 1. Since fn is invariant under changes of
scale, we have

distΣ′
n
(⃗0, ∂Σ′

n) = |AΣ′
n
|(⃗0) · distΣ′

n
(⃗0, ∂Σ′

n) = |AΣn |(pn) · distΣn(pn, ∂Σn) = fn(pn) → ∞, (98)

in other words, the boundary of Σ′
n diverges intrinsically. If we knew that {Σ′

n}n converges
(after passing to a subsequence) to a complete minimal surface Σ′

∞ ⊂ R3 (without boundary),
then we would have 0⃗ ∈ Σ′

∞, |AΣ′
∞ (⃗0)| = 1, and

∫

Σ′
∞

|AΣ′
∞ |2 ≤ lim

n→∞

∫

Σ′
n

|AΣ′
n
|2 (∗)

= lim
n→∞

∫

Σn

|AΣn |2 ≤ C < 8π,

19This means that the length of each divergent curve in Σn is infinite, for each n ∈ N.
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where (∗) follows from the change of variables formula applied to the homothety that relates Σn
and Σ′

n.
Note that for a minimal surface Σ ⊂ R3, it holds |AΣ|2 = −2K hence the above inequality

is equivalent to C(Σ′
∞) ∈ (−4π, 0]. By Osserman’s Theorem (Theorem 13.9), Σ′

∞ is a plane,
which contradicts that |AΣ′

∞ (⃗0)| = 1.
Thus, in order to finish the proof it suffices to check that a subsequence of {Σ′

n}n converges
to a complete minimal surface Σ′

∞ ⊂ R3. To do this, take R > 0 and let us see that |AΣ′
n
| ≤ 2

in the intrisic ball BΣ′
n
(⃗0, R) for n large enough (depending on R). By (98), for n large enough

we have
BΣ′

n
(⃗0, R) ⊂ Σ′

n \ ∂Σ′
n. (99)

Take q′ ∈ BΣ′
n
(⃗0, R). Thus, q′ is of the form q′ = |AΣn(pn)| q for some q ∈ BΣn(pn,

R
|AΣn |(pn)

).

The invariance of fn under homotheties implies

|AΣ′
n
|(q′) ·distΣ′

n
(q′, ∂Σ′

n) = fn(q) ≤ fn(pn) = |AΣ′
n
|(⃗0) ·distΣ′

n
(⃗0, ∂Σ′

n) = distΣ′
n
(⃗0, ∂Σ′

n). (100)

On the other hand,

distΣ′
n
(⃗0, ∂Σ′

n) ≤ distΣ′
n
(⃗0, q′) + distΣ′

n
(q′, ∂Σ′

n) ≤ R+ distΣ′
n
(q′, ∂Σ′

n),

hence

distΣ′
n
(q′, ∂Σ′

n) ≥ distΣ′
n
(⃗0, ∂Σ′

n)−R
(99)
> 0. (101)

Therefore,

|AΣ′
n
|(q′)

(100)

≤ distΣ′
n
(⃗0, ∂Σ′

n)

distΣ′
n
(q′, ∂Σ′

n)

(101)

≤ distΣ′
n
(⃗0, ∂Σ′

n)

distΣ′
n
(⃗0, ∂Σ′

n)−R
≤ 2

provided that distΣ′
n
(⃗0, ∂Σ′

n) ≥ 2R, which holds if n is sufficiently large. As q′ ∈ BΣ′
n
(⃗0, R) is

arbitrary, we have |AΣ′
n
| ≤ 2 in BΣ′

n
(⃗0, R) for each n large enough. In other words, {BΣ′

n
(⃗0, R)}n

admits uniform (global) bounds for their second fundamental forms. Note that Theorem 12.11
assumes uniform local-extrinsic20 bounds for the second fundamental forms (it also assumes the
surfaces in the sequence to be complete without boundary). It is possible to adapt Theorem 12.11
to our current setting in {BΣ′

n
(⃗0, R)}n, although we will not see this modified result here. This

allows us to conclude that after passing to a subsequence, {BΣ′
n
(⃗0, R)}n converges to a compact

minimal surface Σ′
∞(R) with boundary, in the Ck topology for each k ∈ N. In particular,

0⃗ ∈ Σ′
∞(R) and distΣ′

∞(R)(⃗0, ∂Σ
′
∞(R)) = R.

Now take R = Rm with m ∈ N and Rm ↗ ∞, and repeat the above argument. The
uniqueness of the limit (more precisely, the identity principle for minimal surfaces21) and a

20By this we mean that the bound of the norm of the second fundamental form must be independent of n in
an extrinsic ball centered at any point (its extrinsic radius depends of the point).

21If two minimal surfaces Σ1,Σ2 ⊂ R3 coincide in a set with non-empty interior, then Σ1 ∪ Σ2 is a minimal
surface.
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diagonal argument imply the convergence of a subsequence of {Σ′
n}n (denoted in the same way)

to the minimal surface
Σ′
∞ =

⋃

m∈N
Σ′
∞(Rm) ⊂ R3.

This finishes the proof. 2

Next we will explain how to generalize Theorem 15.1 to the case in that the ambient space
R3 is replaced by a homogeneously regular 3-manifold.

Theorem 15.2 Given C ∈ (0, 8π) and K0 > 0, there exists C0 = C0(C,K0) > 0 such that
if (Mn, gn) is a sequence of homogeneously regular 3-manifolds with |Ksec(Mn, gn)| ≤ K0 and
{Σn ⊂ Mn}n is a sequence of complete embedded minimal surfaces with boundary ∂Σn ̸= ∅,
such that ∫

Σn

|AΣn |2 ≤ C,

then,

|AΣn | ·min

{
distΣn(·, ∂Σn),

π√
K0

}
≤ C0 in Σn, for each n ∈ N. (102)

Remark 15.3

1. It is worth commenting about differences between (96) and (102). Let K0 be a nonnegative
real number and let (M, g) be a homogeneously regular 3-manifold with |Ksec| ≤ K0. Observe
that if for some C > 0 there exists C0 > 0 such that an inequality of the type (96) holds
for any complete minimal surface Σ ⊂ M with boundary ∂Σ ̸= ∅ satisfying

∫
Σ |AΣ|2 ≤ C,

then the unique complete minimal surface Σ without boundary such that
∫
Σ |AΣ|2 ≤ C is

totally geodesic (take any point x0 ∈ Σ, any intrinsic radius r > 0 at x0, and apply (96) to
the intrinsic ball BΣ(x0, r) to conclude that |AΣ|(x0)r ≤ C0, and now take r → ∞). This
is too restrictive for such an (M, g) (Is the standard Hyperbolic space H3 a counterexample
due to the existence of complete stable minimal surfaces which are not totally geodesic?).

2. For an explanation of the technical point in which the proof of Theorem 15.1 fails when we
replace R3 by a (sequence of) homogeneously regular 3-manifold (M, g) with |Ksec| ≤ K0,
see Remark 15.4 after the proof of Theorem 15.2.

Proof. Arguing again by contradiction, assume there exist C ∈ (0, 8π), K0 > 0, a sequence
(Mn, gn) of homogeneously regular 3-manifolds with |Ksec(Mn, gn)| ≤ K0 and a sequence of
compact22 minimal surfaces Σn in Mn satisfying the hypotheses of the theorem, such that

|AΣn |(qn) ·min

{
distΣn(qn, ∂Σn),

π√
K0

}
→ ∞ as n→ ∞, (103)

22The first step of the proof in the case (M3, g) = (R3, g0) still holds in this setting.
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for some points qn ∈ Int(Σn).
Define sn = distΣn(qn, ∂Σn). We have the following two possibilities for each n ∈ N:

(A)n
π√
K0

< sn.

(B)n
π√
K0

≥ sn.

We will explain how to replace each Σn by a subset so that after the replacement (and with the
same notation), we do not change the value of the second fundamental form at qn, we do not
increase the value of

∫
Σn

|AΣn |2, (B)n holds and Σn = BΣn(qn, sn) for each n ∈ N: For those

n ∈ N such that (A)n holds, we replace Σn by BΣn(qn,
π√
K0

). For those n ∈ N such that (B)n

occurs, we replace Σn by BΣn(qn, sn). Therefore, we can assume from now on that (B)n holds
and Σn = BΣn(qn, sn) for each n ∈ N.

In particular, (103) reduces to

|AΣn |(qn) · sn → ∞ as n→ ∞. (104)

Consider the continuous function (compare with (97)):

fn : Σn = BΣn(qn, sn) → [0,∞), fn(q) = |AΣn |(q) · distΣn(q, ∂Σn). (105)

Let pn ∈ Σn be a point where fn attains its maximum (observe that fn = 0 at Σn).
Define rn = distΣn(pn, ∂Σn) ∈ (0, sn]. Since case (B)n holds for each n ∈ N, then {rn}n is a

bounded sequence. We claim that |AΣn |(pn) → ∞:

|AΣn |(pn) · rn = fn(pn) ≥ fn(qn) = |AΣn |(qn) · sn
(104)→ ∞. (106)

Since {rn}n is bounded, (106) implies that |AΣn |(pn) → ∞ as desired.
Note that for every x ∈ BΣn(pn,

rn
2 ), we have distΣn(x, ∂Σn) ≥ rn

2 , and thus,

1

2
|AΣn |(x) · rn ≤ |AΣn |(x) · distΣn(x, ∂Σn) = fn(x) ≤ fn(pn)

(106)
= |AΣn |(pn) · rn,

from where we deduce that

|AΣn | ≤ 2|AΣn |(pn) in BΣn(pn,
rn
2 ). (107)

Now we make a change of scale in the ambient metric: consider for each n ∈ N the metric

g′n = |AΣn(pn)| gn, (108)

and let
Σ′
n =

(
BΣn(pn,

rn
2
), g′n

)
⊂ (M3, g′n), (109)
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which is again a compact minimal surface, embedded in (M3, g′n) and with non-empty boundary.
Furthermore, pn ∈ Σ′

n, |AΣ′
n
|(pn) = 1 and

|AΣ′
n
| · distΣ′

n
(·, ∂Σ′

n) = |AΣn | · distΣn(·, ∂BΣn(pn,
rn
2
)). (110)

Next we adapt the argument of (98) to conclude that distΣ′
n
(pn, ∂Σ

′
n) → ∞ as n→ ∞:

distΣ′
n
(pn, ∂Σ

′
n) = |AΣ′

n
|(pn) · distΣ′

n
(pn, ∂Σ

′
n)

(110)
= |AΣn |(pn) · distΣn(pn, ∂BΣn(pn,

rn
2 ))

= |AΣn |(pn) · rn2 ,

which tends to ∞ as n→ ∞ by (106).
If we knew that a subsequence of {Σ′

n}n converges to a complete minimal surface Σ′
∞ ⊂ R3,

we could finish like in the proof of Theorem 15.1. Again let us set R > 0. As (M3, g) is
homogeneously regular and the scaling factors |A(pn)|(pn) → ∞, after re-scaling the ambient
metric we have that the metric ball B(M,g′n)

(pn, R) is arbitrarily close to B(⃗0, R) ⊂ R3 for n
large enough (depending on R). Therefore, we can consider Σ′

n ∩B(M,g′n)
(pn, R) to be a surface

in B(⃗0, R), non necessarily minimal, with mean curvature arbitrarily close to zero, and with
|AΣ′

n
| ≤ 2 by (107). Under these conditions, a modification of the argument of the case (R3, g)

gives that after passing to a subsequence, the sequence
{
Σ′
n ∩B(M,g′n)

(pn, R)
}
n
converges in the

Ck topology for each k ∈ N to a minimal surface (with respect to the limit ambient metric, i.e.,
the standard flat inner product restricted to B(⃗0, R)) denoted by Σ′

∞(R), which is compact with
boundary. Now we repeat the diagonal argument with R = Rm and Rm ↗ ∞ and we finish the
proof of the theorem. 2

Remark 15.4 With the proof of Theorem 15.2 at hand, we can now explain why the proof of
Theorem 15.1 fails in the general setting of a (sequence of) homogeneously regular 3-manifold
(M, g) with |Ksec| ≤ K0, see Remark 15.3.

1. One of the problems that the proof of Theorem 15.1 has in this general setting is that
|AΣ|(pn) could be bounded independently of n (we are using the notation of the proofs
of Theorems 15.1 and 15.2), which of course can only happen if distΣn(pn, ∂Σn) → ∞ as
n → ∞. And if the sequence {|AΣ|(pn)}n is bounded, when rescaling both the ambient
metric as in (108) and the minimal surface as in (109), we cannot insure that the limit of
(a subsequence of) the Σ′

n is a minimal surface in R3.

2. Also note that in the case of R3 we can apply homoteties, and so we could have normalized
the surfaces Σn in the proof of Theorem 15.1 so that distΣn(pn, ∂Σn) = 1. With this
normalization, |AΣ|(pn) = fn(pn) → ∞, which avoids the problem mentioned in the
previous item of this remark.
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Let us continue with our sequence {Σn}n of complete embedded minimal surfaces with
boundary in R3. Theorem 15.1 tells us that every uniform bound C < 8π for the ‘total curvature’
of the Σn produces a bound C0 = C0(C) for the function |AΣn | · distΣn(·, ∂Σn). It is clear
that C0(C) can be taken non-increasing as a function of C (the pointwise estimate of |AΣn | ·
distΣn(·, ∂Σn) improves if the bound of the total curvature also improves).

Proposition 15.5 In the above situation, if C = Cn → 0 then C0(Cn) → 0.

Proof. Take as before a maximum pn ∈ Σn of the function fn defined in (97) (we can again start
assuming that Σn is compact ∀n). We know that {fn(pn)}n is bounded from above (because
C0(C) is non-increasing), and we want to check that fn(pn) → 0 as n→ ∞.

Recall that all surfaces Σn are contained in R3. Translate so that pn = 0⃗ ∀n ∈ N. Instead of
re-scaling by the norm of the second fundamental form at pn, we will use a different change of
scale: consider for each n ∈ N the surface

Σ′
n =

1

dΣn(pn, ∂Σn)
Σn.

Σ′
n is again a compact minimal surface with boundary in R3, which now satisfies distΣ′

n
(⃗0, ∂Σ′

n) =
1 ∀n ∈ N. We work slightly away from the boundary of Σ′

n: take δ ∈ (0, 1/2) and define

Σn := Σ′
n \BΣ′

n
(∂Σ′

n, δ). (111)

Given q ∈ Σn,

|AΣ′
n
|(q) · distΣ′

n
(q, ∂Σ′

n) ≤ |AΣ′
n
|(⃗0) · distΣ′

n
(⃗0, ∂Σ′

n) = fn(pn).

But distΣ′
n
(q, ∂Σ′

n) ≥ δ, hence

δ|AΣn
|(q) ≤ |AΣ′

n
|(q) · distΣ′

n
(q, ∂Σ′

n) ≤ fn(pn)

Since the above argument holds ∀q ∈ Σn and {fn(pn)}n is bounded from above, we conclude
like in the proof of Theorem 15.1 that a subsequence of {Σn}n converges to a minimal surface
Σ∞ ⊂ R3 (which is not complete in this case), with 0⃗ ∈ Σ∞, and

∫

Σ∞

|AΣ∞
|2 = lim

n→∞

∫

Σn

|A
Σ

′
n
|2 = lim

n→∞

∫

Σn

|AΣn |2 ≤ Cn → 0.

Therefore, Σ∞ is totally geodesic, hence it is contained in a plane. Finally,

|AΣn
|(⃗0) = |AΣ′

n
|(⃗0) = |AΣ′

n
|(⃗0) · distΣ′

n
(⃗0, ∂Σ′

n) = fn(pn) = C0(Cn).

Taking limits as n → ∞, the left-hand-side converges to |AΣ∞
|(⃗0) = 0, which concludes the

proof of the proposition. 2

Let us see what we can conclude in the conditions of Theorem 15.1 if the uniform bound
C of the ‘total curvature’ is arbitrary, not necessarily small: the simplest example is when
Σn = 1

nCatenoid, which converges with multiplicity 2 to a plane minus one point.
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Theorem 15.6 (Weak compactness) Let (M3, g) be a complete, homogeneously regular Rie-
mannian manifold, and let {Σn ⊂ M}n be a sequence of complete embedded minimal surfaces
(possibly with boundary) such that there exists C > 0 such that

∫

Σn

|AΣn |2 ≤ C ∀n ∈ N.

If {Σn}n has an accumulation point inM , then there exists a complete embedded minimal surface
Σ ⊂M (possibly with boundary) and a finite number of points p1, . . . , pk ∈ Int(Σ) such that after
passing to a subsequence, {Int(Σn)}n converges on compact subsets of Σ \ {p1, . . . , pk} to Σ in
the Ck topology for each k. Furthermore, of Σ is not totally geodesic, then the multiplicity of
this convergence is finite.

Proof. Given n ∈ N, consider the measure on M given by

µn(B) :=

∫

Σn∩B
|AΣn |2

for each measurable subset B ⊂M . By hypothesis, {µn}n is a sequence of measures on M with
bounded total mass µ(M) ≤ C ∀n ∈ N, hence after passing to a subsequence {µn}n converges
weakly23 to a measure µ over M with total mass µ(M) ≤ C. This bound implies that there
exist at most a finite number of points p1, . . . , pk ∈M such that

lim
r→0+

µ (BM (pj , r)) ≥ 7π, (112)

for each j = 1, . . . , k. Now take q ∈ M \ {p1, . . . , pm}. By (112), there exists r = r(q) > 0 such
that µ (BM (q, r)) < 7π, hence for n large enough, µn (BM (q, r)) ≤ c < 8π for some constant
c > 0 independent of n. Applying Theorem 15.1 to the sequence of surfaces {Σn∩BM (q, r/2)}n,
we conclude that there exists C0(q) > 0 such that for all n ∈ N,

|AΣn∩BM (q,r/2)| · distΣn∩B(q,r/2)(·, ∂[Σn ∩BM (q, r/2)]) ≤ C0 in Σn ∩BM (q, r/2).

As the diameter of Σn ∩ BM (q, r/2) is bounded independently of n ∈ N, the above implies
that {Σn ∩ BM (q, r/2)}n admits uniform local bounds of the second fundamental form. Under
these conditions, we can adapt Theorem 12.11 (see the proof of Theorem 15.1 for a similar
argument) to conclude that after passing to a subsequence, the Σn ∩ BM (q, r/2) converge to a
minimal surface (with boundary) contained in BM (q, r/2). Finally, move q in M \ {p1, . . . , pk}
and use a diagonal argument to conclude the proof of the theorem. The finite multiplicity of the
convergence provided that Σ is not totally geodesic follows from the fact that the total curvature
of Σn is bounded. 2

23In certain weak topology; this is essentially a consequence of the Banach-Alaoglú Theorem. We will not enter
in details here.
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16 Second variation of area formula. Stability

We already know that minimal submanifolds are critical points of the area functional for normal
variations with compact support (first variation of area formula). It is then natural to study the
second derivative of the area functional at critical points. In this section we will assume that
hypersurfaces are two-sided.

Proposition 16.1 (Second variation of area formula) Let Σn be a minimal hypersurface
of a Riemannian manifold (Mn+1, g). Suppose that Σ admits a unit normal field N : Σ →
U1(M) (i.e. Σ is two-sided). Let f ∈ C∞

0 (Σ) and F : Σ × (−ε, ε) → M be a variation of Σ
with variational field ∂F

∂t (p, 0) = f(p)Np, ∀p ∈ Σ. Then, the n-dimensional volume function
t 7→ A(Ft) of the variation satisfies A′(0) = 0 and

A′′(0) =
d2

dt2

∣∣∣∣
t=0

A(Ft) = −
∫

Σ
fLf dA, (113)

where L = ∆Σ + |AΣ|2 +RicM (N) is the Jacobi operator de Σ.

(We omit the proof, which is similar to the one of Proposition 16.1).

Definition 16.2 Let Σn be a two-sided minimal hypersurface of a Riemannian manifold (Mn+1, g),
with unit normal field N : Σ → U1(M). Σ is called stable if for every normal variation of Σ with
compact support, the n-dimensional volume function of the variation satisfies A′′(0) ≥ 0. Equiv-
alently,

−
∫

Σ
fLf dA ≥ 0, for all f ∈ C∞

0 (Σ). (114)

Every local minimum Σn of the n-dimensional volume satisfies A(t) ≥ A(0) for all t sufficiently
close to zero, and hence Σ is stable.

L is a Schrödinger operator with potential q = |AΣ|2 + RicM (N) ∈ C∞(Σ). This is a
particular case of a second order elliptic operator, that is self-adjoint with respect to the usual
inner product in the Hilbert space L2(Σ). In this section we will apply some basic results of
classical spectral theory for elliptic self-adjoint operators of second order. For instance, (114) is
equivalent to

−
∫

Σ
fLf dA ≥ 0, for all f ∈ H1

0 (Σ), (115)

where H1
0 (Σ) denotes the closure of C∞

0 (Σ) in the topology generated by the Sobolev norm,

∥f∥H1(Σ) =
(
∥f∥2L2(Σ) + ∥∇f∥2L2(Σ)

)1/2
,
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where f varies in the Sobolev space H1(Σ), i.e., the Hilbert space of all functions in L2(Σ)
that admit a L2 vector field (called weak gradient of f) ∇f ∈ L2(Σ) satisfying the following
compatibility condition: ∫

Σ
(g(∇f,X) + fdiv(X)) = 0,

for every compactly supported, smooth vector field X on Σ.
The quadratic form associated to L is Q : H1

0 (Σ)×H1
0 (Σ) → R given by

Q(u, v) = −
∫

Σ
uLv = −

∫

Σ
vLu, ∀u, v ∈ H1

0 (Σ). (116)

Using the expression of L, we can re-write (115) for f ∈ C∞
0 (Σ) as

∫

Σ

[
|AΣ|2 +RicM (N)

]
f2 ≤ −

∫

Σ
f∆f

(∗)
=

∫

Σ
∥∇f∥2, (117)

where in (∗) we have used the Divergence Theorem. The inequality (117) is continuous with
respect to the norm ∥ · ∥H1 , hence (117) is equivalent to the same inequality for all f ∈ H1

0 (Σ).

Theorem 16.3 If (Mn+1, g) is a Riemannian manifold with non-negative Ricci curvature, then
every compact stable minimal hypersurface without boundary in M is totally geodesic. If the
Ricci curvature of M is positive, then there are no compact stable minimal hypersurfaces without
boundary in M .

Proof. Suppose that Σn is a compact stable minimal hypersurface without boundary in M . As

Σ is compact, we can take f ≡ 1 in (117), hence

∫

Σ

[
|AΣ|2 +RicM (N)

]
≤ 0. As RicM (N) ≥ 0,

the left-hand-side of the last inequality is ≥ 0, and thus, |AΣ|2 +RicM (N) ≡ 0 in Σ. From here
we have |AΣ|2 ≡ 0 in Σ (i.e., Σ is totally geodesic) and RicM (N) ≡ 0 in Σ. This last property
is impossible if M has positive Ricci curvature. 2

The last result applies to Sn+1 and Pn+1 (every equator of Sn+1 is a compact minimal hypersur-
face, but it cannot be stable because we can always deform it by decreasing its n-dimensional
volume).

Let Σ be a surface in a Riemannian manifold (M3, g). Let us call S = trace(RicM ) to the
scalar curvature of g. Take a local orthonormal basis of TM of the type {e1, e2, N}, where e1, e2
is a local orthonormal basis of TΣ and N is a unit normal field to Σ. Then,

S = RicM (e1) + Ric(e2) + RicM (N)
= [K(e1, e2) +K(e1, N)] + [K(e1, e2) +K(e2, N)] + RicM (N)
= 2[(K(TΣ) + RicM (N)],



 (118)
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where K(TΣ) is the sectional curvature of TΣ. Assume that Σ is minimal and denote by
Ke = detAΣ the extrinsic curvature of Σ. The Gauss equation can be written as

KΣ = K(TΣ) + detAΣ = K(TΣ) +Ke
(∗)
= K(TΣ)− 1

2
|AΣ|2, (119)

where in (∗) we have used that Σ is minimal. From (118) and (119) we have

S = 2KΣ + 2RicM (N) + |AΣ|2.

Thus, (117) and the above equation imply that stability of Σ in (M3, g) is equivalent to

∫

Σ

[
1

2

(
S + |AΣ|2

)
−KΣ

]
f2 ≤

∫

Σ
∥∇f∥2, for all f ∈ H1

0 (Σ). (120)

Theorem 16.4 Let Σ be a compact stable minimal surface without boundary in a Riemannian
manifold (M3, g) whose scalar curvature is non-negative. Then, χ(Σ) ≥ 0, hence Σ is diffeomor-
phic to a sphere, torus, projective plane or Klein bottle. Furthermore, if Σ is diffeomorphic to a
torus or Klein bottle, then Σ is totally geodesic and the scalar curvature of M vanishes along Σ.

Proof. Since Σ is compact, we can take f ≡ 1 in (120), thus

1

2

∫

Σ

(
S + |AΣ|2

)
≤
∫

Σ
KΣ

(Gauss-Bonnet)
= 2πχ(Σ),

The rest of the argument is analogous to that of the end of the proof of Theorem 16.3. 2

16.1 Jacobi functions

Recall that the stability of a two-sided minimal hypersurface Σn in a Riemannian manifold
(Mn+1, g) is equivalent to the fact that its Jacobi operator L = ∆Σ + |AΣ|2 +RicM (N) satisfies
−L ≥ 0, in the sense that any of the equivalent inequalities (114), (115) or (117). A Jacobi
function is a function in the kernel of L.

In what follows we will use some results of the classical spectral theory of self-adjoint elliptic
operators of second order, adapted to the our situation. Whenever possible, we will work in the
following general situation: Let (Σn, g) be a Riemannian manifold, q ∈ C∞(Σ) and L = ∆+ q.

Given a relatively compact domain Ω ⊂ Σ, we define the spectrum of L in Ω as the sequence
of real numbers (called eigenvalues of L in Ω)

Spec(L,Ω) = {λ1 < λ2 ≤ . . . ≤ λk ≤ . . .} ↗ ∞

such that ∀k ∈ N there exists φk ∈ C∞(Ω) ∩H1
0 (Ω) (eigenfunction associated to the eigenvalue

λk) such that Lφk + λkφk = 0 in Ω, with ∥φk∥L2 = 1 and φk ⊥L2 φh whenever k ̸= h.
Furthermore, {φk}k is a Hilbert basis of L2(Ω).
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Given λk ∈ Spec(L,Ω), we will call

Vλk = {φ ∈ C∞(Ω) ∩H1
0 (Ω) | Lφ+ λkφ = 0}

to the (linear) eigenspace associated to the eigenvalue λk. The dimension of Vλk coincides with
the multiplicity of λk in the spectrum Spec(L,Ω), and the first eigenvalue λ1 admits the following
variational characterization in terms of the Rayleigh quotient,

λ1(L,Ω) = inf

{
Q(u, u)

∥u∥2
L2

: u ∈ H1
0 (Ω) \ {0}

}
= inf

{
−
∫

Ω
uLu : u ∈ H1

0 (Ω), ∥u∥2L2 = 1

}
,

(121)
where Q is the index form given by (116).

Lemma 16.5 In the above situation,

(1) Σ is stable if and only if λ1(L,Ω) ≥ 0, ∀Ω ⊂⊂ Σ.

(2) Q(u, u) ≥ λ1(L,Ω)

∫

Ω
u2, ∀u ∈ H1

0 (Ω) and equality holds if and only if u ∈ Vλ1.

(3) Si u ∈ Vλ1, then u does not change sign in Ω.

Proof. Item (1) can be directly deduced from (121), as well as the inequality in item (2). Equality
in the inequality of item (2) implies that given v ∈ H1

0 (Ω), the function f(t) = Q(u + tv, u +

tv)− λ1(L,Ω)

∫

Ω
(u+ tv)2, satisfies f(0) = 0, f(t) ≥ 0 ∀t ∈ R, hence f ′(0) = 0. Since

f ′(0) = 2

(
Q(u, v)− λ1(L,Ω)

∫

Ω
uv

)
,

we deduce that u ∈ Vλ1(L,Ω).
regarding item (3), if u ∈ Vλ1 then u ∈ H1

0 (Ω) and |u| ∈ H1
0 (Ω). Since Q(|u|, |u|) = Q(u, u),

then equality holds in the inequality of item (2) for |u|, and so, |u| ∈ Vλ1 . By elliptic regularity,
every eigenfunction is smooth, hence |u| cannot have zeros in Ω unless u = 0. 2

Take Ω ⊂⊂ Σ. For k > 1, every function u ∈ Vλk(Ω) changes sign: this follows from the
fact that u ⊥L2 Vλ1(Ω) and from item (3) of Lemma 16.5. Therefore, if there exists u ∈ Vλ=0 (a
Jacobi function) such that u > 0, then λ1(L,Ω) = 0 and Ω is stable. The next lemma extends
this result without assuming that u ∈ H1

0 (Ω) (u does not have to vanish at ∂Ω).

Lemma 16.6 Let Ω ⊂ Σ be a relatively compact domain. If there exists u ∈ C∞(Ω) such that
u > 0 and Lu = 0, then λ1(L,Ω) = 0 and Ω is stable.
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Proof. Take f ∈ C∞
0 (Ω). Let us see that

∫
Ω qf

2 ≤
∫
Ω ∥∇f∥2 and Ω will be stable.

Define w = log u ∈ C∞(Ω). Thus, ∇w = ∇u
u and ∆w = div

(∇u
u

)
= ∆u

u − ∥∇u∥2
u2

=
∆u
u −∥∇w∥2 = −q−∥∇w∥2, where L = ∆+ q. Integrating f2∆w = −qf2−∥∇w∥2f2 and using
the Divergence Theorem with the vector field f2∇w we obtain

∫

Ω
qf2 +

∫

Ω
∥∇w∥2f2 = −

∫

Ω
f2∆w = 2

∫

Ω
f⟨∇f,∇w⟩

≤ 2

∫

Ω
f∥∇f∥∥∇w∥ ≤

∫

Ω
f2∥∇w∥2 +

∫

Ω
∥∇f∥2.

and now we only have to cancel
∫
Ω ∥∇w∥2f2 at both sides. 2

Proposition 16.7 Given Ω ⊂⊂ Σ, the dimension of Vλ1 is 1.

Proof. If u, v ∈ Vλ1 , then u− av ∈ Vλ1 for each a ∈ R. By item (3) of Lemma 16.5, u− av does
not change sign in Ω. Choose a0 ∈ R so that u − a0v has a zero at a prescribed point of Ω.
Hence we conclude that u = a0v. 2

The following monotonicity property for the first eigenvalue is easy to check:

Lemma 16.8 If Ω1 ⊂ Ω2 are relatively compact open subsets of Σ, then λ1(L,Ω2) ≤ λ1(L,Ω1).

Definition 16.9 The first eigenvalue of L in Σ is defined by

λ1(L,Σ) = lim
Ω ↗ Σ
Ω ⊂⊂ Σ

λ1(L,Ω) = inf {λ1(L,Ω) : Ω ⊂⊂ Σ} ,

and stability of Σ is equivalent to λ1(L,Σ) ≥ 0.

Theorem 16.10 Let (Σn, g) be a Riemannian manifold, q ∈ C∞(Σ) and L = ∆ + q. If there
exists u ∈ C∞(Σ) such that Lu = 0 and u > 0 in Σ, then −L ≥ 0 in Σ.

Proof. It suffices to prove that λ1(L,Ω) = 0 for every relatively compact open set Ω of Σ. This
equality is a consequence of applying Lemma 16.6 to u|Ω. 2

Remark 16.11 The converse of Theorem 16.10 holds.

A way of having the hypotheses of Theorem 16.10 in the geometric case of a minimal surface
Σ ⊂ (M3, g) is the following one.
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Theorem 16.12 Let Y be a nowhere vanishing Killing field in a Riemannian manifold (Mn+1, g),
and let Σ ⊂M be a two-sided minimal hypersurface such that Y is transversal to Σ (i.e., ⟨Y,N⟩
has no zeros in Σ). Then, Σ is stable.

Proof. Let N be a unit normal field to Σ. Given f ∈ C∞
0 (Σ), the first variation formula for the

mean curvature for a variation ψt of Σ with normal part of its variational field fN , is given by

2
d

dt

∣∣∣∣
0

Ht = Lf.

Since Y is a Killing field onM , the 1-parameter group {ψt}t of Y consists of isometries of (M, g).
Thus, the mean curvatureHt of ψt(Σ) is zero. Thus, L⟨Y,N⟩ = 0, i.e., ⟨Y,N⟩ is a Jacobi function
on Σ. Now the theorem holds by applying Theorem 16.10 to this Jacobi function. 2

For example, the axis of a helicoid divides the helicoid into two (congruent) stable minimal
surfaces, since the rotations around that axis generate a Killing field on R3 that satisfies the
hypotheses of Theorem 16.12 on each of these two halves of the helicoid. Another example is
a minimal graph over the vertical projection in a product manifold M2 × R: just take Y = ∂t,
which is a Killing field in the product metric product on M × R, and is transverse to all such
graphs.

Lemma 16.13 (Harnack inequality for ∆+ q)
If f ∈ C∞(Σ) satisfies Lf = 0 and f > 0 in Σ, then given a compact subset K ⊂ Σ there exists
C = C(K) > 0 such that supK f ≤ C · infK f .

Proof. See Theorem 8.20 in [8] for a version of the Harnack’s inequality for an open subset of
Rn and a uniformly elliptic operator with measurable coefficients. In order to pass this result to
a manifold Σ, we first cover the compact set K by a finite number of charts, and then apply the
above result in Rn. This gives a finite number of positive constants C > 0. Taking the minimum
of all these constants we will get a Harnack inequality for the compact subset K. 2

Theorem 16.14 (Maximum principle for ∆+ q)
Let (Σn, g) be a Riemannian manifold, q ∈ C∞(Σ) and L = ∆ + q. If f ∈ C∞(Σ) satisfies
Lf = 0 and f ≥ 0 in Σ, then f = 0 or f ≥ 0 in Σ.

Proof. Suppose that f vanishes at some point p0 ∈ Σ. Take a compact subset K ⊂ Σ that
p0 ∈ K. Then, Harnack’s inequality implies 0 ≤ supK f ≤ C · infK f = f(p0) = 0, hence f ≡ 0
in K. Since K is any compact subset of Σ that contains p0, we conclude that f ≡ 0 in Σ. 2

We conclude this section with the following comment about stability and covering spaces. If
(Σn, g) is a Riemannian manifold, q ∈ C∞(Σ) and L = ∆+ q is an operator such that −L ≥ 0,
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then after lifting L through a covering map π : Σ̃ → Σ (i.e., L̃ = ∆̃+ q̃ with g̃ being the covering
metric and q̃ = q ◦ π), then −L̃ ≥ 0. In other words, stability is preserved by lifting to a cover
space.

Nevertheless, the converse fails in general (the next counterexample is due to Schoen): take a
compact Riemannian surface (Σ, g) with Gauss curvatureK ≡ −1. Take a function f : R → (0, 1]
such that f(0) = 1 and −1

8 < f ′′(0) < 0. The first eigenvalue of the operator L := ∆Σ − 2f ′′(0)
in Σ is 2f ′′(0) < 0, hence −L does not satisfy −L ≥ 0 (L is not stable). But the universal cover
of Σ is isometric to the hyperbolic plane, that has λ1(∆,H2) = 1/4. Thus, the first eigenvalue of
L̃ is 1

4 +2f ′′(0) > 0, i.e., −L̃ ≥ 0 in H2. This operator L can be seen as the Jacobi operator of a
minimal surface in a Riemannian manifold (consider the warped product (Σ×R, f2g+dt2), that
has Σ× {0} as a totally geodesic surface with Jacobi operator L = ∆+Ric(∂t) = ∆− 2f ′′(0)).

17 Parabolicity and area growth

Definition 17.1 A Riemannian manifold without boundary (Σn, g) ia called parabolic if it does
not admit non-constant, non-negative superharmonic functions:

If u ∈ C∞(Σ) satisfies u ≥ 0 and ∆u ≤ 0, then u is constant.

Remark 17.2 (1) The above definition is equivalent to the non-existence of non-constant posi-
tive superharmonic functions, by the classical minimum principle for subharmonic functions.

(2) The notion of parabolicity is independent of the metric g in Σ, it only depends on the
conformal class of g.

Definition 17.3 A Riemannian surface without boundary (Σ, g) is said to have quadratic area
growth if there exists24 x0 ∈ Σ and C = C(x0) > 0 such that A(BΣ(x0, r)) ≤ Cr2 for all r > 0.

Theorem 17.4 If a connected Riemannian surface without boundary (Σ, g) has quadratic area
growth, then Σ is parabolic.

Proof. By item (1) of Remark 17.2, it suffices to prove that if u ∈ C∞(Σ) satisfies u > 0 and
∆u ≤ 0, then u is constant.

Let w = log u ∈ C∞(Ω). Thus, ∇w = ∇u
u and

∆w =
∆u

u
− ∥∇u∥2

u2
=

∆u

u
− ∥∇w∥2 ≤ −∥∇w∥2. (122)

24It is not difficult to prove that if ∃x0 ∈ Σ, C > 0 such that A(BΣ(x0, r)) ≤ Cr2 for all r > 0, then for each
x ∈ Σ the function r > 0 7→ A(BΣ(x0, r))/r

2 is bounded.

103



Given x0 ∈ Σ and R > 0, consider the logarithmic cut-off function ψR : Σ → [0,∞) given by:

ψR(r) =





1 if 0 ≤ r ≤
√
R,

2− log(r2)
logR if

√
R ≤ r ≤ R,

0 if r ≥ R,

(123)

where r = distΣ(x0, ·).

1

√
R R

ψR

Figure 36: The logarithmic cut-off function ψR.

Thus, ψR ∈ H1
0 (Σ) and its weak gradient is

(∇ψR)(r) =
{

0 if 0 < r <
√
R or r > R,

− 2
logR

∇r
r if

√
R < r < R.

Hence, ∥∇ψR∥ = 2
logR

1
r in {

√
R < r < R} and ∥∇ψR∥ = 0 away from this last set.

Let us denote B(r) = BΣ(x0, r) for each r > 0. Using (122), we have
∫

B(R)
ψ2
R∥∇w∥2 ≤ −

∫

B(R)
ψ2
R∆w

(∗)
= 2

∫

B(R)
ψR⟨∇ψR,∇w⟩

≤ 2

∫

B(R)
ψR∥∇ψR∥∥∇w∥

(∗∗)
≤ 1

2

∫

B(R)
ψ2
R∥∇w∥2 + 2

∫

B(R)
∥∇ψR∥2,

where in (∗) we have applied the Divergence Theorem to the vector field ψ2
R∇w, and in (∗∗) we

have used that 2ab ≤ 1
2a

2 + 2b2 where a = ψR∥∇w∥ and b = ∥∇ψR∥. Therefore,
1

2

∫

B(R)
ψ2
R∥∇w∥2 ≤ 2

∫

B(R)
∥∇ψR∥2. (124)

On the other hand,

∫

B(
√
R)

∥∇w∥2 =
∫

B(
√
R)
ψ2
R∥∇w∥2 ≤

∫

B(R)
ψ2
R∥∇w∥2

(124)

≤ 4

∫

B(R)
∥∇ψR∥2 ≤

16

(logR)2

∫

B(R)

1

r2
,

(125)
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If we check that
∫
B(R)

1
r2

≤ C1 logR for some C1 > 0 independent of R, then we will get

∫

B(
√
R)

∥∇w∥2
(125)

≤ 16C1

logR

(R→∞)−→ 0

hence w will be constant in Σ and so u. We will split the integral
∫
B(R)

1
r2

in a sum of integrals
in annular regions: ∫

B(R)

1

r2
=

m−1∑

j=0

∫

B(ej+1
√
R)\B(ej

√
R)

1

r2

where em
√
R = R or equivalently, m = log

√
R. Since m is a positive integer, R must take

values in a sequence (tending to ∞), which does not affect the above reasoning. Since r ≥ ej
√
R

in each one of the above annuli, we can estimate the last right-hand-side from above by

m−1∑

j=0

∫

B(ej+1
√
R)\B(ej

√
R)

1

Re2j
≤

m−1∑

j=0

∫

B(ej+1
√
R)

1

Re2j
=

m−1∑

j=0

1

Re2j
A(B(ej+1

√
R)). (126)

Since Σ has quadratic area growth, there exists C > 0 such that A(B(ej+1
√
R)) ≤ Ce2(j+1)R,

and the right-hand-side of (126) can be bound from above by

m−1∑

j=0

Ce2(j+1)R

Re2j
=

m−1∑

j=0

Ce2 = Ce2m = Ce2 log
√
R,

hence taking C1 =
C
2 e

2 we have completed the proof. 2

Remark 17.5 The converse of Theorem 17.4 is false: the helicoid in R3 is a surface with cubic
area growth25 and its conformal structure is parabolic. However, in a certain sense the theorem
cannot be improved: there are examples of rotationally symmetric complete metrics in a non-
parabolic cylinder with A(BΣ(x0, r)) ∼ Cr2+ε for all ε > 0 and for some C = C(ε) > 0.

Theorem 17.6 (Bernstein) The only entire26 minimal graphs in R3 are planes.

Proof. Let Σ = Gr(f) ⊂ R3 be the graph of a solution f : R2 → R of the PDE (6). Given x0 ∈ Σ
and r > 0, the triangle inequality gives BΣ(x0, r) ⊂ Σ ∩ B(x0, r), hence Theorem 3.4 implies
that

A (BΣ(x0, r)) ≤ A (Σ ∩ B(x0, r)) ≤ 2πr2,

and so, Σ has quadratic area growth. By Theorem 17.4, Σ is parabolic, and since it is simply
connected (because it is a graph over R2), Σ is conformally equivalent to C. Now we can finish
in two ways:

25That is, A(BΣ(x0, r)) ∼ Cr3 for some C > 0 and for all r sufficiently large.
26Entire means defined in the whole R2.
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(a) Consider the Jacobi function u = N3 = ⟨N,E3⟩ (observe that E3 is a Killing field in R3).
Orient Σ so that u > 0. The Jacobi equation gives ∆u = 2Ku ≤ 0, hence u is superharmonic
in Σ and thus, u is superharmonic in C. Since u is bounded, Liouville’s Theorem implies
that u is constant c > 0. Thus, 2cK = ∆c = 0 which implies K ≡ 0, i.e., Σ is flat hence a
plane.

(b) Let N : Σ → S2 be the Gauss map of Σ, and g : Σ ≡ C → C ∪ {∞} its stereographic
projection from the North pole. We know that g is a meromorphic function as Σ is minimal.
Orient Σ so that N3 < 0, which implies |g| < 1. As g is a bounded holomorphic function on
C, then g is constant by Liouville’s Theorem. Thus, Σ is a plane. 2

We next give another proof of Bernstein’s Theorem, based on the maximum principle: Let
Σ = Gr(f) ⊂ R3 be the graph of a solution f : R2 → R of the PDE (6). If Σ is flat, there is
nothing to prove. So assume that there exists p0 ∈ Σ such that K(p0) < 0 (Gauss curvature)
and we will arrive to a contradiction.

Recall the doubly periodic Scherk surface S (example 5 in Section 2). Since the Gauss map
of S in each square C over which S is a graph with boundary values ±∞ covers a half-sphere,
we can adjust S in R3 by applying the composition of a rigid motion and homothety so that

(a) S and Σ are tangent at p0 ∈ Σ ∩ Int(S).

(b) The principal directions of S and Σ at p0 coincide.

(c) The Gauss curvatures of S and Σ at p0 coincide.

Conditions (a), (b), (c) above tell us that S and Σ have a contact of order ≥ 2 at p0. Both S
and Σ are minimal graphs of functions f1, f defined in a common open neighborhood of the origin
in the common tangent plane at p0 to both surfaces. Since the second fundamental forms of S
and Σ at p0 are given respectively by the hessians of f1 and f at p0, and both second fundamental
forms at p0 match because the order of contact of S and Σ at p0 is ≥ 2, we deduce that the
function h := f1 − f vanishes at the origin of Tp0Σ with vanishing order ≥ 3. By Theorem 10.3,
the zeros of h form an equiangular system of k ≥ 3 curves that intersect at the origin of Tp0Σ,
and on each component of the complement of the union of these curves in a neighborhood
of the origin, the graphs corresponding to S,Σ are one at one side of the other, alternating
this relative position when changing consecutive sectors. Consider the vertical projection Γ of
the previously described equiangular system on the square C; this system of projected curves
is no longer necessarily equiangular at the projection q0 of p0 on C (because the projection
(x, y, z) 7→ (x, y) does not preserve angles between pairs of non-vertical vectors), but the curve
system Γ still expresses the intersection of S and Σ as graphs over an open neighborhood of
q0 in the (x, y)-plane. In addition, Γ can be extended to a system of curves that start at q0
and which consists of the points of C that have the same image by the graphs of S and Σ. We
will continue denoting by Γ this extended system of curves in C. Note that the ends of curves
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in Γ are contained in the set of vertices of C (because f is a function defined in all R2), and
there are at least six of these ends of curves in Γ (because k ≥ 3). This creates a closed loop
γ in Γ ∪ {vertices de C}. g bounds an open topological disk in C \ Γ, in which is possible to
find a contradiction with the maximum principle for minimal surfaces by moving one of the two
surfaces vertically with respect to the other until finding a first contact point between the two
surfaces. This contradiction proves Bernstein’s Theorem.

18 The Kawai technique

The technique that we will see next allows to control the growth of area and total curvature
under hypotheses that include stability. Although we call it ‘Kawai technique’, many researchers
have contributed to it. The first one to do so was Pogorelov [16] in the simply connected case
with K ≤ 0 and a = 2. Kawai [10] improved these results for a > 1

4 . The general case for
topology and curvature, with a > 1

2 was considered by Colding-Minicozzi [2], Rosenberg [18]
and Castillon [4].

Theorem 18.1 (Kawai, Colding-Minicozzi) Let (Σ, g) be a complete Riemannian surface,
possibly with boundary. Let L = ∆+V −cK be a Schrödinger operator on Σ, where V ∈ C∞(Σ)
is non-negative, K denotes the Gauss curvature of (Σ, g) and c > 1

2 . If −L ≥ 0 in Σ, then given
x0 ∈ Σ and R > 0 such that BΣ(x0, R) ∩ ∂Σ = ∅, we have:

A(B(R))

R2
+

1

2c− 1

∫

B(R)
V
(
1− r

R

)2
≤ 2πc

2c− 1
.

Proof. Let r be the distance function in (Σ, g) to x0. Reasoning as in the proof of (88), we have
that the length function l(r) of ∂BΣ(x0, r) (recall that l(r) is C1 a.e. in r by Theorem 13.2)
satisfies

l′(r)
(87)
=

∫

∂B(r)
κg(s) ds+ 2

nr∑

i=1

tan (θi/2) ≤
∫

∂B(r)
κg(s) ds+

nr∑

i=1

θi
(G-B)
= 2πχ (B(r))− K̃(r),

where we have abbreviated B(r) = BΣ(x0, r), κg is the geodesic curvature of ∂B(r), s is its
arclength parameter, θ1, . . . , θnr are the external angles of ∂B(r) (in particular, −π < θi < 0
for each i), in (G-B) we have used Gauss-Bonnet formula, χ (DM (p0, R)) stands for the Euler
characteristic of B(r) and we have defined the function

K̃(r) =

∫

B(r)
K dA.

Consider a smooth function η : [0, R] → (0,∞) such that η(0) = 1, η(R) = 0, η′ ≤ 0 in [0, R], and
let f = η◦r. Thus, f lies in the Sobolev space H1

0 (B(R)) and its weak gradient is ∇f = η′(r)∇r.
In particular, ∥∇f∥ = η′(r).
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Since −(∆ + V − cK) ≥ 0 in B(R), we have

∫

B(R)
V f2 ≤

∫

B(R)
∥∇f∥2 + c

∫

B(R)
Kf2. (127)

The two integrals of the right-hand-side of (127) can be computed by means of the co-area
formula: ∫

B(R)
∥∇f∥2 =

∫

B(R)
η′(r)2 =

∫ R

0
η′(r)2l(r) dr, (128)

and ∫

B(R)
Kf2 =

∫ R

0
η(r)2K̃ ′(r) dr

(∗)
= −

∫ R

0
(η2)′(r)K̃(r) dr, (129)

where in (∗) we have integrated by parts and used that η(R) = K̃(0) = 0.
Since (η2)′ = 2ηη′ ≤ 0 and l′(r) ≤ 2πχ(B(r))− K̃(r) ≤ 2π − K̃(r), (129) implies that

∫

B(R)
Kf2 ≤

∫ R

0
(η2)′(r)

[
l′(r)− 2π

]
dr =

∫ R

0
(η2)′(r)l′(r) dr + 2π,

where in the last equality we have used that η(0) = 1, η(R) = 0. Joining this last inequality
with (127) and (128), we obtain

∫

B(R)
V f2 ≤

∫ R

0
η′(r)2l(r) dr + c

∫ R

0
(η2)′(r)l′(r) dr + 2πc.

Now replace η(r) = 1− r
R in the last expression:

∫

B(R)
V
(
1− r

R

)2
≤ 1

R2

∫ R

0
l(r) dr − 2c

R

∫ R

0

(
1− r

R

)
l′(r) dr + 2πc

=
A(B(R))

R2
− 2c

R

∫ R

0

(
1− r

R

)
l′(r) dr + 2πc.

We want to integrate by parts in the last right-hand-side. But the function r 7→ l(r) might
be discontinuous, although it is differentiable a.e. in r. Indeed, l(r) can be decomposed as

l(r) = H(r)− J(r)

where H is absolutely continuous27 in [0,∞) and J is non-decreasing and continuous except in
a closed countable set, where J has finite jump discontinuities (see Shiohama and Tanaka [22]).

27This means that ∀ε > 0, ∃δ = δ(ε) such that if {(xk, yk)}k is a sequence of pairwise disjoint intervals inside

[0,∞) satisfying
∑
k

(yk − xk) < δ, then
∑
k

|f(yk)− f(xk)| < ε.
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Therefore, for each non-negative smooth function ψ : [0, R] → R we have

∫ R

0

[
ψ(r)J ′(r) + ψ′(r)J(r)

]
dr ≤ ψ(R)J(R)− ψ(0)J(0), (130)

and if we replace J(r) by H(r) in (130) we obtain an equality. Hence,

∫ R

0

[
ψ(r)l′(r) + ψ′(r)l(r)

]
dr ≥ ψ(R)l(R)− ψ(0)l(0) = ψ(R)l(R). (131)

Applying (131) to ψ(r) = 1− r
R and using that ψ(R) = 0, we get

∫ R

0

(
1− r

R

)
l′(r) dr ≥ 1

R

∫ R

0
l(r) dr =

1

R
A(B(R)).

Thus, ∫

B(R)
V
(
1− r

R

)2
≤ 1− 2c

R2
A(B(R)) + 2πc. (132)

Finally, (132) finishes the proof of the theorem because 1− 2c < 0. 2

Corollary 18.2 Let Σ be a complete, two-sided, stable minimal surface without boundary in a
Riemannian manifold (M3, g) with scalar curvature S ≥ 0. Then, Σ has quadratic area growth
and

∫
Σ |AΣ|2 <∞.

Proof. Since the Jacobi operator of Σ is L = ∆Σ + |AΣ|2 + RicM (N) = ∆ + V − KΣ where
V = 1

2

(
S + |AΣ|2

)
≥ 0 (see equation (120)), we can apply Theorem 18.1 with c = 1, obtaining

A(B(R))

R2
+

∫

B(R)
V
(
1− r

R

)2
≤ 2π, (133)

hence A(B(R)) ≤ 2πR2 (here B(R) = BΣ(x0, R) and x0 ∈ Σ is any point in Σ).
Let us see that the ‘total curvature’ is finite. Since S ≥ 0,

∫

Σ
|AΣ|2 ≤

∫

Σ

(
S + |AΣ|2

)
= 2

∫

Σ
V, (134)

hence it suffices to prove that V is integrable in Σ. Take R > 0. In B(R/2) we have 1− r
R ≥ 1

2
hence

1

4

∫

B(R/2)
V ≤

∫

B(R/2)
V
(
1− r

R

)2 (∗)
≤
∫

B(R)
V
(
1− r

R

)2 (133)

≤ 2π. (135)

where in (∗) we have used that V ≥ 0. 2

The next result generalizes Bernstein’s Theorem, and is central in the classical theory of
minimal surfaces:
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Corollary 18.3 (Schoen, do Carmo-Peng) The only orientable complete stable minimal sur-
faces without boundary in R3 are planes.

Proof. By Corollary 18.2, if Σ ⊂ R3 satisfies the hypotheses of Corollary 18.3 then Σ has
quadratic area growth and finite total curvature. As Σ is stable, we can apply the inequality
(117) to conclude that ∫

Σ
|AΣ|2f2 ≤

∫

Σ
∥∇f∥2, ∀H1

0 (Σ).

Take as f the logarithmic cut-off function ψR defined in (123) in terms of r = distΣ(x0, ·) (here
x0 is a previously chosen point in Σ). Abbreviating B(R) = BΣ(x0, R), we have

∫

B(
√
R)

|AΣ|2 =
∫

B(
√
R)

|AΣ|2ψ2
R ≤

∫

B(R)
|AΣ|2ψ2

R ≤
∫

B(R)
∥∇ψ2

R∥

=
4

(logR)2

∫

B(R)\B(
√
R)

1

r2
≤ 4

(logR)2

∫

B(R)

1

r2

(∗)
≤ 4

(logR)2
Ce2 log

√
R =

2Ce2

logR
.

where in (∗) we have used the last part of the proof of Theorem 17.4, which was valid under
the hypothesis A(B(r)) ≤ Cr2 ∀r > 0. Fixing R0 > 0 and taking R ≥ R0, the above reasoning
proves that ∫

B(
√
R0)

|AΣ|2 ≤
∫

B(
√
R)

|AΣ|2 ≤
2Ce2

logR

(R→∞)−→ 0,

hence AΣ ≡ 0 in B(
√
R0). As R > 0 is arbitrary, we conclude the proof. 2

19 Curvature estimates for stable minimal surfaces

Theorem 19.1 (Schoen) There exists C > 0 such that for every orientable stable minimal
surface Σ in R3 possibly with boundary, we have

|AΣ| distΣ(·, ∂Σ) ≤ C.

Remark 19.2 (1) If under the hypotheses of the theorem, Σ has no boundary, then Σ is a
plane by Corollary 18.3.

(2) We cannot apply Theorem 15.1, because in our current situation

∫

Σ
|AΣ|2

(134)
= 2

∫

Σ
V = 8 · 1

4

∫

Σ
V

(135)

≤ 8 · 2π,

but we need
∫
Σ |AΣ|2 ≤ C < 8π in order to apply Theorem 15.1. However, we will use some

of the ideas in its proof.
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Proof. Arguing by contradiction, suppose for each n ∈ N there exists an orientable stable mini-
mal surface Σn in R3, possibly with boundary, and a point pn ∈ Σn such that

|AΣn |(pn) distΣn(pn, ∂Σn) → ∞.

(By Corollary 18.3, ∂Σn ̸= ∅). Replacing Σn by BΣn(pn, distΣn(pn, ∂Σn)), we can assume that
Σn is compact. We can also replace pn by a maximum of the function fn : Σn → [0,∞) defined
by (97). Traslate Σn in R3 so that pn = 0⃗ and define

Σ′
n = |AΣn |(pn)|Σn (homothety), ∀n ∈ N.

Reasoning as in the proof of Theorem 15.1 we have that distΣ′
n
(⃗0, ∂Σ′

n) → ∞ if n → ∞,
|AΣ′

n
| ≤ 2 ∀n ∈ N and after passing to a subsequence, {Σ′

n}n converges to a complete minimal

surface (without boundary) Σ′
∞ ⊂ R3, with 0⃗ ∈ Σ′

∞ and |AΣ′
∞ |(⃗0) = 1. Σ′

∞ is orientable,
because it is the uniform limit on compact subsets of R3 in the Ck topology for each k of
orientable surfaces.

Let us see that Σ′
∞ is stable: otherwise, there would exist a relatively open subset Ω ⊂ Σ′

∞
with λ1(L,Ω) < 0 (here L is the Jacobi operator of Σ′

∞). Since Ω is compact, Ω is the uniform
limit in the Ck topology for each k of a sequence of relatively compact open subsets Ωn ⊂ Σ′

n.
Thus, λ1(Ln,Ωn) < 0 from a certain positive integer, where Ln is the Jacobi operator of Σ′

n.
This is impossible, because Σ′

n is stable for each n since Σn is. Therefore, Σ′
∞ is stable.

Finally, Corollary 18.3 ensures that Σ′
∞ is a plane, which contradicts que |AΣ′

∞ |(⃗0) = 1. This
finishes the proof. 2

The previous proof cannot be generalized by replacing R3 with a complete and homoge-
neously regular Riemannian manifold (M3, g), since we do not have ensured that the limit
surface Σ′

∞ falls in R3 (this would be ensured if we knew that |AΣn |(pn) → 0 with the previous
notation); in fact, in H3 there exist complete orientable stable minimal surfaces, which are not
totally geodesic: just take a rectifiable Jordan curve Γ ⊂ ∂∞H3 ≡ S2 not being an equator and
construct Σ as the limit when R → ∞ of a sequence of solutions to the Plateau problem for
Jordan curves ΓR ⊂ ∂BH3

(x0, R) ⊂ H3 converging to Γ in a certain sense (here BH3
(x0, R) is

the metric ball of radius R > 0 centered at a point x0 ∈ H3). This same construction can be
made in H2 × R by taking Γ ⊂ (∂∞H2) × R ≡ S1 × R not being a horizontal circle but so that
Γ is contained in a vertical strip of width < π, for which it is known that the corresponding
Plateau problem can be solved.

Similarly as the relation between Theorems 15.1 and 15.2, we have the following version of
Theorem 19.1 for homogeneously regular three-manifolds.

Theorem 19.3 (Rosenberg, Souam, Toubiana) Given Λ > 0, there exists C = C(Λ) > 0
such that if (M3, g) is a homogeneously regular Riemannian manifold with |Ksec| ≤ Λ and Σ is
a two-sided28, complete stable surface with constant mean curvature H ∈ R in (M3, g), possibly

28Every surface with constant mean curvature H ∈ R \ {0} is two-sided.
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with boundary, then:

|AΣ| ·min

{
distΣ(·, ∂Σ),

π

2
√
Λ

}
≤ C. (136)

Remark 19.4 (1) Surfaces of constant mean curvature H ∈ R in a Riemannian three-manifold
are the critical points of the functional Area−2H·Volume for compactly supported normal
variations, and the second derivative of this functional at a surface Σ with constant mean
curvature constant H (which in the sequel will be called a H-surface) is given by the right-
hand-side of (113), where L is the Jacobi operator of Σ, defined as in the minimal case.
The notion of stability extends to H-surfaces, imposing that (115) holds. Do not confuse
this notion of stability in the CMC case (sometimes called strong stability) con the notion of
stability associated to the isoperimetric problem, where (115) is only required for functions
f ∈ H1

0 (Σ) with zero mean.

(2) What is the meaning of inequality (136)? If x ∈ Σ is very close to ∂Σ, the minimum that
appears in (136) is distΣ(x, ∂Σ), hence the inequality is the same as the one in Theorem 19.1;
i.e., |AΣ| can grow at most inversely proportional to the distance to the boundary for these
points. When x is far from ∂Σ, the minimum in (136) is π

2
√
Λ
, hence |AΣ| is bounded for

these points and the bound is inversely proportional to the square root of a bound for the
absolute sectional curvature of the ambient space.

Before proving Theorem 19.3, let us see some consequences. The first one is a strong gener-
alization of Corollary 18.3.

Corollary 19.5 Given Λ > 0, there exists C = C(Λ) > 0 such that if (M3, g) is a homoge-
neously regular Riemannian manifold with |Ksec| ≤ Λ and Σ is a complete stable surface with
mean curvature constant H ∈ R (two-sided if H = 0) in (M3, g) without boundary, then

|AΣ| ≤
2
√
Λ

π
C.

Proof. Apply (136) taking into account that distΣ(·, ∂Σ) = +∞ in Σ. 2

The second consequence of Theorem 19.3 is a version of Corollary 19.5 for compact surfaces.

Corollary 19.6 Given Λ > 0, there exists C1 = C1(Λ) > 0 such that if (M3, g) is a homoge-
neously regular Riemannian manifold with |Ksec| ≤ Λ and Σ is a compact stable surface with
mean curvature constant H ∈ R (two-sided if H = 0) in (M3, g) without boundary, then

|AΣ| ≤ max

{
1

diam(Σ)
,

√
Λ

π

}
C1.
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Proof. Let us call d = diam(Σ). Take x ∈ Σ and apply (136) to the surface Σ1 = BΣ(x, d/2):

|AΣ|(x) ·min

{
distΣ1(x, ∂Σ1),

π

2
√
Λ

}
≤ C.

But distΣ1(x, ∂Σ1) =
d
2 , hence the above left-hand-side is |AΣ|(x)

2 ·min
{
d, π√

Λ

}
, hence it suffices

to take C1 = 2C in order to deduce the corollary. 2

We will only give a sketch of the proof of Theorem 19.3, avoiding technicalities. We will need
the notion of blow-up pair for a compact surface with boundary (Σ, ∂Σ) ⊂ (B(r0), ∂B(r0)) (in
particular, Σ ⊂ R3). The idea is that if |AΣ| is large at x ∈ Σ \ ∂Σ, then we can choose y ∈ Σ
near x where not only |AΣ|(y) is proportional to |AΣ|(x) but also |AΣ| ≤ 2|AΣ|(y) in BΣ(y, s)
for some s > 0 (that is, |AΣ||BΣ(y,s) essentially achieves its maximum at y):

Definition 19.7 Let Σ ⊂ R3 be a compact surface with boundary, not necessarily minimal,
with (Σ, ∂Σ) ⊂ (B(r0), ∂B(r0)). Suppose that

sup
Σ∩B( r0

2
)

|AΣ| ≥
4C

r0
, (137)

where C > 0. Given y ∈ Σ \ ∂Σ, s > 0, we will say that (y, s) is a blow-up pair centered at y
with scale s if the following conditions hold:

(i) |AΣ|(z) · distR3(z, ∂B(r0)) ≤ |AΣ|(y) · distR3(y, ∂B(r0)), ∀z ∈ Σ.

(ii) 2s ≤ r0 − ∥y∥(= distR3(y, ∂B(r0))).

(iii) |AΣ| ≤ 2|AΣ|(y) in BΣ(y, s).

Lemma 19.8 Let Σ ⊂ R3 be compact surface with boundary, not necessarily minimal, with
(Σ, ∂Σ) ⊂ (B(r0), ∂B(r0)) and C > 0 such that (137) holds. Then, there exists a blow-up pair
(y, s), where y ∈ Σ \ ∂Σ and s > 0 is given by

|AΣ|(y) =
C

s
. (138)

Proof. Consider the continuous function f : Σ → [0,∞) given by

f(z) = |AΣ|(z) · distR3(z, ∂B(r0)).

Then, f |∂Σ = 0. Let y ∈ Σ \ ∂Σ be a maximum of f . In particular, |AΣ|(y) > 0 and we can
define s > 0 by (138).
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~0

r0

r0 − ‖y‖

1
2(r0 − ‖y‖)
y

Σ

Figure 37: In red, BΣ(y, s) (contained in B(y, 12(r0−∥y∥)), where inequality (iii) of Definition 19.7
holds.

Let us see that inequality (ii) of Definition 19.7 holds: Take x ∈ Σ ∩ B(r0/2).

|AΣ|(x)
r0
2

≤ |AΣ|(x)(r0 − ∥x∥) = f(x) ≤ f(y) = |AΣ|(y)(r0 − ∥y∥),

from where
r0
2

sup
Σ∩B( r0

2
)

|AΣ| ≤ |AΣ|(y)(r0 − ∥y∥).

By (137), the left-hand-side is ≥ 2C, hence

2C ≤ |AΣ|(y)(r0 − ∥y∥) (138)
=

C

s
(r0 − ∥y∥),

which is (ii).
Let us now check inequality (iii) of Definition 19.7: Take z ∈ BΣ(y, s). Since BΣ(y, s) ⊂

B(y, s) (by the triangle inequality) and B(y, s) ⊂ B(y, 12(r0 − ∥y∥)) (by item (ii)), we have
r0 − ∥z∥ ≥ 1

2(r0 − ∥y∥) > 0 (see Figure 37). On the other hand,

|AΣ|(z)(r0 − ∥z∥) = f(z) ≤ f(y) = |AΣ|(y)(r0 − ∥y∥),
hence

|AΣ|(z) ≤
r0 − ∥y∥
r0 − ∥z∥ |AΣ|(y) =

(
1 +

∥z∥ − ∥y∥
r0 − ∥z∥

)
|AΣ|(y)

≤
(
1 +

∥z − y∥
r0 − ∥z∥

)
|AΣ|(y) <

(
1 +

s

r0 − ∥z∥

)
|AΣ|(y)

(∗)
≤ 2|AΣ|(y),

where in (∗) we have used that r0 − ∥z∥ ≥ 1
2(r0 − ∥y∥)

(iii)
≥ s. Therefore, (iii) hods. (i) is trivial,

since y maximum of f . 2

Let us see what happens after re-scaling by curvature around a blow-up point.
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Lemma 19.9 Let Σ ⊂ R3 be a surface in the hypotheses of Lemma 19.8. Let (y, s) be a blow-up
pair satisfying (138). We denote by Σ(y, s) the component of Σ∩B(y, s) that contains y (observe
that BΣ(y, s) ⊂ Σ(y, s) by the triangle inequality). Consider the new surface

Σ̃ := |AΣ|(y) [Σ(y, s)− y] ⊂ B
(
0⃗, |AΣ|(y) · s

)
(138)
= B(⃗0, C).

(which verifies ∂Σ̃ ⊂ ∂B(⃗0, C) because ∂Σ(y, s) ⊂ ∂Σ∩B(y, s) ). Then, 0⃗ ∈ Σ̃, |A
Σ̃
|(⃗0) = 1, and

|A
Σ̃
| ≤ 2 in B

Σ̃
(⃗0, C).

Proof. It is clear that 0⃗ ∈ Σ̃ and |A
Σ̃
|(⃗0) = 1. Let us see that |A

Σ̃
| ≤ 2 in B

Σ̃
(⃗0, C): Given

z̃ ∈ B
Σ̃
(⃗0, C) = |AΣ|(y) [BΣ(y, s)− y], there exists z ∈ BΣ(y, s) con z̃ = |AΣ|(y)(z − y), hence

|A
Σ̃
|(z̃) = |AΣ|(z)

|AΣ|(y)
(iii)
≤ 2. 2

Next we give a sketch of the proof of Theorem 19.3.

Proof. [of Theorem 19.3]. Arguing by contradiction, suppose that for some Λ > 0, there exists
a sequence Σn of stable surfaces with constant mean curvature Hn ∈ R (two-sided if Hn = 0) in
homogeneously regular Riemannian manifolds (M3

n, gn) with |Ksec(Mn)| ≤ Λ for each n, possibly
with ∂Σn ̸= ∅, in such a way that

|AΣ|(p∗n) ·min

{
distΣ(p

∗
n, ∂Σn),

π

2
√
Λ

}
> n ∀n ∈ N, (139)

where p∗n is a point of Σn. We divide the argument into two steps.

(A) Using the uniform bound |Ksec(Mn)| ≤ Λ for every n, it can be proven that there exists
rn > 0 such that the metric ball BΣn(p

∗
n, rn) is contained in the domain of a chart of Mn,

which allows to identify BΣn(p
∗
n, rn) with a surface is an extrinsic ball of fixed radius in

(R3, gn) (this is a slight abuse of notation, since the metric in this extrinsic ball shoud be
the pullback of gn by the chart).

(B) The construction can be made so that |AΣn |(p∗n)rn → ∞. Next re-scale both the ambient
metric gn and the surface Σn by the factor |AΣn |(p∗n), obtaining a sequence of Riemannian
metrics defined on three-dimensional balls whose radii diverge to ∞ (which converge on
compact subsets of R3 to the usual inner product on R3), and stable surfaces with constant
mean curvature, all passing through the origin of R3, with uniformly bounded geometry and
with norm of the second fundamental form equals to 1 origin. Taking n→ ∞, a subsequence
of these surfaces converges to a non-flat, complete stable with constant mean curvature in
R3, which contradicts Corollary 18.3 (for this, we need an extension of Corollary 18.3 to
the case of constant mean curvature).
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We now comment on some of the technical difficulties of the previous steps.
The first idea one has to prove (A) is to use exponential coordinates in (Mn, gn). Finding a

uniform geodesic radius in n is not a problem, since the hypothesis |Ksec(Mn)| ≤ Λ guarantees
that in [0, π√

Λ
) there are no conjugate values along any of the unitary radial geodesics inMn, and

therefore we have a uniform lower bound for the radius of the extrinsic ball B(⃗0, π√
Λ
) ⊂ TxMn

where the exponential map expMn
x is a local diffeomorphism (x is any point inMn). Hence, given

n ∈ N, we can lift Σn∩expMn
p∗n

(
B(⃗0, π√

Λ
)
)
to an immersed surface Σ̃n in B(⃗0, π√

Λ
) ⊂ Tp∗nMn. If we

also lift the ambient metric gn to B(⃗0, π√
Λ
), then Σ̃n will have the same constant mean curvature

Hn as Σn. The problem is that the use of the exponential map does not ensure more than a
control C0 over the metric gn pullback by the exponential map (there are counterexamples),
but we need a control C1 on the coefficients of gn to conclude that the limit surface constructed
in (B) has constant mean curvature. Therefore, we should not use exponential coordinates.
This problem can be solved by using another kind of local coordinates in Mn, called harmonic
coordinates29 which produce a control C1,α on the coefficients of gn and that can be defined at
least in metric balls of (Mn, gn) with radius bounded from below independently of n, in terms
of an upper bound of Ksec(Mn) (this is the content of Theorem 2.1 in [19]). Once this is done,
it can be checked that the radius rn of step (A) can be taken as

rn = min

{
distΣ(p

∗
n, ∂Σn),

π

2
√
Λ

}
.

In this way, the condition |AΣn |(p∗n)rn → ∞ that appears in step (B) is a consequence of (139).
After replacing Mn by B(rn) = B(⃗0, rn) via the harmonic coordinates (B(rn) is endowed with
the pullback metric, also denoted by gn), we can also view the surfaces Σn inside B(rn); in fact,
it is possible to prove that there exists r0 > 0 such that (Σn, ∂Σn) ⊂ (B(r0), ∂B(r0)) for each n
and that (139) implies

sup
Σn∩B( r02 )

|AΣn | ≥
2n

r0
. (140)

(Compare to (137) taking C = n/2). By Lemma 19.8 (generalized to the metric gn instead of
the usual inner product), there exists a blow-up pair (yn, sn) where yn ∈ Σn \ ∂Σn and sn > 0
is given by

|AΣn |(yn) =
C

sn
=

n

2sn
. (141)

We now re-scale Σn as in Lemma 19.9:

Σ̃n := |AΣn |(yn) [Σn(yn, sn)− yn] ⊂ B(n/2).
29The coordinate functions associated to each of these charts are harmonics functions over the open subset of

Mn in which they are defined.
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Lemma 19.9 implies that ∂Σ̃n ⊂ ∂B(n/2), 0⃗ ∈ Σ̃n, |AΣ̃n
|(⃗0) = 1, and |A

Σ̃n
| ≤ 2 in B

Σ̃n
(n/2).

Furthermore, Σ̃n has constant mean curvature

H̃n :=
Hn

|AΣn |(yn)
(141)
=

2sn
n
Hn.

On the other hand, (9) ensures that 2H̃2
n ≤ |A

Σ̃n
|2 ≤ 4, hence |H̃n| ≤

√
2. A standard diagonal

argument allows us to take limits of a subsequence of the Σ̃n to a surface Σ̃∞ ⊂ R3 (now R3 is
endowed with the usual inner product because before passing to the limit we considered harmonic
coordinates and the scale factors |AΣn |(yn) diverge to ∞ thanks to (140)), with constant mean
curvature H̃∞ := limn H̃n (this limit exists after passing to a subsequence), satisfying 0⃗ ∈ Σ̃∞,
|A

Σ̃∞
|(⃗0) = 1 and |A

Σ̃∞
| ≤ 2 in Σ̃∞. Furthermore, Σ̃∞ is stable because is a smooth limit of

stable surfaces, which concludes the sketch of the proof. 2

20 The Jenkins-Serrin method

Let C ⊂ R2 be a piecewise C1 Jordan curve with a finite number of vertices. We can write
C = γ1 ∪ . . . ∪ γn where each γi is a Jordan arc of class C1. Suppose that C is the boundary of
a compact convex domain D ⊂ R2. Given a continuous function f : Int(γ1) ∪ . . . ∪ Int(γn) → R,
When there exists a minimal graph over int(D) with these boundary values? In other words,
we are interested in solutions of the Dirichlet problem

{
div
(∇u
W

)
= 0 in Int(D),

u = f in ∂D,
(142)

where W =
√
1 + ∥∇u∥2.

Theorem 20.1 If f is bounded, then (142) has a unique solution.

Proof. Construct a Jordan curve Γ ⊂ R3 whose vertical projection is C ⊂ R2 ≡ {z = 0}, in such
a way that on each Int(γi), Γ is the graph of f |Int(γi), and over each vertex of C, Γ consists of

vertical segments that joint the extrema of the graphs f |Int(γi), f |Int(γi+1)
(in a cyclic way).

Douglas-Radó’s Theorem (Theorem 8.1) ensures that there exists a solutionM of the Plateau
problem for the contour Γ. M is unique by the maximum principle (translate vertically), and an
approximation argument as the one in Section 12.1 allow us to use Radó’s Theorem to ensure
that the interior of M is a graph over the interior of D. 2

Remark 20.2 The same result holds if we replace R2 by a Riemannian surface (M2, g) (for
instance, M = H2) and the equation div

(∇u
W

)
= 0 by divM

(∇u
W

)
= 0 with W =

√
1 + ∥∇Mu∥2.

Now, the graph of u is a minimal surface in (M × R, g × dt2).
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Figure 38: By adding vertical segments at the discontinuities of f , we construct a Jordan curve
in R3.

We are interested in the problem (142) admitting values ±∞ on a portion of C. Before
analyzing the general case, let us study some particular cases. Suppose that D is a rectangle
of sides a, b > 0. Given n ∈ N, we set (consecutive) boundary values 0, n, 0, n as in Figure 39
left and center. We solve the corresponding Plateau problem, as in the proof of Theorem 20.1.

n

a
b

D

Γn

a

b
D

0

n n

0

Σn

Figure 39: Left: contour Γn with height n over a rectangle D of sides a, b. Right: the solution
Σn to the Plateau problem over D.

Thus, we produce a solution un of (142) and a minimal graph Σn = Gr(un), see Figure 39 right.
The maximum principle implies that un ≤ un+1 for each n ∈ N. What happens with Σn as
n→ ∞?

Intuitively we see that if a ≪ b, Σn converges to two vertical strips (i.e., there is no limit
graph over D, or we could say that it is constant +∞), see Figure 40 left.

If a≫ b, Σn converges to a well-defined graph on the interior of D, see Figure 40 right. One
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b

n

nn

n

Figure 40: Left: Σn converges as n→ ∞ to two vertical strips of width a. Right: Σn converges
to a graph over D, with boundary values 0,+∞, 0,+∞. In fact, both surfaces Σn are congruent
for each n ∈ N. What produces different limits is the normalization we are using to compute
the limit (for instance, the point that we are assuming to be fixed).

way to justify this is as follows: Since {un}n is a monotonous sequence, the limit limn un will
exist in int(D) if and only if given x ∈ Int(D), there exists C(x) > 0 such that un(x) ≤ C(x)
for all n ∈ N. If a ≫ b, we can construct a catenoid C as in Figure 41. Moving vertically

a b

nn

n

C

b

Figure 41: Place a catenoid C above Σn, in such a way that C projects vertically onto the green
region of the figure at the right. Such a catenoid C exists provided that a≫ b.

C upwards (for n fixed), C does not touch Σn. Now we start dropping C towards Σn. The
maximum principle ensures that when the two circles in ∂C touch for the first time the plane
{z = 0}, C is still completely above Σn. This last catenoid serves as a barrier for Σn from above.
As this barrier is independent of n, we ensure the existence of the limit of un when n → ∞, at
least in the portion of D enclosed by the vertical projection of C (in green in Figure 41). To
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prove that limn un exists in the rest of D (i.e. in the two orange zones in Figure 41) we will
use another minimal annulus as a barrier. The idea consists of replacing the pair of circles ∂C
by two vertical rectangles R1, R2 at the same height, with the same vertical projection as ∂C.
That vertical projection is a rectangle of sides a − ε, b + ε (being ε > 0 arbitrarily small), see
Figure 42.

a b

n

C

a− ε
a− ε b + εb + ε

R1
R2 R2

R1

Figure 42: The rectangle in {z = 0} bounded by the vertical projections of the red rectangles
R1 ∪R2 which form the contour of the barrier, has sides a− ε, b+ ε, where ε > 0.

To know if there is a minimal annulus with boundary R1∪R2, we apply the Douglas criterion
(Theorem 11.3): it is enough to find a compact annulus Σ with boundary R1 ∪R2 whose area is
strictly less than the sum of the areas of the rectangles R1 and R2. The annulus Σ that we get
moving R1 parallel to R2 has area 2(a− ε)(b+ ε) + 2n(b+ ε) (we are assuming that the height
of Ri is n, i = 1, 2), while the rectangles R1 ∪R2 have area 2(a− ε)n. So it suffices to check the
following inequality:

(a− ε)(b+ ε) + n(b+ ε) < (a− ε)n.

Dividing by b−ε > 0, the above inequality is equivalent to a−ε <
(
a−ε
b−ε − 1

)
n. Since a−ε

b−ε −1 =
a−b
b−ε , we have transformed our desired inequality in a− ε < a−b

b−εn, i.e., (a− ε)(b− ε) < (a− b)n,
which clearly holds for n large enough provided that a > b. By the Douglas criterion, if a > b
then for n large enough there exists a minimal annulus An with boundary R1∪R2, which we use
as a barrier for Σn0 from above (n0 is fixed). This argument can be made for ε > 0 arbitrarily
small, which gives that limn un exists in the interior of D provided that a > b. Therefore:

The Dirichlet problem (142) has a (unique) solution over the interior of the rectangle
D = D(a, b) with boundary values 0 over the sides with length a and +∞ over the
sides with length b, provided that a > b.

We cannot prove it yet, but this same Dirichlet problem has no solution if a ≤ b: this will
be a consequence of Theorem 20.4, which will give us necessary and sufficient conditions for
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the existence of the limit of the graphs Σn, conditions that will be translated into a > b (see
Note 20.5(3)).

Another interesting Dirichlet problem (142) over the rectangle D = D(a, b) consists of
imposing boundary values −∞,+∞,−∞,+∞. If a = b (i.e., D is a square), then we ex-
plicitly know a solution: a homothetical image of the doubly periodic Scherk surface (the
graph of z = u(x, y) = log cosx

cos y ). Scherk also proved the existence of a solution of an anal-
ogous Dirichlet problem over a rhombus with arbitrary angle, with the same boundary values
−∞,+∞,−∞,+∞. Theorem 20.4 will also ensure the existence of this minimal graph over a
rhombus.

Before stating Theorem 20.4 and having in mind the previous examples, the following ques-
tion arises:

Is it mandatory to take geodesic arcs of the closed curve C = ∂D ⊂ R2 if we want
to prescribe the boundary values ±∞ on these arcs?

Lemma 20.3 (Straight line lemma) Let (M2, g) be a Riemannian surface, D ⊂ M a con-
vex domain whose boundary is piecewise C2 and c ⊂ ∂D a C2 arc. If there exists a solution

u : Int(D) → R of divM

(
∇Mu
W

)
= 0 in Int(D) and for each q ∈ Int(c) we have lim

x→q
u = +∞,

then c is a geodesic arc in (M, g) (the same holds if we replace +∞ by −∞).

Proof. That c is of class C2 makes possible to talk about the geodesic curvature κg of c in Int(c).
To prove the lemma we must see that κg vanishes identically in Int(c). So take a point q ∈ Int(c),
and we will prove that κg(q) = 0. The first part of the argument will discard κg(q) > 0, for
which the argument is relatively simple (based on the maximum principle applied to the graph
of u and an auxiliary minimal graph of ‘type Scherk’. The second part will discard κg(q) < 0
using a more delicate argument, based on the curvature estimate for stable minimal surfaces
and a limit process.

Suppose first that κg(q) > 0 (i.e., the geodesic curvature vector at q points inwards D). In
the case of M = R2, let us consider a solution v−∞ to the Dirichlet problem (142) in a triangle
T ⊂ R2, with boundary values 0, 0,−∞ as in Figure 43 (for example, a quarter of a fundamental
domain of a doubly periodic Scherk surface on a square); in the general case for M , we will
need a solution v−∞ of the same problem in a triangle T ⊂ M , whose sides are three curves of
class C2 with common vertices, so that T is convex, such that v−∞ takes the boundary values
0, 0,−∞; this general existence of v−∞ can be justified as follows: let us consider for each n ∈ N
the Dirichlet problem (142) over T with boundary values 0, 0,−n, seen as a Plateau problem
in M × R once we have added suitable vertical segments in M × R on the vertices of T to
have a closed polygonal curve. Theorem 3.2 (that we can apply even if M ×R is not complete,
after an appropriate modification of the product metric outside T × R) ensures the existence
of a least area disk with this boundary; the convexity of T and the generalization of Radó’s
Theorem to this situation (the arguments for this generalization to hold are analogous to the
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ones we explained to generalize the proof of Radó’s Theorem to spaces E(κ, τ) in Section 12.1)
implies that these minimal disks are minimal graphs over T of functions vn. Taking n → ∞,
a subsequence of vn converges to the solution v−∞ of the Dirichlet problem in T that we are
looking for. Note that v−∞ ≥ 0 in T (in fact, v−∞ < 0 in int(T )). In addition, we make the
construction of v−∞ so that the triangle T is placed as in Figure 43 regarding its intersection
with D.

0

0 v−∞

−∞ 0

0

−∞

Gr(v−∞)

Gr(u)

q

c
D

T

Figure 43: Translating Gr(u) downwards we will contradict the interior maximum principle.

As u tends to +∞ along c, we can move vertically the graph of u up so that Gr(u) lies
strictly above Gr(vinfty). If we now start moving continuously Gr(u) downwards we will find a
first point of interior contact between both surfaces, contradicting the maximum principle. Note
that this last argument can be made in (M × R, g × dt2).

Suppose now that κg(q) < 0 (the geodesic curvature vector at q points outwards D). Since
Σu := Gr(u) is a stable minimal surface stable (by Theorem 16.12 applied to the Killing field
Y = ∂

∂t in M × R), then Theorem 19.3 implies that the second fundamental form |AΣu | is
bounded by a constant C(ε) > 0 in Σu(ε) = {p ∈ Σu | dΣu(p, ∂Σu) ≥ ε}, given ε > 0.

Take q ∈ Int(c) and ε > 0 sufficiently small so that dΣu(p, ∂Σu) ≥ ε for all p = (x, u(x))
with x in a neighborhood Uq of q in D (this can be done leaving a positive distance from ∂Uq to
∂D \ c), see Figure 44). This implies that |AΣ′

u
| is bounded in the portion Σ′

u := Gr(u|Uq) ⊂ Σu.

Take pn = (xn, u(xn)) with xn ∈ Uq such that xn → q as n→ ∞. For each n ∈ N, let

Σ′
u(n) := Σ′

u − u(xn)e3
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D
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q

Σ′
u

Uq

Figure 44: |AΣ′
u
| is bounded in the sub-graph Σ′

u = Gr(u|Uq) ⊂ Σu.

be the vertical translation of Σ′
u in M × R passing through (xn, 0). Σ

′
u(n) is a minimal surface

in (M × R, g × dt2) and {Σ′
u(n)}n has uniformly bounded second fundamental form (with the

same bound as for |AΣ′
u
|). By the Uniform Graph Lemma (Lemma 12.4, observe that we stated

it in R3 but it can be generalized to M × R), each Σ′
u(n) can be locally written around (xn, 0)

as a graph in exponential coordinates in M ×R of a function defined on a disk of uniform radius
r0 > 0 in the tangent plane T(xn,0)Σ

′
u(n) (this radius only depends on the bound for |AΣ′

u
|).

Therefore after passing to a subsequence, the Σ′
u(n) converge to a minimal surface Σ′

∞ ⊂M ×R
passing through (q, 0) and that can be written in exponential coordinates inM ×R as the graph
of a function defined over a disk of radius r0/2 in the tangent plane T(q,0)Σ

′
∞. In particular,

T(q,0)Σ
′
∞ is vertical (if not, Σ′

∞ would project vertically covering an open neighborhood of q in
M , and the same would hold for Σ′

u(n) for n large enough, which contradicts that Σ′
u(n) is a

vertical graph over a subset of D).
Consider the Jacobi function N3 = ⟨N, e3⟩ over Σ′

∞ (recall that in the Riemannian product
M × R, vertical translations are isometries). N3 is ≥ 0 in Σ′

∞ (because Σ′
∞ is a vertical graph,

since is a limit of vertical graphs). Since N3(q) = 0 and q is an interior point to Σ′
∞, the

maximum principle for the Jacobi operator (Theorem 16.1430) implies that N3 ≡ 0 in Σ′
∞, i.e.,

Σ′
∞ = γ × R where γ is a geodesic arc in M passing through q. Moreover, γ has an uniform

length (≥ r0/2).
The above argument shows that given q ∈ Int(c), there exists a limit of vertical translations

30We can avoid using Theorem 16.14 to conclude that Σ′
∞ = γ × R by analyzing the intersection of Σ′

∞ with
the minimal surface γ ×R, where γ is the geodesic in M that passes through q such that γ ×R is tangent to Σ′

∞
at q: this intersection produces an equiangular system of curves Γ at q and locally around q, Σ′

∞ stays at one side
of γ × R in each component of the complement of Γ; this last property prevents Σ′

∞ from being a vertical graph
in any neighborhood of q. This last property is still valid just before the limit of the Σ′

u(n) (for n large enough)
to Σ′

∞), which contradicts the fact that Σ′
u(n) is a vertical graph.
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of Σu that converges around q to a vertical cylinder γq × R over a geodesic arc γq in M that
passes through q. Now exchange q by another point q′ ∈ Int(c) close to q. Since the lengths of
γq, γq′ are uniform and c has negative geodesic curvature (smaller than a negative constant that
only depends of q for q′ close enough to q), we conclude that the geodesic arcs γq, γq′ intersect at
a point x(q, q′) close to q and q′ (Figure 45). This is impossible, as the minimal surfaces γq ×R,
γq′ × R intersect transversally and are limits of vertical translations of Σu (here we are using
that Σu is a vertical graph). This contradiction finishes the proof of the lemma. 2

q

D

c

Uq

γq

q′

x(q, q′)

γq′

Figure 45: The points q, q′ produce geodesics arcs γq, γq′ that intersect at x(q, q
′).

In order to give a definitive solution to the problem raised at the beginning of this section, we
need some notation. Let C ⊂ R2 be a closed embedded piecewise C1 curve, with a finite number
of vertices, such that C is the boundary of a compact convex domain D ⊂ R2. Decompose C as
a finite union of arcs C = (∪iAi) ∪ (∪jBj) ∪ (∪kCk), where each arc is of class C1, the Ai, Bj
are straight line segments, and there are no two Ai nor two Bj consecutive.

Given a polygon P inscribed31 in C (i.e., {vertices of P} ⊂ {vertices of ∂C}), we will denote

a(P) :=
∑

Ai⊂P
L(Ai), b(P) :=

∑

Bj⊂P
L(Bj).

Hence, L(P) = a(P) + b(P) +
∑

Ck⊂P L(Ck).

Theorem 20.4 (Jenkins-Serrin) Consider a continuous function fk : Int(Ck) → R for each
k. Then, the following conditions are equivalent:

(A) There exists a solution u : Int(D) → R of div
(∇u
W

)
= 0 in Int(D) with boundary values

u = +∞ in each Ai, u = −∞ in each Bj, u = fk in each Ck.

31Possibly P = C.
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(B) If ∪kCk = ∅:
∑

i

L(Ai) =
∑

j

L(Bj), 2a(P) < L(P) and 2b(P) < L(P), for each polygon

P ≠ C inscribed in C.

If ∪kCk ̸= ∅: 2a(P) < L(P) and 2b(P) < L(P), for each polygon P ≠ C inscribed in C.

Furthermore, if u exists, then u is unique provided that ∪kCk ̸= ∅ (resp. unique up to vertical
translations if ∪kCk = ∅).

Remark 20.5 (1) The theorem holds in M ×R if we impose that D is geodesically convex and
Ai, Bj are geodesic arcs, with the same condition (B) about lengths.

(2) In the case that C is a triangle, the triangle inequality implies that condition (B) is always
satisfied. Thus, the Dirichlet problem associated to the boundary values given by Figure 46
has a solution:

f1

f2

+∞

f1

−∞

+∞

Figure 46: f1, f2 are arbitrary continuous functions. We can replace +∞ by −∞ in the triangle
on the left.

(3) We can now understand when there exists a solution to the Dirichlet problem associated
to the boundary values 0,+∞, 0,+∞ on a rectangle D(a, b) of sides a, b > 0 (we impose
the zero value on the sides of length a), which we treated after Remark 20.2. In this case,
condition (B) of Jenkins-Serrin’ Theorem must be checked over any inscribed triangle in the
rectangle. On an inscribed triangle, the condition is satisfied by the triangle inequality. On
the whole rectangle C, one has a(C) = 2b, b(C) = 0 and L(C) = 2a+2b, hence the condition
about lengths is equivalent to 4b < 2a+ 2b, i.e., b < a as we advanced before Lemma 20.3.

Exercise 20.1 Use Jenkins-Serrin’s Theorem to prove that if on a regular polygon with 2k
vertices we impose the boundary values +∞,−∞ cyclically, then there exists a solution of the
Dirichlet problem associated to the minimal surface equation with these boundary values, see
Figure 47.

The singly periodic Scherk surface with angle π/2 (example 6 in Section 2) can also be
constructed by Jenkins-Serrin graphs: Consider a rectangle D = D(a, 1) of sides a > 0, b = 1,
and the boundary values given by Figure 48 left.
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+∞

−∞

+∞

+∞

+∞

−∞

−∞

−∞

Figure 47: Jenkins-Serrin graph over a regular octagon, with con boundary values +∞,−∞ (the
surface on th right is a compact approximation).

+∞ 0
0

0
1

a

0

0
+∞

Figure 48: Left: Jenkins-Serrin data on a rectangle of sides a > 0 and 1 to produce a singly
periodic Scherk surface (after taking a→ ∞, right).

It is easy to verify that condition (B) of Jenkins-Serrin’s Theorem is satisfied, which produces
a minimal graph Σa over D(a, 1) with these boundary values (we could have also built Σa as a
limit when n → ∞ of Douglas-Radó solutions to Plateau problems for Jordan curves Γn which
project onto ∂D(a, 1), replacing the boundary value +∞ by n ∈ N). If we now take a → ∞
we will obtain32 a limit minimal graph Σ∞ = lima→∞Σa over the half-strip of width 1 with
boundary values ∞, 0 (Figures 48 right and 49 left). If we now rotate Σ∞ an angle of 180o

around each segment or half-line in its boundary, we will generate the singly periodic Scherk
surface (Figure 49 right).

32We need to use barriers to ensure the existence of this limit; these barriers can be constructed by taking
horizontal catenoids suitably arranged above the graphs Σa.
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Σ∞

Σ∞

Figure 49: After Schwarz reflection, the surface Σ∞ generates the singly periodic Scherk surface.

20.1 The Jenkins-Serrin method in H2 × R

The version of Theorem 20.4 in H2 × R was proven by Nelli and Rosenberg, replacing Ai, Bj
by geodesic arcs of H2 and measuring the lengths of inscribed polygons with respect to the
hyperbolic metric. For instance, consider a hyperbolic regular polygon with 2k vertices (and
geodesic edges). Since we do not have homotheties in H2 (more precisely, they are not hyperbolic
isometries), then we have a 1-parametric family of these non-congruent hyperbolic polygons
of 2k vertices, which can be parameterized by the inner angle θ of the polygon. θ varies in(
0, π

(
1− 1

k

))
(t → 0+ corresponds to an ideal polygon33, and t → π

(
1− 1

k

)−
corresponds to

the Euclidean case34, which is the limit of the hyperbolic polygon when it degenerates to a point.
In particular, there is no hyperbolic square (k = 2) with internal angle π/2, but for each

k ∈ N, k ≥ 3, there exists a unique35 hyperbolic regular polygon P2k with 2k edges and internal
angle π/2. This polygon satisfies condition (B) of the Jenkins-Serrin Theorem for consecutive
boundary values +∞,−∞. Thus, there exists a minimal graph Σu over the interior of this
polygon, with these boundary values. Since the angle at each vertex of P2k is π/2, we can rotate
Σu in H2 × R by angle 180o with respect to the vertical axes that pass through each vertex of
P2k (these rotations are isometries of H2). In this way we can extend Σu to a minimal graph
over the ‘black boxes of a chessboard’, a tessellation of the hyperbolic plane, in a similar way as
with the doubly periodic Scherk surface in R3 = R2 × R.

21 The Alexandrov Theorem: the moving plane method

In 1956, Alexandrov applied the maximum principle to surfaces of constant mean curvature and
gave one of the most famous characterizations of the sphere:

33A hyperbolic polygon is called ideal if its vertices lie on ∂∞H2.
34The internal angle of a regular polygon of 2k edges in R2 is π

(
1− 1

k

)
; this can be proved by elementary plane

geometry, or in a much simpler way using the Gauss-Bonnet formula.
35Up to congruences in H2.
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+∞

+∞

+∞
−∞

−∞−∞

Figure 50: Left: There is no hyperbolic square with internal angle π/2. Right: A Jenkins-
Serrin minimal graph over a regular hexagon in H2 with internal angle π/2, which produces by
reflection a minimal surface without boundary over the shadowed boxes of the corresponding
tessellation of H2.

Theorem 21.1 (Alexandrov) Let Σ ⊂ R3 be a connected, compact, embedded surface with
constant mean curvature. Then, Σ is a sphere.

This theorem is still valid for hypersurfaces of Rn, n ≥ 3. We now dispose of different proofs
from the original, which do not use the maximum principle but are based on integral geometry.
In fact, these alternative proofs made possible to generalize the mean curvature in the theorem
to any generalized mean curvature, meaning any homogeneous symmetric polynomial in the
principal curvatures of the hypersurface. However, the proof method employed by Alexandrov
has transcended its application to this situation, becoming a powerful and intuitive tool, valid
in other contexts to conclude the existence of symmetries of hypersurfaces whose local geometry
is related to some PDE maximum principle. This procedure, called the Alexandrov reflection
method, or the moving plane method, will be explained below in its simplest case.

21.1 Characterizations of the sphere

Throughout this section, Σ will denote a connected, compact embedded surface in R3, Ω the
(open) domain enclosed by Σ and N the Gauss map of Σ that points towards Ω, i.e., ∀p ∈ Σ
∃ε > 0 such that p+ tN(p) ∈ Ω whenever 0 < t < ε.
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Lemma 21.2 If all normal lines to Σ pass through a point q ∈ R3, then Σ is a sphere centered
at q.

Proof. Suppose there exists q ∈ R3 such that q ∈ p + ⟨N(p)⟩, ∀p ∈ Σ. Consider the function
λ : Σ → R defined by

p+ λ(p)N(p) = q, ∀p ∈ Σ. (143)

Since λ(p) = ∥p−q∥, we conclude that λ is smooth in Σ\{q}. Differentiating (143) at p ∈ Σ\{q}
in the direction of v ∈ TpΣ, we have [v + λ(p)dNp(v)] + dλp(v)N(p) = 0, hence dλp(v) = 0. As
v is arbitrary in TpΣ and Σ \ {q} is connected, λ must be constant in Σ \ {q} and thus, also in
Σ. Since Σ cannot reduce to {q} we have λ > 0, and the equality ∥p − q∥ ≡ λ ensures that Σ
is contained in a sphere S centered at q of radius λ, hence Σ is an open subset of S. As Σ is
compact, Σ must coincide with S. 2

Lemma 21.3 If Σ is symmetric with respect to every plane passing through a point q ∈ R3,
then Σ is a sphere centered at q.

Proof. After possibly a translation, we can assume that q = 0⃗ ∈ R3.
Take a point p ∈ Σ\{⃗0}. Let Hp be the set of planes that contains the straight line {λp | λ ∈ R}.
Let us see that every plane in Hp is orthogonal to TpΣ: Given a plane Π ∈ Hp, let S be the
symmetry with respect to Π. Since Π passes through 0⃗, Σ must be invariant by S. Differentiating,
we have S(TpΣ) = TpΣ, hence either TpΣ = Π or TpΣ ⊥ Π. The first equality cannot occur,
since Σ cannot be locally around p a graph over Π and be symmetric with respect to Π, unless
Σ ⊂ Π, which is impossible. Therefore TpΣ ⊥ Π. Varying Π in Hp, we have that every plane in
Hp is orthogonal to TpΣ and so, every plane in Hp contains N(p). This implies that the straight
line ⟨N(p)⟩ must be equal to {λp | λ ∈ R}. In other words, the normal line to Σ at p passes
through the origin. Since this is valid for every point in Σ \ {0}, Lemma 21.2 applies36 and we
conclude that Σ is a sphere. 2

Definition 21.4 The center of mass of Σ is the vector

c(Σ) =
1

A(Σ)

∫

Σ
p dA ∈ R3,

where A(Σ) =
∫
Σ dA is the area of Σ.

Lemma 21.5 Let ϕ : R3 → R3 be an isometry of R3. Then, the center of mass of ϕ(Σ) is
c(ϕ(Σ)) = ϕ(c(Σ)). In particular, if Σ is invariant by ϕ then its center of mass is a fixed point
of ϕ.

36Observe that Lemma 21.2 assumes that ALL normal lines to Σ pass through the same point, but the same
proof works if we replace ‘all’ by ‘all except for finitely many’.
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Proof. Using the definition of center of mass and the change of variables formula,

c(ϕ(Σ)) =
1

A(ϕ(Σ))

∫

ϕ(Σ)
q dA =

1

A(ϕ(Σ))

∫

Σ
ϕ(p)|Jac(ϕ)| dA,

where |Jac(ϕ)| is the absolute value of the Jacobian of ϕ, which equals 1 since ϕ is an isometry.
Writing ϕ(x) = Bx + b for some B ∈ O(3,R) and b ∈ R3 and using that ϕ preserves area, the
last displayed expression can be written as

1

A(Σ)

∫

Σ
ϕ(p) dA =

1

A(Σ)

∫

Σ
(Bp+ b) dA =

1

A(Σ)

∫

Σ
BpdA+ b

= B
1

A(Σ)

∫

Σ
p dA+ b = Bc(Σ) + b = ϕ(c(Σ)). 2

Lemma 21.6 If for every direction in R3 there is a plane orthogonal to that direction such that
Σ is symmetric with respect to that plane, then Σ is a sphere.

Proof. By Lemma 21.3, it suffices to prove that Σ is symmetric with respect to all planes passing
through some point in R3, which will be the center of mass c of Σ: Take an affine plane Π ⊂ R3

that passes through c. By hypothesis, there exists a plane Π′ parallel to Π such that Σ is
symmetric with respect to Π′. By Lemma 21.5, c is a fixed point of the reflection in Π′, hence
c ∈ Π′ and thus, Π = Π′. In particular, Σ is symmetric with respect to Π. 2

Remark 21.7 We could have avoided Lemmas 21.2 and 21.3 and the notion of center of mass,
with the following direct proof of Lemma 21.6: Given a direction a ∈ S2, take two planes Π1,Π2

containing the straight line ⟨a⟩ and making an irrational angle θ between them. By hypothesis,
there exist planes Π′

1,Π
′
2 parallel to Π1,Π2 respectively, that are planes of reflective symmetry

of Σ. Therefore, the composition ϕ of the reflections in Π′
1 and Π′

2 is a rotation in R3 of angle
2θ ∈ R \ Q. Thus, Σ is invariant under each of the rotations in the infinite cyclic group G
generated by ϕ. As Q is dense in R, we deduce that G is dense in the group of all rotations
about the straight line Π′

1 ∩Π′
2. Therefore, Σ is a surface of revolution with axis Π′

1 ∩Π′
2, which

is a straight line in the direction of a. If we move a in S2 we will obtain that Σ is a surface of
revolution with respect to a straight line in any prescribed direction, hence Σ is a sphere.

21.2 Producing reflective symmetries

In the section we will use the maximum principle for surfaces of constant mean curvature to
obtain symmetries of our surface Σ in the hypotheses of Theorem 21.1. Fix a direction a ∈ R3,
∥a∥ = 1. Given t ∈ R, set Πt = ta+ ⟨a⟩⊥ and let St be the symmetry with respect to Πt, which
is given by

St(x) = x− 2 (⟨x, a⟩ − t) a, ∀x ∈ R3.
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Consider the sets

Σ−
t = {p ∈ Σ | ⟨p, a⟩ < t}, Σ+

t = {p ∈ Σ | ⟨p, a⟩ > t}, Σ∗
t = St(Σ

−
t ).

Figure 51: Σ+
t (resp. Σ−

t ) is the portion of Σ at the side of Πt to which a (resp. −a) points. Σ∗
t

is the reflected image of Σ−
t by St and Ω is the shadowed region.

Since Σ is compact, the set {t ∈ R | Σ = Σ+
t } is non-empty and is bounded from above.

Thus, there exists
t0 := sup{t ∈ R | Σ = Σ+

t } ∈ R. (144)

After possibly a translation, we can assume t0 = 0.

Lemma 21.8 In the above situation, Σ ∩Π0 ̸= ∅ and ∀p ∈ Σ ∩Π0 we have N(p) = a.

Proof. Let h = ⟨p, a⟩ be the height function with respect to a. For each t < 0 we have h > t
in Σ, hence passing to the limit we get h ≥ 0 in Σ. If h > 0 in Σ, then by compactness of Σ
there exists t′ > 0 such that h > t′ in Σ, hence sup{t ∈ R | Σ = Σ+

t } ≥ t′ > 0, which is a
contradiction. Therefore, there exists p ∈ Σ such that h(p) = 0, so Σ ∩Π0 ̸= ∅.

Take p ∈ Σ ∩Π0. Using the notation above, h has a minimum at p, hence TpΣ is parallel to
Π0 or equivalently, N(p) = ±a. Since Σ is contained in the closed half-space {x ∈ R3 | h(x) ≥ 0},
this half-space will also contain the domain Ω bounded by Σ. As N(p) points towards Ω and a
points inwards this half-space, we must have N(p) = a. 2

Consider the set

A = {t > 0 | ⟨N, a⟩ > 0 in Σ−
t and Σ∗

s ⊂ Ω ∀s ∈ (0, t)}. (145)

Lemma 21.9 There exists ε > 0 such that (0, ε) ⊂ A and A is an interval.
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Proof. Clearly if A is non-empty, then it is an interval. Let us see that ∃ε1 > 0 such that
⟨N, a⟩ > 0 in Σ−

ε1 : otherwise, we can find a sequence {tn}n ↘ 0 such that for each n ∈ N there
exists pn ∈ Σ−

tn such that ⟨N(pn), a⟩ ≤ 0. Passing to a subsequence, {pn}n converges to a point
p∞ ∈ Σ ∩ Π0. Taking limits we have ⟨N(p∞), a⟩ ≤ 0, which contradicts Lemma 21.8. Thus,
∃ε1 > 0 such that ⟨N, a⟩ > 0 in Σ−

ε1 .
Next we check that for ε ∈ (0, ε1) sufficiently small, we have Σ∗

s ⊂ Ω whenever 0 < s < ε
(which will prove the lemma): arguing by contradiction, suppose that there exists a sequence
{sn}n ⊂ (0, ε1), sn ↘ 0, such that Σ∗

sn ̸⊂ Ω for all n. In particular, for every n ∈ N there exists
pn ∈ Σ−

sn such that p∗n /∈ Ω, where p∗n = Ssn(pn). Consider the segment

[pn, p
∗
n] = {(1− t)pn + tp∗n | 0 ≤ t ≤ 1}.

Since pn ∈ Σ−
sn and sn ∈ (0, ε1), we have ⟨N(pn), a⟩ > 0 and thus, starting at pn and moving

along [pn, p
∗
n] we find points of Ω arbitrarily close to pn. Since p∗n /∈ Ω, by connectedness we

deduce that the open segment

(pn, p
∗
n) = {(1− t)pn + tp∗n | 0 < t < 1}

must intersect ∂Ω = Σ, hence there exists xn ∈ (pn, p
∗
n) ∩ Σ. Passing to a subsequence, {pn}n

converges to a point p∞ ∈ Σ ∩Π0, hence both {p∗n}n and {xn}n will have the same limit p∞ as
n → ∞. By Lemma 21.8, N(p∞) = a. Hence Σ is locally around p∞ a graph over Π0, which
contradicts that pn, xn ∈ Σ have the same projection over Π0 and both converge to p∞. This
finishes the proof of the lemma. 2

A is bounded from above, because for s > inf{t ∈ R | Σ = Σ−
t } the containment Σ∗

s ⊂ Ω
cannot hold. Thus, there exists T := supA ∈ (0,∞).

Lemma 21.10 In the above situation, ⟨N, a⟩ > 0 in Σ−
T and Σ∗

T ⊂ Ω.

Proof. Given p ∈ Σ−
T , there exists t ∈ A such that ⟨p, a⟩ < t hence p ∈ Σ−

t , and by definition
of A, we have ⟨N(p), a⟩ > 0. For the second part of the lemma, take a point p ∈ Σ−

T and we will
see that ST (p) lies in Ω. Let {tn}n ⊂ A be a sequence with tn ↗ T . Since p ∈ Σ−

T and the tn
converge to T , we will have p ∈ Σ−

tn for n large (except for a finite number of integers, thus we
do not loss generality assuming that this occurs ∀n ∈ N). Since tn ∈ A, Stn(p) lies in Ω for each
n ∈ N. But Stn(p) → ST (p) as n→ ∞, hence ST (p) ∈ Ω. 2

From Lemma 21.10, it is clear that ⟨N, a⟩ ≥ 0 in Σ ∩ΠT .

Lemma 21.11 Suppose that ⟨N, a⟩ > 0 in Σ ∩ΠT . Then, Σ∗
T ∩ Σ+

T ̸= ∅.

Proof. Since ⟨N, a⟩ > 0 in the compact set Σ ∩ ΠT , there exists ε > 0 such that ⟨N, a⟩ > 0 in
Σ ∩ {T − ε < h < T + ε}. Since ⟨N, a⟩ > 0 in Σ−

T , we deduce that ⟨N, a⟩ > 0 in Σ−
T+ε.
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Take a sequence {tn}n ⊂ (T, T + ε) with tn ↘ T . In particular, tn /∈ A. Since ⟨N, a⟩ > 0 in
Σ−
tn , there exists t̃n ∈ (0, tn) such that St̃n(Σ

−
t̃n
) ̸⊂ Ω. In fact, t̃n ∈ [T, tn) (because T = supA

and by definition of A). Therefore, we can find a point pn ∈ Σ−
t̃n

such that p∗n = St̃n(pn) /∈ Ω.

Consider the segment [pn, p
∗
n]. If we start at pn and move along this segment, we will start

by finding points of Ω (because pn ∈ Σ and ⟨N(pn), a⟩ > 0). Since p∗n /∈ Ω, we conclude that
there exists xn ∈ (pn, p

∗
n) ∩ Σ. Passing to a subsequence, {pn}n converges to a point p∞ ∈ Σ

and limn p
∗
n = limn St̃n(pn) = ST (p∞). As pn ∈ Σ−

t̃n
, after passing to the limit we will have

p∞ ∈ Σ−
T ∪ (Σ ∩ΠT ). We now discuss two possibilities:

� p∞ ∈ Σ−
T . In this case, ST (p∞) belongs to Σ∗

T . If we check that ST (p∞) ∈ Σ+
T then

we will have ST (p∞) ∈ Σ∗
T ∩ Σ+

T , hence the lemma will hold. Since p∞ ∈ Σ−
T , we have

⟨ST (p∞), a⟩ > T . By Lemma 21.10, Σ∗
T ⊂ Ω and thus, ST (p∞) ∈ Ω. As ST (p∞) is the limit

of p∗n /∈ Ω, we deduce that ST (p∞) ∈ R3 \ Ω = R3\Ω. Therefore, ST (p∞) ∈ Ω\Ω = ∂Ω = Σ
and thus, ST (p∞) ∈ Σ+

T , which finishes this case.

� p∞ ∈ Σ ∩ΠT . In this case we have ST (p∞) = p∞, hence both pn and p∗n = Stn(pn) con-
verge to the same limit p∞. In particular, xn also converges to p∞. Since by hypothesis
⟨N(p∞), a⟩ > 0, Σ must be locally around p∞ a graph over ΠT , which contradicts that
pn, xn ∈ Σ have the same projection over ΠT but both points converge to p∞. Thus, this
second possibility cannot occur and the Lemma is proved. 2

Lemma 21.12 Σ∗
T ∩ Σ+

T ̸= ∅.

Proof. Arguing by contradiction, suppose that Σ∗
T ∩ Σ+

T = ∅. By Lemma 21.11, there exists
p ∈ Σ ∩ ΠT such that ⟨N(p), a⟩ = 0. Hence TpΣ is orthogonal to ΠT (we have identified TpΣ
with the affine tangent plane to Σ at p), and Σ, ΠT intersect orthogonally at p. Consider Σ−

T

and its reflected image Σ∗
T . Locally around p, both surfaces can be considered to be surfaces

with boundary. This boundary is shared by both surfaces, and consists of a regular curve γ
passing through p (regularity of γ follows from transversality of TpΣ and ΠT ). The Gauss map
N∗ of Σ∗

T is N∗ = S(N−), where S denotes the linear part of the reflection in ΠT and N− is
the Gauss map of Σ−

T (i.e., N− = N |Σ−
T
). Since TpΣ is orthogonal to ΠT , we have N(p) ∈ ΠT ,

hence S(N(p)) = N(p) and thus, N−(p) = N(p) = N∗(p). In particular, Tp(Σ
−
T ) = Tp(Σ

∗
T ). On

the other hand, the unit conormal vectors η−, η∗ pointing outwards Σ−
T and Σ∗

T along Σ ∩ ΠT
are clearly opposite and orthogonal to ΠT . In this situation we deduce that

� Tp(Σ
+
T ) = TpΣ = Tp(Σ

−
T ) = Tp(Σ

∗
T ),

� η+(p) = −η−(p) = η∗(p) = −a,
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Finally, since Σ∗
T ⊂ Ω we have that Σ∗

T lies locally at one side of Σ+
T around p, hence we can

apply the boundary maximum principle (observe that Σ∗
T ,Σ

+
T have the same constant mean

curvature), to conclude that Σ∗
T coincides with Σ+

T in a neighborhood of p. This contradicts our
hypothesis that Σ∗

T ∩ Σ+
T = ∅. 2

Lemma 21.13 If p ∈ Σ−
T satisfies p∗ = ST (p) ∈ Σ+

T , then there exists a neighborhood U of p in
Σ−
T such that U∗ = ST (U) ⊆ Σ+

T .

Proof. By Lemma 21.10, Σ∗
T ⊂ Ω. As p∗ ∈ Σ∗

T ∩ Σ+
T , we conclude that Σ∗

T and Σ+
T intersect

tangentially at p∗ and one surface lies at one side of the other one around this point. In particular,
N∗(p∗) = ±N(p∗), where N∗ = S(N) is the Gauss map of Σ∗

T and S is the linear part of the
reflection in ΠT .

Let us see that N(p∗) = N∗(p∗): Recall that N is the Gauss map of Σ pointing towards Ω.
If N(p∗) = −N∗(p∗), then after replacing the Gauss map in Σ∗

T by ν = −N∗, and with respect
to this common normal vector at p∗ we will have Σ∗

T ≥ Σ+
T . Comparing the second fundamental

forms of both surfaces we will conclude that the mean curvature ot p of Σ∗
T with respect to ν is

not less than that of Σ+
T respect to N , which means that −H ≥ H. But H is a positive constant,

which is a contradiction.
Therefore, N(p∗) = N∗(p∗) and we can apply the interior maximum principle to Σ∗

T ,Σ
+
T at

p (both surfaces have the same constant mean curvature with respect to the same unit normal
vector and one surface lies at one side of the other around p). This proves the lemma. 2

Proposition 21.14 In the above situation, Σ is symmetric with respect to ΠT .

Proof. By Lemma 21.12, there exists a point p0 ∈ Σ−
T such that p∗0 = ST (p0) ∈ Σ+

T . Let C the
component of Σ−

T that contains p0. Hence, p0 ∈ A := {p ∈ C | p∗ ∈ Σ+
T }. Furthermore, A is an

open subset of C (by Lemma 21.13). Since A is clearly closed in C and C is connected, we have
A = C hence C∗ = ST (C) ⊆ Σ+

T . In particular, C ∪ C∗ ⊂ Σ.
On the other hand, C is a surface with boundary (∂C ̸= ∅ because otherwise C = Σ hance

Σ+
T = ∅, which contradicts Lemma 21.12), C ⊂ {x ∈ R3 | ⟨x, a⟩ < T} and ∂C ⊂ ΠT . Thus, C∗ is

also a surface with boundary, C∗ ⊂ {x ∈ R3 | ⟨x, a⟩ > T} and ∂C∗ = ∂C. From here we conclude
that C ∪ C∗ ∪ ∂C is a topological surface, which is of class C∞ except (possibly) along ∂C.

Let us check that C ∪ C∗ ∪ ∂C is smooth along ∂C: given q ∈ ∂C ⊂ ΠT , choose a sequence
{qn}n ⊂ C such that qn → q as n → ∞. Then, N(qn) converges to N(q) and q∗n = ST (qn)
converges to q∗ = q. As q∗n ∈ C∗ ⊂ Σ, we have that N(q∗n) makes sense, which converges to
N(q∗) = N(q). But N(q∗n) = S(N(qn)) (as before, S denotes the linear part of ST ), and taking
limits, N(q) = S(N(q)). Therefore, N(q) ∈ ΠT and TqΣ is orthogonal to ΠT . This implies that
C and C∗ have the same tangent plane at q as surfaces with boundary. In particular, C∗,Σ+

T

have the same normal and conormal vectors at q, the same (constant) mean curvature and one
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surface lies at one side of the other around q (because Σ∗
T ⊂ Ω), hence C∗ and Σ+

T coincide in a
neighborhood of q by the boundary maximum principle, and C ∪ C∗ ∪ ∂C is smooth around q.

Finally, as C ∪ C∗ ∪ ∂C is a smooth surface contained in Σ, C ∪ C∗ ∪ ∂C must be an open
subset of Σ. Since C ∪ C∗ ∪ ∂C is compact and Σ is connected, it must be C ∪ C∗ ∪ ∂C = Σ and
thus, Σ is symmetric with respect to ΠT . 2

Proof of Theorem 21.1. Given any vector a ∈ R3 with ∥a∥ = 1, Proposition 21.14 ensures
that there exists a plane orthogonal to a such that Σ is symmetric with respect to this plane.
By Lemma 21.6, Σ must be a sphere.

21.3 The moving plane method for compact CMC surfaces with planar bound-
ary

Suppose that Σ ⊂ {(x1, x2, x3) ∈ R3 | x3 ≥ 0} is a connected, compact, embedded, non-flat
surface with non-empty boundary ∂Σ ⊂ {x3 = 0} and constant mean curvature H. We will
analyze how to modify the Alexandrov reflection method in this setting.

Let us start by taking a = (0, 0,−1) as the vector that defines the planes Πt with respect to
which we will reflect the surface, given by

Πt = {(x1, x2,−t) | (x1, x2) ∈ R2}, ∀t ≤ 0.

Given t < 0, Σ−
t is the portion of Σ strictly above height |t|, Σ+

t is the portion of Σ between
heights |t| and 0 (Σ+

t includes ∂Σ) and Σ∗
t is the reflected image of Σ−

t with respect to Πt, which
lies below height |t|. We will take as inner domain the open set Ω of {x3 > 0} enclosed by
Σ ∪Π0.

Figure 52: The case with boundary contained in Π0.

Now the supremum t0 = sup{t ∈ R | Σ = Σ+
t } is strictly negative. Lemma 21.8 remains

valid, and ensures that Σ ∩Πt0 ̸= ∅ and N(p) = (0, 0,−1) ∀p ∈ Σ ∩Πt0 . Define

A = {t > t0 | ⟨N, (0, 0,−1)⟩ > 0 in Σ−
t and Σ∗

s ⊂ Ω ∀s ∈ (t0, t)},
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Lemma 21.9 is also valid in this context and gives that there exists ε > 0 such that (t0, t0+ε) ⊂ A.
As in the previous case, A is bounded from above, so it makes sense to define T = supA (and T
is clearly negative). Lemmas 21.10, 21.11 and 21.12 (and their proofs) remain valid in our new
setting, since the boundary of Σ does not appear in their arguments. However, in Lemma 21.13
we have a new situation: we start with a point p ∈ Σ−

T such that p∗ = ST (p) ∈ Σ+
T . In this case,

either p∗ is an interior point to Σ (in this case the previous proof remains valid) or p∗ ∈ Σ∗
T ∩∂Σ.

In this last case, we cannot apply the maximum principle since Σ∗
T and Σ+

T are not necessarily
tangent at p∗. A way of avoiding this is that the distance between the reflection plane ΠT and
the plane Π0 that contains ∂Σ be strictly greater than half of the height of Σ over Π0, i.e.,
|T | < |t0|/2 (both T and t0 are negative). In these conditions, we would conclude that Σ is
symmetric with respect to ΠT following the same arguments of Proposition 21.14. But this
would lead to ∂Σ = ∅, which is impossible. Therefore, we must have |T | ≥ |t0|/2. On the other
hand, it is clear that |T | cannot be greater than |t0|/2 (because in that case Σ∗

T would have
points below the plane that contains ∂Σ, in contradiction with Σ∗

T ⊂ Ω). Thus, we necessarily
have |T | = |t0|/2.

Corollary 21.15 Let Σ ⊂ {(x1, x2, x3) ∈ R3 | x3 ≥ 0} be a connected, compact, embedded,
non-flat surface with non-empty boundary ∂Σ ⊂ {x3 = 0} and constant mean curvature H.
Define h = maxΣ x3 > 0. Then, Σ ∩ {x3 > h/2} is a graph over its projection to {x3 = 0}.

Proof. By the arguments above, we have |T | = |t0|/2 = h/2. Suppose, arguing by contradiction,
that Σ ∩ {x3 > h/2} is not a graph over its projection to Π0 = {x3 = 0}. Thus, there exist
p, q ∈ Σ−

T , p ̸= q, with the same vertical projection over Π0. We do not loss generality assuming
that x3(p) < x3(q). Take the horizontal plane that passes by the midpoint of the vertical segment
[p, q], which with the notation of the moving plane method is Πt for t = −1

2(x3(p) + x3(q)). In
particular, Πt lies strictly above ΠT , hence Σ∗

t ⊂ Ω (see the definition of A). This is impossible,
since q∗ = p ∈ Σ ⊂ ∂Ω. 2

Figure 53: Left: Σ ∩ {x3 > h/2} is a vertical graph. Right: Σ = S2(1) ∩ {x3 ≥ −1 + 1
n}.
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Remark 21.16 The bound h/2 of Corollary 21.15 is sharp: consider the surface Σn = S2(⃗0, 1)∩
{x3 ≥ −1+ 1

n}, which satisfies the hypotheses of the corollary. The bound h/2 for Σn is 1− 1
2n ,

which converges to the best possible bound for the sphere.

21.4 The moving plane method for non-compact CMC surfaces without bound-
ary

Suppose that Σ ⊂ R3 is a connected, non-compact, embedded surface with constant mean
curvatureH > 0. What can we deduce about Σ by means of the Alexandrov reflection technique?

The basic examples in the above situation are the cylinder of radius 1
2H and the Delaunay

surfaces. These last ones form a 1-parameter family of singly periodic surfaces of revolution:
Given H > 0, we can see the parameter of the family of Delaunay surfaces with constant mean
curvature H as the neck size d of the generatrix (i.e., the minimum distance from the generatrix
curve to the revolution axis). This neck size decreases from d = 1

2H (cylinder), passing embedded
surfaces called unduloids, until an infinite chain of tangent spheres of radius 1/H, which has
d = 0. In fact, the family can be extended beyond this configuration, producing non-embedded
singly periodic surfaces of revolution and constant mean curvature H called nodoids.

Figure 54: Top: unduloid. Bottom: nodoid.

The family of Delaunay surfaces with a fixed value H for the mean curvature can be studied
analytically by writing the first-order ODEs system that a curve in a half-plane has to satisfy in
order to generate by revolution around the boundary of the half-plane a surface with constant
mean curvature H. It is possible to find a first integral of this system, which can be seen as the
parameter for the family (the neck size is a function of this parameter). The classical uniqueness
of solutions of an ODE system in terms of initial conditions gives that the unique surfaces of
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revolution with constant mean curvature H > 0 in R3 are cylinders, Delaunay surfaces and
spheres.

Theorem 21.17 (Korevaar, Kusner, Meeks, Solomon) The unique non-compact, properly
embedded annuli with constant mean curvature H > 0 in R3 are cylinders and unduloids.

We will not give the complete proof, because it exceeds the level of difficulty of these notes.
Instead, we will explain a part of the proof that is based on the moving plane method.

Proposition 21.18 If a surface Σ in the hypothesis of Theorem 21.17 is contained in a solid
cylinder of R3, then the theorem holds.

Proof. As Σ is properly embedded in R3, then Σ separates R3 into two connected components.
Let Ω be the component of R3 \ Σ towards which the mean curvature vector of Σ points. Let
C be a solid cylinder of R3 such that Σ ⊂ Int(C) (thus Ω ⊂ Int(C)). Clearly we can assume
that C is vertical. To prove the proposition, it suffices to demonstrate that Σ is of revolution
around a straight line contained in C (hence vertical). Using the argument in Remark 21.7, it
suffices to prove that given a vertical plane P , there exists a plane P ′ parallel to P such that Σ
is symmetric by the reflection in P ′. So let us fix a vertical plane P and we will analyze if the
moving plane method can be applied to Σ with respect to parallel planes to P .

Note that the first contact point between Σ and Pt0 (this t0 is defined as in (144)) could
occur in infinity, which would force the method to stop working. To solve this problem, take a
horizontal plane Q that intersects Σ transversally in a compact set (Σ is properly embedded).
Q divides C into two halves, C+ and C−, both open sets. Let Σ+ be the portion of Σ in the
closed half-space above Q (thus Σ+ contains its boundary inside Q). We can assume that P
does not intersect the cylinder C. Let us call P (ε) to the plane obtained by rotating P an angle
ε > 0 around the straight line P ∩Q as in Figure 55 left. In particular, P (ε) does not intersect
Σ+.

Start applying the Alexandrov’s reflection technique to the surface with boundary Σ+ with
respect to parallel planes to P (ε); we will denote these planes by P (ε)t, t > 0 (the sign for t is
taken so that P (ε)t intersects C

+ ∀t > 0). Given t > 0, we will call

• P (ε)+t to the open half-space with boundary P (ε)t, which intersects C+ in an unbounded set,
and P (ε)−t to the opposite open half-space.

• (Σ+)−t = Σ+ ∩ P (ε)−t , and (Σ+)+t = Σ+ ∩ P (ε)+t .

• (Σ+)∗t to the reflected image of (Σ+)−t with respect to P (ε)t.

If t > 0 satisfies P (ε)t ∩Σ+ ̸= ∅, then P (ε)t ∩Σ+ is compact (because P (ε)t ∩C is compact

and Σ is proper), and (Σ+)−t = (Σ+)−t ∪ ∂(Σ+)−t is also compact.
Let t0 > 0 be the first time in which P (ε)t0 intersects Σ+, which exists by the arguments in

the last paragraph. We have two possibilities for t0:
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Σ+

C

Q

P (ε) P

ε

Σ+

C

Q

P (ε)

P
ε

P (ε)t

(Σ+)−t
(Σ+)∗t

Figure 55: We apply the Alexandrov’s reflection technique with respect to the tilted plane P (ε),
reflecting the portion of Σ+ that P (ε)t leaves behind when moving to the right.

(P1) P (ε)t0 intersects Σ+ only at interior points to Σ+. In this case, the normal vector N to Σ
for which the mean curvature is H > 0, points towards P (ε)+ at every point of P (ε)t0∩Σ+.

(P2) P (ε)t0 intersects Σ+ in at least one point of ∂Σ+ ⊂ Q.

Let A be the set of real values t > t0 such that (Σ+)∗t ⊂ Ω and the angle between (Σ+)∗t and
P (ε)t is <

π
2 along ∂(Σ+)∗t (this is the analogous definition to (145) for this case with boundary).

If (P1) holds, then for all t > t0 close enough to t0, we have t ∈ A (argue as in the case
without boundary). If (P2) holds the same conclusion is true, because we can assume that ε > 0
was taken small enough so that the angle between (Σ+)∗t0 and P (ε)t0 is <

π
2 along ∂(Σ+)∗t0 (recall

that Q is transversal to Σ and Q ∩ Σ is compact).
On the other hand, A is bounded from above, because (Σ+)∗t cannot be contained in C if

t≫ 1 (this follows from the fact that the distance from Q∩C to P (ε)t tends to +∞ as t→ +∞).
Therefore, there exists T := supA ∈ (t0,∞). If (Σ+)∗T (first accident).
Ii (Σ+)∗T and Σ+ are tangent at an interior point to both surfaces, we contradict the interior

maximum principle (note that (Σ+)∗T cannot be contained in Σ+ because P (ε)T cannot be a
symmetry plane of Σ, as Σ ⊂ C and ε > 0).

If the angle between (Σ+)∗T and P (ε)T equals π/2 at some point of ∂(Σ+)∗T , then we contradict
the boundary maximum principle.

Therefore, the first accident must occur at a point q = q(ε) ∈ (∂Σ+)∗T ∩ Σ+, as in the next
figure:

Now move ε > 0 towards zero: observe that if ε′ ∈ (0, ε), then x3(q(ε
′)) < x3(q(ε)). This

implies that taking εn ↘ 0, we obtain points qn = q(εn) ∈ (∂Σ+)∗,εnT (n)∩Σ+ where a first accident
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C

Q

P (ε)

P
ε

P (ε)T

(Σ+)−T
(Σ+)∗T

q

Figure 56: The first accident occurs at q, where the reflected boundary of (Σ+)−T touches (Σ+)+T
by first time.

occurs when reflecting Σ+ with respect to planes parallel to P (εn). This first accident points qn
converge as n→ ∞ (after passing to a subsequence) to a point q∞ ∈ ∂Σ+, and the values T (n)
also converge to some T (∞) > 0.

As (Σ+)∗,εnT (n) ⊂ Ω for each n ∈ N, taking limits we have (Σ+)∗,ε=0
T (∞) ⊂ Ω. But (Σ+)∗,ε=0

T (∞) is the

reflection of Σ+ with respect to a plane parallel to P (at distance T (∞) from P ).
The above arguments show that if we apply the Alexandrov’s reflection technique to Σ+

with respect to planes parallel to P , then the first accident occurs when reflecting with respect
to PT (∞), and we find a point q(∞) ∈ ∂Σ+ such that (Σ+)∗,ε=0

T (∞) ⊂ Ω, see Figure 57.

We now apply the same reasoning to Σ− with tilted planes P (ε) of the type explained in
Figure 58.

Reasoning analogously, we obtain a limit of first accident points, that gives a point q′(∞) ∈
∂Σ− such that (Σ−)∗,ε=0

T ′(∞) ⊂ Ω. Clearly T (∞) = T ′(∞) and q(∞) = q′(∞).
Finally, we deduce that if we apply the moving plane method to the whole surface Σ with

respect to planes parallel to P , then the primer accident occurs when reflecting with respect to
PT (∞) where we find the above point q(∞), which is now interior to Σ and satisfies Σ∗,ε=0

T (∞) ⊂ Ω.

Since Σ∗,ε=0
T (∞) is tangent to Σ and lies at one side of Σ, we deduce that Σ∗,ε=0

T (∞) ⊂ Σ by the interior
maximum principle. Therefore, PT (∞) is a symmetry plane of Σ and the proof is complete. 2

21.5 The moving plane method in H2 × R

The hyperbolic plane H2 is a homogeneous manifold, i.e., given p, q ∈ H2 there exists ϕ ∈ Iso(H2)
such that ϕ(p) = q. Therefore, H2×R (with the metric product) is also a homogeneous manifold.
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C

Q

P

P (ε)T (∞)

(Σ+)∗,ε=0
T (∞)

q(∞)

(Σ+)−,ε=0
T (∞)

Figure 57: When the reflection plane P (εn)T (n) tends to vertical, the first accident point con-
verges to a point q(∞) ∈ ∂Σ+.

Using the Poincaré disk model for H2, the hyperbolic metric is conformal to the usual inner
product, with conformal factor depending only on the distance to the origin 0⃗ in the disk. Thus,
Euclidean rotations around the origin are isometries of the hyperbolic metric, and Euclidean
rotations of H2×R around the axis {⃗0}×R are isometries of H2×R that fix that axis pointwise.
Since H2 is homogeneous, for each point p ∈ H2, the subgroup of Iso(H2) of those isometries
that fix p is isomorphic to S1. Hence, the subgroup of Iso(H2 ×R) given by the isometries that
fix {p} × R pointwise is also isomorphic to S1.

Take a hyperbolic geodesic γ ⊂ H2 passing through 0⃗ (γ is an Euclidean diameter of the
Poincaré disk). Then, there exists an isometry Sγ of H2 (a Möbius transformation of the disk)
that fixes γ pointwise. We will call Sγ the reflection with respect to γ (Figure 59 left).

Taking products with the real line, we have that γ × R is totally geodesic topological plane
in H2 × R and Sγ × 1R is an isometry of H2 × R that has γ × R as fixed point set. We will call
Sγ × 1R the reflection with respect to γ × R.

We can apply in H2 × R the Alexandrov’s reflection technique as follows. Take a geodesic
γ ⊂ H2, which we parameterize by its arclength s. For each s ∈ R, let Γs be the geodesic of
H2 that intersects γ orthogonally at γ(s). Let Rs : H2 × R → H2 × R be the reflection with
respect to Γs × R. The 1-parametric family {Rs | s ∈ R} can be used to perform the moving
plane method. Note that we can do this for any horizontal ‘direction’, or more precisely, for any
horizontal geodesic γ×{t0} of H2 ×R. With this idea mind, one can prove the following result:

Theorem 21.19 Let Σ ⊂ H2×R be a connected, compact embedded surface with constant mean
curvature. Then, Σ is a rotationally symmetric sphere.
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Figure 58: We repeat the process for the bottom part of Σ.

γ
qp

Sγ(p) Sγ(q)

γ

p

Γs Γs′

γ(s)

Rs(p)

Figure 59: Left: the reflection Sγ with respect to a geodesic γ. Right: Rs is the reflection with
with respect to Γs, the geodesic orthogonal to γ that passes through γ(s).

Unlike what happens in R3, spheres of mean curvature constant H in H2×R do not exist for
all positive values of H, but only for H > 1/2. This is a consequence of the maximum principle,
as we will see below. To do this, we will first construct a foliation of H2 × R by surfaces of
constant mean curvature 1/2.

In the half-plane model {(x, y) ∈ R2 | y > 0} of H2 with the metric g = 1
y2
g0, the curve

α(s) = (s, 1) is parameterized by arclength and ∇a′α
′ = (0, 1), which is also unitary (∇ denotes

the Levi-Civita connection of g). This tells us that the absolute geodesic curvature of α equals 1,
and the geodesic curvature vector is κ⃗g = (0, 1). The trace of α is a horizontal straight line at
Euclidean height 1. Going to the Poincaré disk model {|z| < 1}, α is a horocycle, i.e., a circle
contained in {|z| ≤ 1} that touches tangentially {|z| = 1} at a single point. All horocycles in H2

are congruent, since the family of Euclidean homotheties {ψλ(x, y) = (λx, λy)}λ>0 in the half-
plane model map horizontal straight lines into horizontal straight lines. We can also change the
tangency point in ∂∞H2 of the horocycle in the Poincaré disk model by considering a Euclidean
rotation around 0⃗.

Given a horocycle α ⊂ (R2)+ ≡ H2, the topological plane α × R ⊂ H2 × R is a surface of
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α α

γ
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Figure 60: The horocycle α has absolute geodesic curvature 1.

constant mean curvature H = 1/2 called horocylinder, and the image of α× R be the isometry
ϕλ := ψλ × 1R of H2 × R produces a surface congruent to α × R and disjoint from this last
surface, for each λ > 0. Therefore, F = {ϕλ(α× R) | λ > 0} is a foliation a H2 × R by surfaces
of constant mean curvature 1/2.

Once we have the foliation F , we can already prove that there are no spheres of constant
mean curvature H ∈ (0, 1/2] in H2 × R. In fact, we will prove something stronger:

Proposition 21.20 There are no compact immersed surfaces without boundary in H2×R with
constant mean curvature H ∈ [0, 1/2].

Proof. Suppose that Σ ⊂ H2×R is a compact immersed surface without boundary with constant
mean curvature H ≥ 0. H cannot be zero, since otherwise the third component of the immersion
of Σ in H2 × R would be a harmonic function x3 : Σ → R (use Lemma 4.2 just on the third
coordinate function). Since Σ is compact, x3 would be constant by the maximum principle
for harmonic functions. This implies that Σ is contained in H2 × {t0} for some t0 ∈ R, which
contradicts that Σ is compact without boundary. Thus, H > 0.

Now consider the foliation F = {ϕλ(α × R) | λ > 0} constructed above. Observe that
given λ > 0, ϕλ(α×R) separates H2 ×R into two components (two ‘open half-spaces’), namely
(H2 × R) \ ϕλ(α× R) = Ωλ∪̇[(H2 × R) \ Ωλ] where

Ωλ :=
⋃

λ′>λ

ϕλ′(α× R),

and that the mean curvature vector of ϕλ(α1×R) points towards Ωλ. Since Σ is compact, there
exists λ0 > 0 such that Σ ⊂ Ωλ0 . Consider the set A = {λ > λ0 | Σ ⊂ Ωλ}, which is non-empty
because Σ is compact. As {ϕλ(α × R) | λ > λ0} is a foliation of Ωλ0 and Σ is compact, then
A is of the form A = (λ0,Λ) for some Λ > λ0, and the surfaces Σ, ϕΛ(α× R) have a tangential
contact point p where Σ lies above ϕΛ(α×R) (we orient both surfaces by their mean curvature
vectors at p, which point to the same direction). By comparison of the second fundamental
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forms of both surfaces at p we conclude that the mean curvature of Σ is strictly greater than
the one of ϕΛ(α× R), i.e., H > 1

2 . 2

As for the surfaces of revolution with constant mean curvature in H2×R, let us first analyze
vertical cylinders. In the Poincaré disk model for H2, every circle c contained in the disk enclosed
by a horocycle has constant geodesic curvature κg = κ ∈ (1,∞) (in absolute value). The cylinder
c×R ⊂ H2 ×R has constant mean curvature H = κ

2 ∈ (12 ,∞). Given H > 1/2, if we study the
system of first-order ODEs that a curve in a vertical half-plane of H2 ×R must satisfy in order
to generate by revolution around the boundary of the half-plane a surface of constant mean
curvature H, we will find a behavior similar to that of the same problem in R3 = R2 × R: it is
possible to find a first integral of the system, which can be seen as the parameter of a 1-parameter
family of revolution surfaces with constant mean curvature H in H2 × R. These ‘Delaunay
type’ surfaces go from the vertical cylinder with that value of mean curvature, passing through
singly periodic embedded surfaces (unduloids) until arriving to an infinite chain of rotationally
symmetric spheres that intersect tangentially at an infinite sequence of equally spaced points in
the rotation axis. This 1-parameter family of surfaces can be extended analytically beyond the
chain of spheres to non-embedded singly periodic surfaces revolution with constant curvature
H (nodoids). Again the uniqueness of solutions of this ODE system shows that these are the
unique surfaces of revolution with constant mean curvature H > 1/2 in H2 × R. (Figure 61).

H2 × {t0}

Figure 61: Chain of spheres with constant mean curvature in H2 × R, and an unduloid.

A natural conjecture in this line is the following version of Proposition 21.18 in H2 × R:

Conjecture 21.21 If Σ ⊂ H2×R is a connected, properly embedded surface with constant mean
curvature H > 1

2 and Σ lies inside a solid vertical cylinder in H2 × R, then Σ is a surface of
revolution (hence a sphere or unduloid).

Mazet [12] proved Conjecture 21.21 imposing additionally that Σ has finite topology. We can
prove a weaker version of Mazet’s result with elementary arguments:
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Theorem 21.22 Let Σ ⊂ H2 × R be a non-compact, properly embedded annulus with constant
mean curvature H > 0. If Σ is invariant by a vertical translation T (p, t) = (p, t+ h) of H2 × R
for some h > 0, then Σ is either a vertical cylinder or an unduloid.

Proof. Since T is an isometry of H2 × R that generates a cyclic group ⟨T ⟩ which acts properly
and discontinuously on H2×R, the quotient set (H2×R)/⟨T ⟩ is a three-dimensional Riemannian
manifold isometric to H2×S1. The invariance of Σ under T allows us to project Σ to the quotient,
thereby producing a compact surface Σ/⟨T ⟩ ⊂ (H2 × R)/⟨T ⟩ with constant mean curvature H.

The vertical ‘planes’ γ × R with γ being a geodesic of H2 also project to totally geodesic
surfaces in (H2×R)/⟨T ⟩ (which are topological annuli, hence we will call them ‘vertical annuli’),
and there exist reflective symmetries of (H2 ×R)/⟨T ⟩ with respect to such vertical annuli, each
of which is produced by projecting to (H2 ×R)/⟨T ⟩ the corresponding reflection of H2 ×R with
respect to γ × R. Therefore, we can apply the Alexandrov reflection technique to Σ/⟨T ⟩ in
(H2 × R)/⟨T ⟩. Since Σ/⟨T ⟩ is compact, the moving plane method produces for each geodesic
γ ⊂ H2, a vertical annulus in (H2 × R)/⟨T ⟩ parallel to γ × S1 which is of reflective symmetry
for Σ/⟨T ⟩. Lifting this reflective vertical annulus to H2 × R we get a vertical plane parallel to
γ × R, which is of reflective symmetry for Σ. Since γ is any geodesic in H2, the argument in
Remark 21.7 leads us to conclude that Σ is a surface of revolution, which finishes the proof. 2

The last proof opens a research line:

What can we say about the theory of minimal or CMC surfaces in H2 × S1?

As any surface of revolution with constant mean curvature is invariant by a vertical translation,
we can view the surfaces of ‘Delaunay type” in H2 × S1, thus producing embedded spheres or
tori with constant mean curvature H > 1

2 .
H2 × R admits other interesting quotients besides H2 × S1. The role of vertical translation

can be played by a ‘horizontal translation’. There are two types of translations in H2 (isometries
of H2 without fixed points): the hyperbolic translations, which are translations along a geodesic
γ ⊂ H2, and the parabolic translations, which are translations along a horocycle. Next we will
see how to generate a properly embedded minimal surface in H2 × S1 invariant under cyclic
group of hyperbolic translations.

After Exercise 20.1 we saw how to generate a singly periodic Scherk surface. We will do
now something similar in H2 ×R. Take a geodesic γ ⊂ H2, which we normalize as the diameter
of the Poincaré disk. Let us consider all hyperbolic translations ϕh along γ, where h ∈ R
denotes the hyperbolic distance along γ (i.e., if γ = g(s) is parameterized by its arclength,
then ϕh(g(s)) = γ(s + h) ∀s, h ∈ R). Let Γ = Γ(t) be the geodesic parameterized by arclength
orthogonal to γ such that Γ(0) = γ(0) = 0⃗ ∈ {|z| < 1} ≡ H2. Given t ∈ R, the orbit of Γ(t) by
{ϕh}h∈R parameterizes the equidistant curve from γ at hyperbolic distance |t| passing through
Γ(t), which we will call γt. The image of Γ by ϕh is a geodesic orthogonal to γ, which intersects
γ at the point γ(h).
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Given h, t > 0, consider the polygon C of H2 with vertices γ(−h), γ(h), ϕh(Γ(t)), ϕ−h(Γ(t)),
that has three consecutive geodesic sides, and whose fourth side is an equidistant curve to γt
joining the vertices ϕh(Γ(t)), ϕ−h(Γ(t)) (see Figure 62 left).

γ

Ωh,t
Γ

γt

Γ(t)
γ(h)

γ(−h)

φh(Γ(t))

φ−h(Γ(t))

0

R

0

0Ωh,t

Figure 62: Left: the domain Ωh,t. Right: the boundary data.

Note that the polygon C is convex, because the mean curvature vector of γt points to-
wards γ. C is the boundary of an open convex quadrilateral Ωh,t ⊂ H2. Consider the Dirichlet
problem (142) over Ωh,t with boundary conditions 0, 0, 0, R (here R > 0 is previously chosen),
see Figure 62 right.

The version in H2 × R of Radó’s del Theorem implies that there exists a unique minimal
surface bounded by the Jordan curve in H2 × R given by the above boundary values, and this
surface is the vertical graph of a function uh,t,R : Ωh,t → R. We analyze the existence of the
limit lim

t→∞
uh,t,R. To do that we will need barriers above the graph of uh,t,R, independently of t.

In the half-plane model {(x, y) ∈ R2 | y > 0}, the function37

v(x, y) = log

(
y +

√
x2 + y2

x

)

defined in {(x, y) ∈ R2 | x > 0, y > 0}, produces a minimal graph with boundary values 0 over
{y = 0} and +∞ over {x = 0, y > 0}. This minimal graph can be passed to the Poincaré disk
model of H2, producing a minimal graph over either of the two disks bounded by an arbitrary
geodesic α and ∂∞H2. If we now take α = γ in the above construction, the corresponding
function v defined over the disk D in H2 whose boundary is γ and that contains Ωh,t (D is the
shaded region in Figure 63 right) satisfies:

v|Ωh,t
> uh,t,R,

37Discovered independently by Abresch and Sa Earp.
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γ

D

Figure 63: The barrier function v.

by the maximum principle applied to the graphs of both functions. This tells us that the graph
of v|Ωh,t

is a barrier from above for the graph of uh,t,R, independently of t. Thus, there exists

uh,R := lim
t→∞

uh,t,R,

defined over the infinite half-strip Ωh := ∪t>0Ωh,t. uh,R produces a minimal graph over Ωh with
boundary values 0, R, 0 (see Figure 64 left).

Ωh

γ

γ(h)

γ(−h)

0

R

0

Ωh

γ

γ(h)

γ(−h)

0

+∞

0
0

−∞

Figure 64: Left: Both the minimal graph uh,R and its limit uh,∞ as R → +∞ are defined over
the infinite half-strip Ωh of hyperbolic width 2h. After symmetrization of the graph Gr(uh,∞)
with respect to its boundary, we construct a singly periodic surface.

We now take the limit uh,∞ := lim
R→∞

uh,R, which exists by the same reason as before (use the

same barrier v, now restricted to Ωh). La function uh,∞ is defined over the same infinite half-
strip Ωh, and produces a minimal graph over Ωh with boundary values 0,+∞, 0 (see Figure 64
left). After rotation by angle 180o of the graph of uh,∞ with respect to each geodesic segment
of its boundary, we will find a properly embedded, singly periodic minimal surface Σ ⊂ H2 × R
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without boundary, which is invariant by the hyperbolic translation ϕ2h. This surface Σ is the
analogous in H2 × R of the classical singly periodic Scherk minimal surface in R3.

To finish, we will construct a properly embedded, doubly periodic surface in H2 × R with
positive constant mean curvature. Consider again the geodesic γ = γ(s) defined above (nor-
malized as a diameter of the disk {|z| < 1}). Given t > 0, let γt be an equidistant curve at
hyperbolic distance t from γ. Since γt has constant geodesic curvature κ(t), the topological

plane Σt := γt × R has constant mean curvature H(t) = κ(t)
2 in H2 × R, with H(t) ∈ [0, 1/2)

provided that we orient Σt with the unit normal vector that points towards Σ0 (Figure 65).

γ

Γ

γt

Γ(t)

γ(h)

γ(0)

φh(Γ(t))

H2 × {t}

Σt

p

ψh(p, t) = (φh(p), t)

Figure 65: The topological plane Σt has constant mean curvature.

Take a hyperbolic translation ϕh along γ. ϕh leaves γt invariant for all t, since ϕh is an
isometry of H2 and γt an equidistant curve to γ. Thus, the hyperbolic translation ψh(p, t) =
(ϕh(p), t) is an isometry of H2×R that leaves Σt invariant. Since the cyclic group ⟨ψh⟩ generated
by ψh acts properly and discontinuously on H2 × R, we deduce that Σt/⟨ψh⟩ is a properly
embedded surface, topologically a cylinder, with constant mean curvature in (H2 × R)/⟨ψh⟩.
If we choose a vertical translation Ta(p, t) = (p, t + a) with a > 0, then Ta commutes with
ψh and the group generated by ψh, Ta is isomorphic to Z ⊕ Z. This group acts properly and
discontinuously on H2 × R by isometries, hence the quotient manifold

M3 =M3(h, a) := (H2 × R)/⟨ψh, Ta⟩

is a homogeneous manifold, diffeomorphic to the cartesian product of a two-dimensional torus
times and the real line (but the quotient metric is not a product metric). As T1(Σt) = Σt, we
deduce that

T(t) = T(t, h, a) := Σt/⟨ψh, Ta⟩ ⊂M3(h, a)

is a properly embedded torus in M3(h, a) with constant mean curvature H(t). In other words,
Σt can be viewed as a doubly periodic, properly embedded surface in H2×R with constant mean
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curvature. Furthermore,
F := {T(t) | t ∈ R}

is a foliation of M3(h, a) by tori with constant mean curvature H(t) ∈ (−1/2, 1/2) (note that
the surfaces Σt with t ≥ 0 are oriented as before, while the surfaces Σt with t < 0 are oriented
with the opposite normal vector, not the one pointing towards Σ0). This produces an analytic
choice of the unit normal vector to the foliation F , and the mean curvature value H(t) of the
leaves parameterizes transversally the foliation in the interval (−1/2, 1/2). Furthermore, the
torus T(0) is totally geodesic in M3.
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des formules intégrales indefinies. Miscellanea Taurinensia 2 (1760-1), 173-95; Oeuvres de
Lagrange. Vol. 1, Gauthiers-Villars, Paris, 1867.

[12] L. Mazet, Cylindrically bounded constant mean curvature surfaces in H2×R. Trans. Amer.
Math. Soc. 367 (2015), 5329–5354.

[13] F. Morgan, Geometric Measure Theory. A Beginner’s Guide, Fourth Edition Else-
vier/Academic Press 1 (2009).

[14] J. C. C. Nitsche, Lectures on Minimal Surfaces. Cambridge University Press 1 (1989).

[15] R. Osserman, A survey of Minimal Surfaces. Vol. 1, Cambridge Univ. Press, New York
(1989).

[16] A. V. Pogorelov. On the stability of minimal surfaces. Soviet Math. Dokl., 24:274–276,
1981.
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