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ABSTRACT 1 

Stroke rehabilitation suffers from low levels of patient engagement, impeding recovery.  2 

Virtual rehabilitation (VR) approaches can improve outcomes, however there is limited 3 

understanding of the participant’s user experience and the field lacks a validated, objective 4 

measure of VR engagement.  A neurophysiological measure of engagement in healthy adults 5 

was therefore examined, to inform future clinical studies. Twenty-four participants (Mage 26.7 6 

years, range 18-47) interacted with a tabletop VR system (Elements DNA, or EDNA), after 7 

which they rated their experience on the Presence Questionnaire (PQ). Separately, participants 8 

completed tasks eliciting low (resting eyes-open and -closed) and high (EDNA VR and 9 

rollercoaster simulation) levels of engagement while continuous electroencephalogram (EEG) 10 

was recorded from a single, left pre-frontal electrode. EEG differences between the resting 11 

and simulation conditions included an increase in theta power (p < 0.01), and a decrease in 12 

alpha power (p < 0.01).  Importantly, theta power in simulation conditions correlated with PQ 13 

scores expressing the hands-on EDNA VR experience (rs = 0.38-0.48).  In conclusion, the 14 

current results provide proof of concept that increased frontal theta power in healthy adults 15 

provides a valid measure of user engagement in VR simulation and participation.   As the 16 

practical potential of VR is increasingly realised in stroke rehabilitation, objective EEG-based 17 

measures of engagement may provide a convenient and sensitive technique to assist in 18 

evaluating these interventions.    19 

 20 
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1. INTRODUCTION  1 

In the context of health interventions, engagement refers to mental states, experiences, and 2 

processes that foster deliberate and effortful patient commitment to working towards their 3 

healthcare goals (Barello et al. 2012; Bright et al. 2015).  Following the neuro-trauma of 4 

stroke, patient engagement is critical to the process of rehabilitation and predictive of positive 5 

outcomes (Burke et al. 2009a; Langhorne et al. 2011; Maclean et al. 2000).  A combination 6 

of internal (e.g., depressive moods, fear of pain, or negative attitudes; Lequerica et al. 2009), 7 

environmental (e.g., poor client-therapist relationship, unclear session goals; Lequerica and 8 

Kortte 2010) or task-related issues (e.g. excessive task difficulty and insufficient affordances 9 

for action; Triberti and Riva 2015) can diminish patient engagement.  Procedural barriers, 10 

such as repetitive and mundane exercises (Maclean et al. 2000), are also frequently cited as 11 

contributing to low levels of patient engagement with conventional rehabilitation techniques 12 

(Bright et al. 2015; Lenze et al. 2004; Lequerica et al. 2009). 13 

 14 

Virtual reality approaches have been developed to increase motivation to participate in 15 

rehabilitation by presenting exercises in an enjoyable, interactive, and novel manner 16 

(Duckworth et al. 2015; Howard 2017; Mumford et al. 2012; Rogers et al. 2019).   Based on 17 

virtual reality simulation and interactive technologies, and informed by neuroscience and 18 

learning theory, these so-called “virtual rehabilitation” (VR) approaches attempt to maximise 19 

user engagement by the provision of: (1) an enriched therapeutic environment (Perez et al. 20 

2004) that both affords action and engages the patient’s cognitive attention; (2) augmented 21 

feedback in real time and after performance (Maier et al. 2019; Zimmerli et al. 2013) to 22 

enhance motor learning and future movement planning; and (3) in-system scaling of the level 23 

of task challenge (Schultheis and Rizzo 2001), ensuring dynamic scaffolding of the user’s 24 

processing and response capabilities. 25 

 26 
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Meta-analyses of post-stroke VR interventions have repeatedly revealed the approach is more 27 

beneficial for recovery than conventional therapies (Aminov et al. 2018; Laver et al. 2017; 28 

Lohse et al. 2014; Palma et al. 2017).  Additional reviews have identified principles of motor 29 

(e.g. variable practice, implicit and explicit feedback, increasing intensity) and social 30 

cognitive learning (e.g. vicarious learning, performance accomplishment) presumed to 31 

underlie the positive effect of post-stroke VR  (Imam and Jarus 2014; Maier et al. 2019).  32 

However, despite an evidence-based approach to the development of VR, and much 33 

deliberation about the active ingredients of VR that may contribute to engagement (Burke et 34 

al. 2009b; Levin 2011; Lewis and Rosie 2012; Zimmerli et al. 2013), there is little work 35 

formally evaluating whether VR approaches can, in fact, enhance patient engagement.  36 

Engagement is often assessed via self-report measures of the subjective experience of 37 

presence (Barello et al. 2012; Kober et al. 2012).  Presence refers to the subjective experiences 38 

mediated by an environment, including the extent to which it engages our senses, captures our 39 

attention, and fosters our active involvement (Witmer et al. 2005). 40 

 41 

However, self-report approaches require attention, comprehension, self-reflection, and 42 

communication skills that are often compromised after stroke and other neurological injuries.  43 

Alternatively, electrophysiological methods can provide an objective measure of a user’s 44 

immediate responses to VR, which correlate with traditional self-report measures of 45 

engagement (Leiker et al. 2016; Zimmerli et al. 2013).  In particular, the electroencephalogram 46 

(EEG) can provide real-time information on brain activity, with the level of task engagement 47 

reliably associated with EEG indices of attentional allocation, visual interpretation, and 48 

information processing (Berka et al. 2007). Specifically, increased frontal theta (brain activity 49 

with an oscillation rhythm in the frequency band 3.5-7.5 Hz) is consistently associated with 50 

heightened engagement during skilled motor performance (Kao et al. 2013) or video game 51 

play (Ewing et al. 2016; Nagendra et al. 2017; Salminen and Ravaja 2008; Yamada 1998).  52 
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More recently, the Engagement Index (EI; Pope et al. 1995) - a ratio of theta, alpha (brain 53 

oscillations in the band 7.5-12.5 Hz), and beta (frequency band 12.5-25 Hz) EEG activity - 54 

has also been used to measure engagement in video game play (McMahan et al. 2015; 55 

Nagendra et al. 2017). While EEG has been used to evaluate spatial processing (Baumgartner 56 

et al. 2006; Kober et al. 2012) and motor function (Calabro et al. 2017; Lee et al. 2015; 57 

Oliveira et al. 2018) in a VR environment, EEG has not been used to evaluate VR engagement. 58 

 59 

EEG metrics such as EI or frontal theta may also prove to be valid measures of VR 60 

engagement, but this has not yet been formally tested.    These EEG metrics have historically 61 

been obtained using conventional multi-channel recording arrays, which can be cumbersome 62 

to use (Badcock et al. 2013; Johnstone et al. 2012), redundant (Schleiger et al. 2014), and 63 

poorly tolerated by neurological patients (Badcock et al. 2013; Johnstone et al. 2012).  64 

Alternatively, single-channel EEG systems offer a simple and efficient means of data 65 

collection while maintaining data quality (Johnstone et al. 2012) and reliability (Rogers et al. 66 

2016), and would appear suited for acquiring EEG measurements of VR engagement.      67 

 68 

The aim of the present study was therefore to provide a proof of concept of a single-channel 69 

device to obtain EEG indices of user engagement in VR.  Prior to proceeding with a clinical 70 

study, a convenience sample of young, healthy adults was recruited to ensure the study 71 

methodology was sufficiently sensitive, and to help avoid wasting the time of stroke survivors 72 

and their families and carers.  We compared EEG metrics between two resting conditions 73 

designed to elicit low levels of engagement and two simulation conditions designed to elicit 74 

higher levels of engagement. We predicted that healthy controls would exhibit a significant 75 

difference in frontal theta values and EI scores as a function of task condition. Also, we 76 

predicted that these EEG metrics would positively correlate with a standard self-report 77 

measure of virtual presence/engagement in a validated VR activity. 78 
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 79 

2. MATERIAL AND METHODS 80 

This study was approved by the institutional ethics committee of the Australian Catholic 81 

University (HREC No: 2017-78E), and performed in accordance with their guidelines. 82 

 83 

2.1 Participants 84 

Twenty-five participants (17 female, Mage = 26.7 years, range: 18-47 years) were recruited 85 

from a university population in Australia.  Eligible participants were English speaking and in 86 

good health, with no reported history of head injury, psychiatric disorder, neurological 87 

disorder, cardiovascular disease, or substance abuse. All participants were right handed, with 88 

normal hearing and normal or corrected to normal vision. 89 

 90 

2.2 VR System 91 

Elements DNA (or EDNA) is a virtual-reality based tabletop-mounted VR system that affords 92 

an embodied and playful form of interaction via goal-directed and exploratory tasks to train 93 

manual skills and volition.  Previous evaluations of the EDNA system have identified strong 94 

improvements in motor, cognitive, and everyday performance in various forms of neuro-95 

disability including hemiplegia through childhood cerebral palsy and stroke (Green and 96 

Wilson 2014; Green and Wilson 2012), and traumatic brain injury and stroke in adults 97 

(Mumford et al. 2010; Mumford et al. 2012; Rogers et al. 2019).  The EDNA display 98 

technology consists of a 3MTM 42-inch LCD touchscreen, with integrated computer, multi-99 

touch capacity, and marker based tracking (Duckworth et al. 2015).  Presented on the display 100 

is the EDNA training environment and tasks (Figure 1), a series of four goal-directed and 101 

three exploratory movement activities (Mumford et al. 2010), including: Bases, consisting of 102 

a home base and four potential target locations. The circular targets are cued in a fixed order 103 

(east, north, west, south) using an illuminated border; Random Bases, with the same 104 
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configuration of targets, but highlighted in random order; Go, consisting of a target circle 105 

appearing randomly in one of nine locations configured along three radials emanating from 106 

the home base; Go-No-Go, which uses the same target positions as Go, however, additional 107 

distractor shapes appear. Participants are instructed to respond to circular targets only and 108 

resist moving to distractors; and Mixer, Squiggles, and Swarm, tasks which are creative in 109 

nature, requiring participants to create novel audio-visual effects through active manual 110 

manipulation of tangible interfaces.   111 

 112 

2.3 Task Conditions 113 

Continuous EEG was recorded during two resting and two simulation conditions, each 2-min 114 

in duration. The resting eyes closed (rEC) condition required the participant to sit with their 115 

eyes closed. The resting eyes open (rEO) condition presented a video of white circles rotating 116 

clockwise on a black background. The first simulation condition presented video (with sound) 117 

of a rollercoaster ride (sRC), from a first-person perspective, sourced from YouTube 118 

(https://www.youtube.com/watch?v=q90JsglUY0U).  A roller coaster scenario has often been 119 

used in the assessment of engagement-related phenomenon (Baumgartner et al. 2008; 120 

Freeman et al. 1999; Jäncke et al. 2009).  The second simulation condition (sVR) comprised 121 

a sequence of videos (with sound), from a first-person perspective, showing performance of 122 

manual training tasks (Bases, Go, Squiggles, and Swarm) from the EDNA VR system (Green 123 

and Wilson 2012; Mumford et al. 2010; Mumford et al. 2012).   124 

 125 

2.4 Engagement self-report  126 

The Presence Questionnaire (PQ) version 3 (https://docplayer.net/52991659-Presence-127 

questionnaire-witmer-singer-vs-3-0-nov-1994-revised-by-the-uqo-cyberpsychology-lab-128 

2004.html), is a 24-item self-report questionnaire designed to measure the degree of presence 129 

experienced in a virtual environment (α = 0.88), encompassing four factors: Involvement; 130 

https://www.youtube.com/watch?v=q90JsglUY0U
https://docplayer.net/52991659-Presence-questionnaire-witmer-singer-vs-3-0-nov-1994-revised-by-the-uqo-cyberpsychology-lab-2004.html
https://docplayer.net/52991659-Presence-questionnaire-witmer-singer-vs-3-0-nov-1994-revised-by-the-uqo-cyberpsychology-lab-2004.html
https://docplayer.net/52991659-Presence-questionnaire-witmer-singer-vs-3-0-nov-1994-revised-by-the-uqo-cyberpsychology-lab-2004.html
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Adaptation/Immersion; Sensory Fidelity; and Interface Quality (Witmer et al. 2005; Witmer 131 

and Singer 1998). Using a 7-point Likert-type scale, higher scores indicate greater user 132 

engagement (max. = 168).   133 

 134 

2.5 EEG acquisition and analysis 135 

Continuous EEG was collected during repeated 2-min conditions using the NeuroSky 136 

MindWave device (NeuroSkyTM, CA, USA). The MindWave device continuously samples 137 

EEG data at 512 samples per second from a single dry stainless-steel electrode positioned at 138 

the International 10-20 system site FP1, referenced to the left earlobe. Raw EEG data was 139 

transmitted wirelessly via Bluetooth to a laptop computer for off-line analysis in MatLab 140 

(Release 2017a; The MathWorks Inc, Natick MA), using functions from the “Signal 141 

Processing” and “Statistics, and Machine Learning” toolboxes. The raw EEG waveform was 142 

bandpass filtered (4th order Butterworth, 0.5-30 Hz) and baseline corrected. Eye-blink artefact 143 

correction was performed using Iterative Template Matching and Suppression (ITMS), an 144 

algorithm that automatically detects and suppresses eye-blink artefacts from a single-channel 145 

EEG (Valderrama et al. 2018).  The EEG waveform was segmented into contiguous 2-sec 146 

epochs (0.5 Hz spectral resolution; 50% overlap), and any epochs containing amplitudes in 147 

excess of ±150µV were automatically rejected. Denoised epochs were applied a Hamming 148 

window of the same duration, transformed to the frequency domain through the Fast Fourier 149 

Transform (FFT), magnitude squared, and averaged in order to obtain the power spectral 150 

density from which the absolute spectral power was estimated in the four classical frequency 151 

bands: delta (0.5–3.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–25 Hz). 152 

Relative power was calculated by summing absolute power across the four bands to compute 153 

the total power, and then dividing the absolute power for each individual band by the total 154 

power, expressed as a percentage.  Finally, relative power in the relevant bands was used to 155 

calculate EI, defined as beta/(alpha+theta). 156 
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 157 

2.6 Procedure 158 

Each participant provided written informed consent for voluntary participation.  Testing took 159 

place in a quiet room free from distraction, at the university, with all tasks administered by 160 

the second author, following training in EEG and VR from the first and senior authors, 161 

respectively.  Participants were tested individually in a single session lasting approximately 162 

45-min, divided into two parts.  In part one, participants were fitted with the MindWave 163 

device.  After minimising impedance levels, participants completed the four task conditions 164 

(rEC, rEO, sRC, sVR), with the order of administration counterbalanced.  Participants were 165 

not moving objects during these conditions, only observing.   Conditions were presented on a 166 

42-inch, high definition television monitor, positioned at eye level, 1 m from the seated 167 

participant. Audio was presented through paired external speakers (LogitechTM) positioned at 168 

30 cm to each side of the display and set at a comfortable audible level (approximately 60 169 

dB).  In part two, participants completed a total of 10 min of guided participation on the EDNA 170 

VR system, playing with both goal-directed and exploratory tasks. Immediately afterward, 171 

participants completed the PQ in reference to their experience of using the EDNA system. 172 

 173 

2.7 Statistical analysis 174 

All statistical analyses were conducted using IBM SPSS Statistics for Windows version 24 175 

(IBM Corp, Armonk, NY).  All data was checked for normality using Shapiro-Wilk’s tests, 176 

where violations were detected the non-parametric alternative (e.g. Friedman test, Wilcoxon 177 

Test) was applied.  A series of one-way repeated measures ANOVAs examined the differential 178 

effect of task condition (rEC, rEO, sRC, sVR) on each of the four EEG frequency bands (delta, 179 

theta, alpha, beta) and the EI metric.  Post-hoc contrasts were conducted using Bonferroni 180 

adjustments (p < 0.008 for six multiple comparisons). EEG measures that showed condition 181 

effects were then included in a one-tailed Spearman’s rank-order correlation analysis with the 182 
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PQ total score.    183 

3. RESULTS 184 

Complete data were available from 24 participants; due to an EEG recording issue, data 185 

from one participant was excluded from analysis.  EEG data from the four task conditions 186 

are presented in Table 1.  Following the session with the EDNA VR system, participants’ 187 

average self-reported engagement, as measured by the PQ total score was 137 (SD = 14, 188 

range 103-160).   189 

 190 

There was no main effect of condition on the delta [F(3,69) = 0.77, p = 0.51] or beta [χ2(3) = 191 

6.64, p = 0.08] power bands. In contrast, the condition effect was significant for the theta 192 

[F(3,69) = 21.59, p < 0.01, partial 2 = 0.48] and alpha bands [F(3,69) = 9.20, p < 0.01, partial 193 

2 = 0.29], and EI scores [χ2(3) = 12.19, p < 0.01].  After correcting for multiple comparisons, 194 

none of the post-hoc differences for EI scores reached statistical significance. Post-hoc testing 195 

(Table 2) did identify significant increases (p < 0.008) in relative theta band power from the 196 

resting (rEC and rEO) to the simulation conditions (sRC and sVR).  The increase in frontal 197 

theta band activity was equivalent for both the rollercoaster and the EDNA VR simulations.  198 

For frontal alpha band power, there was a significant decrease (p ≤ 0.005) from the resting 199 

conditions (rEC and rEO) to the simulation EDNA VR task, and from the resting eyes closed 200 

task to the simulation rollercoaster task (p = 0.005).   201 

 202 

Based on the condition effects, theta and alpha band relative power data were entered into 203 

correlational analysis with PQ total scores (Table 3).  Positive correlations were found between 204 

PQ total scores and relative power of theta in the two simulation conditions [sVR, rs = 0.38, p 205 

= 0.04; sRC, rs = 0.48, p = 0.02], suggesting a moderate association between an EEG 206 

biomarker of engagement (theta) and a self-report measure of engagement (PQ total score). 207 

Additionally, there was a negative association between theta and alpha in the resting eyes 208 
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closed [rs = -0.46, p = 0.01] and resting eyes open conditions [rs = -0.39, p = 0.03], consistent 209 

with the expected sensitivity of these EEG frequencies to standard variations in resting state 210 

task conditions (Barry et al. 2007; Barry et al. 2014).  211 

 212 

4. GENERAL DISCUSSION 213 

Engagement in rehabilitation is a multi-dimensional phenomenon (Bright et al. 2015), driven 214 

by personal factors such as the motivation and active participation of the patient (Brett et al. 215 

2017; Lequerica et al. 2009), environmental factors associated with the setting and therapeutic 216 

alliance, and task factors associated with the rehabilitation activities (Bartur et al. 2017; Burke 217 

et al. 2009a).  Greater levels of engagement are predictive of positive outcomes, as 218 

engagement fosters the transfer of trained skills and knowledge to corresponding real world 219 

behaviour (Kober et al. 2012).   Therefore, as the emerging field of VR seeks to build an 220 

evidence base to inform design and validate clinical efficacy, there is an increasing need for 221 

robust methods for determining when individuals are sufficiently engaged.   However, given 222 

its subjective nature, assessment of engagement is a challenging task (McMahan et al. 2015).  223 

As an alternative to self-report questionnaires, single-channel EEG technology may offer an 224 

easy (Ekandem et al. 2012) and efficacious (Johnstone et al. 2012; Rogers et al. 2016) 225 

neurophysiological measure of an individual’s level of engagement.  In the current study, 226 

frontal theta was particularly sensitive to task manipulations in the level of engagement, and 227 

was associated with the subjective self-reported level of engagement, providing converging 228 

evidence in support of its use as a measure of user engagement in VR simulation and 229 

participation.  These results are discussed, in turn, below.   230 

 231 

4.1 Theta as a measure of engagement 232 

Augmented frontal theta is associated with cognitive control and working memory function 233 

(Cavanagh and Frank 2014; Hsieh and Ranganath 2014), and focused (Doppelmayr et al. 234 
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2008) and sustained attention (Fairclough and Venables 2006; Fairclough et al. 2005).  The 235 

relationship between theta and these aspects of mental effort have led to the uptake of frontal 236 

theta band activity as an index of engagement in flight and air traffic control simulations 237 

(Borghini et al. 2011; Dussault et al. 2005; Smith et al. 2001) and the video gaming literature 238 

(Ewing et al. 2016; Nagendra et al. 2017; Salminen and Ravaja 2008; Yamada 1998), but has 239 

yet to be applied in VR research.   240 

 241 

In the current study, theta obtained from a single, left pre-frontal electrode was sensitive to 242 

manipulations in a series of VR-related activities, with the less engaging, resting conditions 243 

(rEC and rEO) associated with lower relative power in the theta band, and the more engaging 244 

rollercoaster simulation condition (sRC) associated with greater theta band activity.  This 245 

pattern of theta modulation was consistent with previous reports of the impact of more and 246 

less immersive virtual reality environments (Slobounov et al. 2015), but findings had not 247 

previously been linked with the concept of engagement.   248 

 249 

Encouragingly, theta band activity during the EDNA condition (sVR) was comparable to the 250 

rollercoaster condition (sRC), providing preliminary criterion-related evidence of the 251 

enhanced level of engagement that can be facilitated by a VR approach.  Furthermore, theta 252 

band power in the rollercoaster and EDNA conditions also corresponded with engagement 253 

levels measured on the PQ, a standard self-report questionnaire.  The PQ has been repeatedly 254 

endorsed as a valid and reliable measure of presence and engagement in a variety of contexts 255 

(Brackney and Priode 2017; Deutsch et al. 2013; Gamito et al. 2010; Witmer et al. 2005), and 256 

the questionnaire offers superior psychometrics to the various one-item Likert scales that have 257 

been utilised in past research (e.g., Baumgartner et al. 2008; Freeman et al. 1999; Kober et al. 258 

2012; Slobounov et al. 2015).  The similar pattern of modulation in theta band power activity 259 

and subjective self-report offers encouraging preliminary face validity that single-channel 260 
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EEG changes in frontal theta band activity express variations in VR engagement. 261 

 262 

In the current study, the simulation EEG conditions were also differentiated from the resting 263 

EEG conditions by a significant decrease in alpha band activity.  These findings are consistent 264 

with previous observations that frontally distributed alpha band power is prominent during 265 

relaxed conditions at decreased attention levels, and attenuates during more complex and 266 

cognitively demanding tasks (Fairclough et al. 2005; Slobounov et al. 2000) and less 267 

immersive virtual reality environments (Kober et al. 2012).  The two-factor pattern identified 268 

in the current study, comprised of a decrease in alpha and an increase in theta activity, has 269 

also previously been described (Smith et al. 2001), and connected to enhanced accuracy of 270 

performance (Klimesch 1999).  However, alpha power in the current study was not correlated 271 

with PQ self-report.   At frontal electrode sites, this EEG frequency therefore appears to reflect 272 

bottom-up variations in attention and arousal (Barry et al. 2007; Barry et al. 2014), likely 273 

related to the amount of visual scanning, rather than top-down levels of VR engagement.   274 

Finally, as expected, no significant difference in delta and beta band activity were detected 275 

across the different EEG conditions.  These frequency bands are associated with states of sleep 276 

or deep restfulness (delta) and heavy cognitive load (beta) that were not induced by the 277 

conditions in the current study.  278 

 279 

4.2 EI as a measure of engagement  280 

Contrary to expectation, EI scores (the ratio of beta to alpha+theta) in the current study were 281 

not sensitive to variations in the resting and simulation EEG conditions. Notably, previous 282 

reports of the association between EI scores and engagement were derived from multi-channel 283 

EEG systems (McMahan et al. 2015; Pope et al. 1995), while the current study relied upon a 284 

single pre-frontal electrode.  The subjective experience of engagement in virtual environments 285 

has been linked to activity within a distributed fronto-parietal network, including down-286 
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regulation of prefrontal inhibitory control mechanisms, and increased activation of parietal 287 

sensory processing centres (Baumgartner et al. 2008; Baumgartner et al. 2006).   A global EEG 288 

index such as EI, derived from the grand averaged band power across a multi-channel array, 289 

may be well suited for monitoring activity within this network.  However, EI does not appear 290 

to be the optimal algorithm for calculating user engagement levels from a single pre-frontal 291 

channel EEG system, which lacks central and posterior electrode sites.   292 

 293 

4.3 Limitations and Future directions 294 

While there is an increasing body of literature suggesting that engagement can be measured via 295 

EEG paradigms, there are no well-established methodologies and agreed-upon evaluation 296 

procedures.  The meaning of “engagement” itself remains loosely articulated, with the term 297 

linked variously to attributes of flow theory (Csikszentmihalyi 1990), aesthetic theory 298 

(Beardsely 1982), play theory (Stephenson 1967), and information interaction (Toms 2002).  299 

Acknowledging the contribution of all of these theories, O’Brien and Toms (O'Brien and Toms 300 

2008) have proposed a unifying framework for engagement comprised of core attributes 301 

including focused attention, system feedback, user control, activity orientation, and intrinsic 302 

motivation; importantly, the current study utilized an engagement questionnaire with a factor 303 

structure (involvement; immersion; sensory fidelity; interface quality) well aligned to this 304 

model (Witmer et al. 2005).  305 

 306 

In view of existing problems with movement artifacts during EEG measurements (Reinecke et 307 

al. 2011), the evaluation of VR tasks and exercises is more limited to simulation exercises that 308 

involve negligible movement. The current study therefore acquired EEG during the observation 309 

rather than the completion of EDNA tasks and exercises, and we acknowledge the two 310 

processes are not equivalent.  However, neuroimaging studies suggest mental representations 311 

of an action can be activated by virtual reality stimuli without the execution of overt actions 312 
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(Baumgartner et al. 2007; Jäncke et al. 2009).  Hence, the experience of engagement with the 313 

EDNA system can be induced while only observing VR tasks, with resultant variations in the 314 

EEG corresponding to self-reported engagement while completing VR tasks.  Moreover, action 315 

observation and mental rehearsal themselves have been used as an effective rehabilitation 316 

strategy for severe brain injury (Ruffino et al. 2017).  317 

 318 

In addition to body movement, EEG from a single-channel device can be susceptible to eye-319 

blink and eye-movement artifacts.  In the current study, while eye blink artifacts could be 320 

suppressed by the ITMS method (Valderrama et al. 2018), epochs containing eye movement 321 

artifacts were simply rejected.  This results in data loss, and the eyes closed condition contained 322 

nearly double the number of valid epochs as each of the eyes open conditions (49.79±18.30 c.f. 323 

27.56±15.31).  However, using tasks 2-min long, the average number of valid epochs in each 324 

condition was well above the inclusion level for analysis ,  Longer EEG acquisition time frames 325 

may be advisable in future trials involving participant populations anticipated to be susceptible 326 

to eye movement artifacts (e.g. eye or neck dystonia).  327 

 328 

Furthermore, the current study utilized a convenience sample of healthy adults, rather than the 329 

target population of stroke survivors, as it was deemed inappropriate to proceed to recruitment 330 

of a clinical population without first establishing proof of concept.  Participants were therefore 331 

far younger and healthier than a typical survivor of stroke [JR find current reference).  As EEG 332 

activity changes over the lifespan (Barry et al. 2014; Zappasodi et al. 2015) and after a stroke 333 

(Finnigan et al. 2016), the current findings require replication in the target clinical population 334 

before theta obtained from a single, left pre-frontal electrode can be confidently offered as a 335 

measure of post-stroke VR engagement, and a potential alternative to subjective self-report.   336 

 337 

The Motivational Intensity Model (Ewing et al. 2016; Wright 2008) provides a conceptual 338 
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framework for defining states of engagement, based upon the relationship between task 339 

demands and user effort.  The ideal level of engagement is characterised by a degree of task 340 

demand and skill development that is sufficient to avoid boredom, but not so great that the 341 

user experiences “overload,” making task mastery or competence unlikely, and withdrawing 342 

effort.   While the current study suggests single-channel theta EEG power can detect the 343 

threshold between boredom (i.e. the absence of engagement) and engagement, further work 344 

is required to establish single-channel indices of the upper limit between engagement and 345 

overload.  Awareness of both lower and upper thresholds will be crucial in the design of 346 

effective and responsive VR paradigms that can keep patients continuously engaged (Bartur 347 

et al. 2017; McMahan et al. 2015).   348 

 349 

Finally, in the context of stroke rehabilitation, it is important to recognise that patient 350 

attendance in a rehabilitation program does not automatically equate to patient engagement 351 

with the rehabilitation program (Imms et al. 2017; Li et al. 2016).  Li and colleagues (Li et al. 352 

2016) have argued that evaluation of engagement should consider four separate, but inter-353 

related aspects: motor engagement, perceptive engagement, cognitive engagement, and 354 

emotional engagement.   Indicators of motor engagement can include electromyography 355 

(Zimmerli et al. 2013) and kinematic measures (Li et al. 2014), perceptive engagement can be 356 

monitored via eye blinking activity (Yamada 1998) and eye tracking systems (Miller 2015), 357 

indices of positive emotion (Ostir et al. 2008; Seale et al. 2010) can be used to track emotional 358 

engagement, and EEG measures can be utilised as an indicator of cognitive engagement 359 

(Ewing et al. 2016; Kao et al. 2013; Nagendra et al. 2017; Salminen and Ravaja 2008; Yamada 360 

1998).  While this engagement evaluation model requires external validation, the approach is 361 

consistent with calls for multiple measures and mixed methods (Lalmas et al. 2014), and the 362 

current study likely captures just one facet of the multidimensional construct of user 363 

engagement.   364 
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 365 

5. CONCLUSIONS 366 

There has been a rapid growth in the use of virtual reality for health purposes, including 367 

enhancement of post-stroke motor and cognitive rehabilitation (Aminov et al. 2018).  The 368 

success of VR approaches such as EDNA in this arena will depend, in part, on the 369 

capability of virtual reality applications to facilitate patient engagement (Slobounov et al. 370 

2015).  The current findings suggest that modulation of frontal theta, obtained from a 371 

single channel of EEG, expresses the subjective sense of presence induced by the EDNA 372 

system.  These preliminary findings provide proof of concept of an objective approach for 373 

measuring a key component of engagement in VR, which will be of value in elucidating 374 

the impact of system design and implementation factors, and evaluating the efficacy of 375 

VR as a clinical intervention.      376 

 377 

 378 

 379 

 380 

 381 

 382 
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Table 1. Valid epochs and EEG metrics (mean, 95% confidence interval) for each of the four experimental conditions. 

Condition Delta* Theta* Alpha* Beta* EI Valid Epochs 

Resting       

    Eyes Closed 30.18 

[27.49,32.87] 

26.93 

[25.98,27.88] 

27.61 

[24.89,30.32] 

14.89 

[13.51,16.27] 

27.54 

[24.60,30.48] 

49.79 

    Eyes Open 30.78 

[28.73,32.84] 

28.60 

[27.52,29.68] 

24.79 

[23.15,26.43] 

15.81 

[14.26,17.37] 

29.89 

[26.29,33.49] 

29.08 

Simulation       

    Rollercoaster 31.07 

29.39,32.74] 

30.53 

[29.57,31.50] 

23.08 

[22.07,24.09] 

15.32 

[13.95,16.70] 

28.69 

[25.86,31.53] 

23.35 

    EDNA VR 31.81 

[29.90,33.71] 

30.02 

[29.11,30.93] 

22.64 

[21.64,23.65] 

15.40 

[13.85,16.96] 

29.44 

[25.99,32.89] 

30.33 

Note: *Relative power.  EI: Engagement Index; EDNA VR: Elements DNA virtual rehabilitation 
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Table 2.  Post-hoc contrast analysis significance tests (p values) for the four EEG conditions 

on theta and alpha relative power.  Cohen’s d effect sizes are presented for significant 

differences (p < 0.008). 

Comparison Theta Alpha 

 P value d value P value d value 

VR simulation vs. rollercoaster simulation 0.128  0.391  

 resting eyes closed < 0.001* 1.40 0.001* 1.02 

 resting eyes open 0.001* 0.60 0.005* 0.67 

rollercoaster simulation vs. VR simulation 0.128  0.391  

 resting eyes closed < 0.001* 1.59 0.005* 0.93 

 resting eyes open 0.001* 0.79 0.023  

resting eyes closed vs. VR simulation < 0.001* 1.40 0.001* 1.02 

 rollercoaster simulation < 0.001* 1.59 0.005* 0.93 

 resting eyes open 0.002* 0.70 0.027  

resting eyes open vs. VR simulation 0.001* 0.60 0.005* 0.67 

 rollercoaster simulation 0.001* 0.79 0.023  

 resting eyes closed 0.002* 0.70 0.027  
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Table 3.  Spearman Rank Order correlations (one-tailed) between self-reported engagement (Presence Questionnaire) and EEG metrics (theta 

relative power, alpha relative power)  

 

 sVR theta sRC theta rEC theta rEO theta sVR alpha sRC alpha rEC alpha rEO alpha PQ 

sVR theta -         

sRC theta 0.77** -        

rEC theta 0.41* 0.10 -       

rEO theta 0.65** 0.42* 0.56** -      

sVR alpha 0.25 0.04 0.12 0.03 -     

sRC alpha -0.14 -0.31 0.17 -0.22 0.26 -    

rEC alpha 0.13 0.30 -0.46* -0.25 -0.02 -0.19 -   

rEO alpha 0.04 0.01 -0.08 -0.39* 0.39* 0.49** 0.35* -  

PQ 0.38* 0.48* 0.19 0.11 0.06 0.10 0.03 0.20 - 

Note. *p < 0.05, **p < 0.001.  PQ: Presence Questionnaire; rEC: resting eyes closed condition; rEO: resting eyes open condition; sVR: Elements DNA 

virtual rehabilitation simulation condition; sRC: rollercoaster simulation condition.  
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Figure 1.  The tangible user interfaces and tabletop virtual environment in the (a) Bases and 

(b) Squiggles tasks of the Elements DNA virtual-reality system.   

 

 

 


