Trabajos por equipos: Espacios Vectoriales Métricos Euclídeos.

1. Diagonalizar cada una de las siguientes formas cuadráticas:

a)
$$F(x) = x^2 + y^2 + z^2 - (xz + xy + yz)$$
.

b)
$$F(x) = x^2 + y^2 + z^2 - 4(xz + xy + yz)$$
.

c)
$$F(x) = 8x^2 + 6y^2 + 3z^2 + 4xy + 8xz + 4yz$$
.

d)
$$F(x) = x^2 + 2y^2 + z^2 + 2xy + xz$$
.

e)
$$F(x) = x^2 + 2xy + 3y^2 + 4xz + 6yz + 5z^2$$
.

f)
$$F(x) = 3x^2 + 4y^2 + 5z^2 + 4xy - 4yz$$
.

g)
$$F(x) = 2x^2 + 5y^2 + 5z^2 + 4xy - 4yz - 8zx$$
.

h)
$$F(x) = x^2 + y^2 + 2z(x\cos\alpha + y\sin\alpha)$$
.

2. Cada una de las siguientes matrices $A \in \mathcal{M}_n(\mathbb{R})$ define una forma cuadrática F_A sobre \mathbb{R}^n mediante $F_A(x) = x^t \cdot A \cdot x$. Sea g la métrica sobre \mathbb{R}^n asociada a F_A . En cada caso, clasificar g y diagonalizarla ortogonalmente:

$$a) \ A_1 = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 0 \end{array} \right).$$

$$b) \ A_2 = \left(\begin{array}{rrr} 3 & -2 & 1 \\ 1 & 6 & 2 \\ -3 & 0 & 7 \end{array} \right).$$

$$c) \ A_3 = \left(\begin{array}{cccc} 5 & -2 & 0 & -1 \\ -2 & 2 & 0 & 1 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & -2 & 2 \end{array} \right).$$

$$d) \ A_4 = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 \\ -1 & -2 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right)$$

3. Sean B_1 y B_2 bases respectivas de espacios vectoriales V y W, y sea $A = \begin{pmatrix} 6 & 5 & 3 & 0 \\ 3 & 1 & 0 & -3 \\ 3 & 3 & 2 & 1 \end{pmatrix}$

la matriz de una aplicación lineal $f: V \to W$ en las bases B_1 y B_2 . Consideremos la aplicación $F: V \to \mathbb{R}$ dada por $F(v) = [f(v)]_{B_2}^t \cdot [f(v)]_{B_2}$.

- a) ¿Cuáles son las dimensiones de V y W?
- b) Probar que F es una forma cuadrática sobre V y diagonalizarla ortogonalmente.
- c) Clasificar la métrica sobre V asociada a F.
- 4. Clasificar, según los valores de los parámetros, las métricas asociadas a las siguientes formas cuadráticas:

a)
$$F(x) = x^2 + y^2 + z^2 + 2m(xy + xz), m \in \mathbb{R}.$$

b)
$$F(x) = x^t \cdot A \cdot x$$
, donde $A = \begin{pmatrix} a & 0 & c \\ 0 & a+c & 0 \\ c & 0 & a \end{pmatrix}$, $a, c \in \mathbb{R}$.

5. Sea
$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
.

- a) Para a=3, encontrar $P \in O(3)$ que diagonalice ortogonalmente a A.
- b) Para a = 3, calcular $(5A)^{10}$.
- c) Sea $F(x) = x^t \cdot A \cdot x$. Clasificar la métrica asociada a F según los valores del parámetro a.

6. Sean
$$A = \begin{pmatrix} a & b & 0 \\ b & a & b \\ 0 & b & a \end{pmatrix}$$
 y $B = \{v_1 = (1, 1, 1), v_2 = (1, -1, 0), v_3 = (0, 1, -1)\}$. Se pide:

- a) Clasificar la métrica asociada a la forma cuadrática $F(x) = (x_B)^t \cdot A \cdot (x_B)$, según los valores de a y b.
- b) Para a = 0 y b = 1, hallar una base B' tal que $F(x) = (x_{B'})^t \cdot D \cdot (x_{B'})^t$, con D diagonal.

7. Sea
$$A = \begin{pmatrix} a & 0 & b \\ 0 & a & 0 \\ b & 0 & a \end{pmatrix}$$
.

- a) ¿Para qué valores de a y de b es $F(x) = x^t \cdot A \cdot x > 0, \, \forall x \neq 0$?
- b) Si a=-1 y $b\in\mathbb{R}$, reducir F a una suma de cuadrados.
- c) Si a=-1, ¿para qué valores de b es $F(x)<0, \forall x\neq 0$?
- 8. Sea $A \in \mathcal{S}_n(\mathbb{R})$ definida positiva, y $P \in \mathcal{M}_n(\mathbb{R})$.

- a) Si P es inversible, probar que la matriz P^tAP es definida positiva.
- b) Si P es no inversible, probar que la matriz P^tAP es semidefinida positiva.
- 9. Sea (V,g) un EVME y $\{u_1,...,u_k\}\subset V$ un subconjunto de vectores no nulos y ortogonales dos a dos. Probar que estos vectores son linealmente independientes.
- 10. En \mathbb{R}^4 con el producto escalar usual, calcular una base ortonormal a partir de los vectores $v_1 = (1, 1, 1, 1), v_2 = (1, 1, 0, 0), v_3 = (1, 1, 1, 0)$ y $v_4 = (1, 0, 0, 0)$.
- 11. Hallar una base ortonormal del subespacio $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 + 4x_2 x_3 + 3x_4 = 0\}.$
- 12. En \mathbb{R}^3 con el producto escalar usual, ortonormalizar siguiendo el método de Gram-Schmidt la base, $\{(1,1,1),(1,-1,1),(-1,1,1)\}$.
- 13. En \mathbb{R}^4 , se consideran la base usual B_u , el subespacio $W=L(\{e_1,e_3\})$ y la métrica euclídea g cuya matriz es

$$M_{B_u}(g) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

- a) Calcula una base de (W^{\perp}, g) .
- b) Dado el vector u=(1,1,1,1), calcula la proyección ortogonal de u en W según g.
- 14. En \mathbb{R}^3 con el producto escalar usual se considera el subespacio $U=\{(x,y,z)\in\mathbb{R}^3\mid 2x+y-z=0,\ x-y+3z=0\}$. Calcular las ecuaciones cartesianas de U^\perp .
- 15. Se considera el subespacio $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 = 0\}$ de \mathbb{R}^4 . Respecto del producto escalar usual, calcula la proyección ortogonal del vector (0, 1, 1, 1) sobre U y sobre el ortogonal de U.
- 16. En \mathbb{R}^3 con el producto escalar usual, se consideran los vectores u=(2,-3,1), v=(-1,1,1). Calcular las proyecciones ortogonales de u sobre $L(\{v\})$ y sobre $L(\{v\})^{\perp}$.
- 17. Considera en \mathbb{R}^3 las métricas euclídeas representadas en la base canónica por las siguientes matrices:

a)
$$A = \begin{pmatrix} 14 & -2 & 7 \\ -2 & 2 & 1 \\ 7 & 1 & 6 \end{pmatrix}$$
.

$$b) \ A = \left(\begin{array}{rrr} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{array} \right).$$

Para cada métrica, calcula una base ortonormal y calcula los ángulos que forman entre sí cada pareja de vectores de la base canónica.

- 18. Probar que toda isometría entre EVME $f\colon (V_1,g_1)\to (V_2,g_2)$ conserva ángulos. Si los EVME están orientados, ¿conserva f los ángulos orientados?
- 19. Clasificar las siguientes isometrías de \mathbb{R}^2 con el producto escalar usual:

a)
$$M(f, B_u) = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
.

b)
$$M(f, B_u) = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$
 (B_u es la base usual).

20. Clasificar las siguientes isometrías de \mathbb{R}^3 con el producto escalar usual:

a)
$$M(f, B_u) = \begin{pmatrix} 1/\sqrt{5} & 0 & 2/\sqrt{5} \\ 2/\sqrt{5} & 0 & -1/\sqrt{5} \\ 0 & 1 & 0 \end{pmatrix}$$
.

b)
$$M(f, B_u) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$
.

c)
$$M(f, B_u) = \begin{pmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{pmatrix}$$

c)
$$M(f, B_u) = \begin{pmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{pmatrix}$$

d) $M(f, B_u) = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ -2/3 & 1/3 & 2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}$ (B_u es la base usual).

21. Sea (V,g) un EVM y B una base ordenada de V. Dado $k \in \{1,\ldots,n\}$, sea A_k el menor de $M_B(g)$ formado por las k primeras filas y columnas de A. Demuestra que g es definida negativa si y sólo si $\forall k, (-1)^k \det(A_k) > 0$.